
LETTER 2811

Alternative I–D Exchange Reaction on Pyrimidine and Purine Nuclei 
Mediated by Tributyltin Hydride Using THF-d8 as a Deuterium Source
Efficient I–D Exchange Reaction of Pyrimidine and Purine Nuclei Using Bu3SnH–THF-d8Tomonobu Mutsumi,*a,b Kazuo Maruhashi,a Yasunari Monguchi,b Hironao Sajikib

a Chemical Technology Laboratory, Taiho Pharmaceutical Co., Ltd., 200-22 Kodama-Gun, Saitama 367-0241, Japan
Fax +81(495)774598; E-mail: t-mutsumi@taiho.co.jp

b Department of Medicinal Chemistry, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585, Japan
Received 2 July 2008

SYNLETT 2008, No. 18, pp 2811–281414.11.2008
Advanced online publication: 15.10.2008
DOI: 10.1055/s-0028-1083548; Art ID: U06908ST
© Georg Thieme Verlag Stuttgart · New York

Abstract: A method for the regioselective deuteration of pyrimi-
dine and purine rings mediated by Bu3SnH using THF-d8 as a deu-
terium source on the basis of a radical reaction was developed.
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Many organic compounds containing a pyrimidine or pu-
rine ring, especially nucleic acid derivatives, have been
recognized as biologically important compounds on the
basis of their antitumor or virus activities.1 The develop-
ment of deuterium-labeling methods of such compounds
has been demanded for a wide range of studies involving
the metabolism and structural analysis.2 One of the useful
labeling methods so far reported is the radical-mediated
iodine–deuterium (I–D) exchange using Bu3SnD as the D
source.3

During our research related to nucleic acid chemistry, the
I–D exchange reaction at the 5-position of 2¢,3¢,5¢-tri-O-
benzoyl-5-iodocytidine using Bu3SnD (98 atm% D) and
2,2¢-azobis(2,4-dimethylvaleronitrile) (V-65) was found
to proceed with low D incorporation in THF (4% D effi-
ciency, Table 1, entry 1), EtOAc (13% D efficiency), ac-
etone (6% D efficiency), MeOH (22% D efficiency),
EtOH (11% D efficiency), or MeCN (19% D efficiency).

However, a nearly quantitative incorporation (99% D ef-
ficiency) was achieved when using THF-d8 as the solvent
(entry 2). Interestingly, the use of Bu3SnH instead of
Bu3SnD also worked well for the exchange (96% D effi-
ciency, entry 3). These results indicate that THF-d8 plays
a crucial role in the present deuteration.

A part of the 1H NMR charts of the 5-deuterated product
(Table 1, entry 3), 2¢,3¢,5¢-tri-O-benzoylcytidine, and the
starting 2¢,3¢,5¢-tri-O-benzoyl-5-iodocytidine are indicat-
ed as (a), (b), and (c) in Figure 1, respectively. A trace
peak for the 5-position (0.04 H, 96% D efficiency) and a
singlet peak for the 6-position were observed on chart (a).
The D introduction into the 5-position was also confirmed
by 2H NMR and MS spectra.

A variety of deuterated solvents were examined as the D
source for the D incorporation into the cytidine deriva-
tives. As shown in Table 2, the most preferable solvent to
achieve a high D content was THF-d8.

4 Deuterated meth-
anol (CD3OD) and deuterated ethanol (CH3CD2OH) pro-
duced higher D contents of 92% and 79%, respectively
(entries 3 and 6), compared to the deuterated methanol
and ethanols possessing different labeling patterns such as
CH3OD, CD3CH2OH, and CH3CH2OD (entries 4, 5, and
7).

Table 1 Reaction Using Bu3SnD or Bu3SnH in THF or THF-d8

Entry Substrate (mg) Reagent (equiv) V-65 (equiv) Solvent (mL) Time (h) D contenta (%) Yieldb (%)

1 100 Bu3SnD (1.7) 0.3 THF (2) 4 4 68

2 20 Bu3SnD (1.2) 0.2 THF-d8 (2) 1 99 64

3 20 Bu3SnH (2.4) 0.4 THF-d8 (2) 2.5 96 42

a Determined by 1H NMR spectroscopy in DMSO-d8.
b Isolated yield.
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It appears that the deuterium atoms on the carbon atoms
adjacent to the oxygen atoms of solvents are quite impor-
tant for the efficient deuteration. When the reaction was
carried out in CD3CO2C2D5, a moderate D incorporation

was achieved (Table 2, entry 9), while a low D efficiency
was obtained in CD3CN (entry 8). We next investigated
the transfer of deuterium from THF-d8 diluted with
EtOAc, MeCN, or THF (entries 10–12). The mixed sol-
vent of THF-d8 and MeCN produced a higher D efficiency
(78%) than the mixture of THF-d8 and EtOAc (49%).
These results indicated that the transfer of D from THF-d8

is more strongly obstructed by the solvent which works
better as a hydrogen (deuterium) donor (entries 8 vs. 9 and
10 vs. 11). Moreover, the mixture of THF-d8 and THF
gave only a low D content (9%), that is, a hydrogen atom
from THF is more easily incorporated into the cytosine
ring by comparison with a deuterium atom from THF-d8

based upon the deuterium isotope effect.

We also investigated the relation between the use of THF-
d8 and the D efficiency (Table 3). Decreasing the use of
THF-d8 led to lower D contents.

The I–D exchange reaction described above using
Bu3SnH would proceed by a radical mechanism because
the reaction rate significantly decreased by the addition of
6 equivalents of 2,2,6,6-tetramethylpiperidine-1-oxyl
(TEMPO)5 as a radical scavenger. Moreover, the lack of
the radical initiator (V-65) significantly suppressed the re-
action progress.

The reaction of 5-iodo-1,3-dimethyluracil with Bu3SnH
also proceeded with a 90% D efficiency (Scheme 1), indi-
cating that uracil as well as cytidine derivatives could be
applicable to the reaction. To specify which deuterium at-
oms of THF-d8 are likely to be introduced on the uracil
ring during the present deuteration, we compared the pro-
ton peak intensities of THF on the 1H NMR charts before
and after the reaction. Since a significant increase in the
peak intensity corresponding to the protons at the 2- and
5-positions (adjacent to oxygen atom) of THF was ob-
served, it is obvious that the deuterium abstraction mainly
took place at the 2- and 5-positions of THF-d8 (Figure 2).

Figure 1 1H NMR (270 MHz, DMSO-d8) spectra: (a) 2¢,3¢,5¢-tri-O-
benzoyl-5-deuterocytidine; (b) 2¢,3¢,5¢-tri-O-benzoylcytidine; (c)
2¢,3¢,5¢-tri-O-benzoyl-5-iodocytidine

Table 2 D Content on Using Various Solvents

Entry Solvent (100 v/w)a D content (%)b

1 THF-d8 97

2 acetone-d6 59

3 CD3OD 92

4 CH3OD 33

5 CD3CH2OH 7

6 CH3CD2OH 79

7 EtOD 32

8 CD3CN 22

9 EtOAc-d8 59

10 EtOAc–THF-d8, 9:1c 49

11 MeCN–THF-d8, 9:1c 78

12 THF–THF-d8, 1:1c 9

a The solvent (mL) use is expressed as the ratio based on the weight 
(g) of 2¢,3¢,5¢-tri-O-benzoyl-5-iodocytidine.
b Determined by 1H NMR spectroscopy in DMSO-d8 and D2O.
c The ratio of volume to volume.
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Table 3 The Effect of Solvent Volume on the D Content

Entry Use of THF-d8 (v/w)a D content (%)b

1 100 97

2 40 80

3 20 78

a The use of THF-d8 (mL) is expressed as the ratio based on the weight 
(g) of 2¢,3¢,5¢-tri-O-benzoyl-5-iodocytidine.
b Determined by 1H NMR spectroscopy in DMSO-d8 and D2O.
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Scheme 1 Deuteration of 5-iodo-1,3-dimethyluracil with Bu3SnH
and THF-d8

Figure 2 1H NMR (270 MHz, DMSO-d6) spectra of residual proton
peaks in THF-d8 before (a) and after (b) the deuteration of 5-iodo-1,3-
dimethyluracil using Bu3SnH and V-65 in THF-d8

The deuteration of 2¢,3¢,5¢-tri-O-benzoyl-5-iodouridine6

(Table 4, entry 1), 3¢,5¢-di-O-tert-butyldimethylsilyl-2¢-
deoxy-5-iodouridine (entry 2), and 2¢,3¢,5¢-tri-O-tert-bu-
tyldimethylsilyl-8-iodoadenosine7 (entry 3) also provided

regioselectively deuterated products in high D efficien-
cies (90–92%). The present I–D exchange method is ap-
plicable to the deuteration of both the pyrimidine and
purine nucleosides.

In summary, we have developed a new regioselective in-
troduction method of a deuterium atom into pyrimidine
and purine nuclei using THF-d8 as the D source and
Bu3SnH (not necessary to use Bu3SnD) as a radical medi-
ator.

2¢,3¢,5¢-Tri-O-benzoyl-5-deuterocytidine (Table 1, entry 3): 
Typical Procedure for the I–D Exchange Reaction
To a solution of 2¢,3¢,5¢-tri-O-benzoyl-5-iodocytidine (20 mg, 0.029
mmol) and 2,2¢-azobis(2,4-dimethylvaleronitrile) (V-65, 1.5 mg,
0.006 mmol) in THF-d8 (2 mL) was added Bu3SnH (9.4 mL, 0.035
mmol), and the mixture was stirred under reflux for 1.5 h. Then, V-
65 (1.8 mg, 0.007 mmol) and Bu3SnH (9.4 mL, 0.035 mmol) were
added, and the reaction mixture was stirred under reflux for another
1 h. After cooling to r.t., hexane (8 mL) was added to the reaction
mixture. The precipitate was corrected on the filter paper and
washed with hexane to give 2¢,3¢,5¢-tri-O-benzoyl-5-deuterocyti-
dine (6.8 mg, 42%). 1H NMR (270 MHz, DMSO-d6): d = 4.58–4.72
(m, 3 H, 4¢-H, 5¢-H), 5.74 (d, J = 7.3 Hz, 0.04 H, 5-H), 5.89–5.98
(m, 2 H, 2¢-H, 3¢-H), 6.07 (d, J = 3.1 Hz, 1 H, 1¢-H), 7.35–8.02 (m,
18 H, 6-H, Bz, NH2). 

2H NMR (61 MHz, DMSO-d6): d = 5.77 (br).
MS–FAB+: m/z = 557 [M + 1].

5-Deutero-1,3-dimethyluracil (Scheme 1)
1,3-Dimethyl-5-iodouracil (40.0 mg, 0.150 mmol), Bu3SnH (48 mL,
0.178 mmol), V-65 (7.5 mg, 0.030 mmol), and THF-d8 (4 mL) were
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Table 4 Deuteration of Other Pyrimidine and Purine Nucleosides

Substrate Substrate-d

Entry Base R1 R2 Base-d D content (%)a Yield (%)b

1c OBz OBz 90 67

2d OTBDMS H 92 97

3e OTBDMS OTBDMS 92 91

a Determined by 1H NMR spectroscopy in DMSO-d8.
b Isolated yield.
c Bu3SnH (2.4 equiv), V-65 (0.4 equiv), reflux, 5 h.
d Bu3SnH (1.2 equiv), V-65 (0.2 equiv), reflux, 3 h.
e Bu3SnH (2.4 equiv), V-65 (0.4 equiv), reflux, 5 h.
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used. After the completion of the reaction, hexane (16 mL) was add-
ed to the reaction mixture, and the precipitate was corrected on the
filter paper to give 5-deutero-1,3-dimethyluracil (13.2 mg, 62%).
1H NMR (270 MHz, DMSO-d6): d = 3.15 (s, 3 H, NCH3), 3.29 (s,
3 H, NCH3), 5.66 (d, J = 7.9 Hz, 0.10 H, 5-H), 7.67 (t, 1 H, 6-H).
2H NMR (61 MHz, DMSO-d6): d = 5.67 (s). MS (EI+): m/z = 141
[M+].

2¢,3¢,5¢-Tri-O-benzoyl-5-deuterouridine (Table 4, entry 1)
2¢,3¢,5¢-Tri-O-benzoyl-5-iodouridine (40.0 mg, 0.059 mmol),
Bu3SnH (37.6 mL, 0.140 mmol), V-65 (6.3 mg, 0.025 mmol), and
THF-d8 (4 mL) were used. Purification by column chromatography
on silica gel (hexane → hexane–EtOAc = 2:1) produced the 2¢,3¢,5¢-
tri-O-benzoyl-5-deuterouridine (22.0 mg, 67%). 1H NMR (270
MHz, DMSO-d6): d = 4.60–4.75 (m, 3 H, 4¢-H, 5¢-H), 5.68 (d,
J = 8.1 Hz, 0.10 H, 5-H), 5.89–5.96 (m, 2 H, 2¢-H, 3¢-H), 6.16 (d,
J = 3.6 Hz, 1 H, 1¢-H), 7.42–8.02 (m, 16 H, 6-H, Bz), 11.51 (s, 1 H,
NH). MS–FAB+: m/z = 558 [M + 1].

3¢,5¢-Di-O-tert-butyldimethylsilyl-2¢-deoxy-5-deuterouridine 
(Table 4, entry 2)
3¢,5¢-Di-O-tert-butyldimethylsilyl-2¢-deoxy-5-iodouridine (40.2
mg, 0.069 mmol), Bu3SnH (22.3 mL, 0.083 mmol), V-65 (3.5 mg,
0.014 mmol), and THF-d8 (4 mL) were used. Purification by col-
umn chromatography on silica gel (hexane → hexane–
EtOAc = 2:1) produced the 3¢,5¢-di-O-tert-butyldimethylsilyl-2¢-
deoxy-5-deuterouridine (30.5 mg, 97%). 1H NMR (270 MHz,
DMSO-d6): d = 0.07 and 0.09 (each as s, 12 H, SiMe), 0.88 and 0.89
(each as s, 18 H, Sit-Bu), 2.08–2.26 (m, 2 H, 2¢-H), 3.68–3.80 (m,
3 H, 4¢-H, 5¢-H), 4.26–4.31 (m, 1 H, 3¢-H), 5.50 (d, J = 8.2 Hz, 0.08
H, 5-H), 6.13 (t, 1 H, 1¢-H), 7.70 (t, 1 H, 6-H), 11.32 (s, 1 H, NH).
MS–FAB+: m/z = 458 [M + 1].

2¢,3¢,5¢-Tri-O-tert-butyldimethylsilyl-8-deuteroadenosine (Ta-
ble 4, entry 3)
2¢,3¢,5¢-Tri-O-tert-butyldimethylsilyl-8-deuteroadenosine (40.1
mg, 0.054 mmol), Bu3SnH (34.8 mL, 0.129 mmol), V-65 (5.5 mg,
0.022 mmol), and THF-d8 (4 mL) were used. Purification by col-
umn chromatography on silica gel (hexane → hexane–
EtOAc = 2:1) produced the 2¢,3¢,5¢-tri-O-tert-butyldimethylsilyl-8-
deuteroadenosine (30.2 mg, 91%). 1H NMR (270 MHz, DMSO-d6):
d = –0.35, –0.10, 0.09, 0.12, and 0.14 (each as s, 18 H, SiMe), 0.72,
0.90, and 0.93 (each as s, 27 H, Sit-Bu), 3.71–3.79 (m, 1 H, 4¢-H),
4.00–4.05 (m, 2 H, 5¢-H), 4.33 (br, 1 H, 3¢-H), 4.90–4.94 (m, 1 H,
2¢-H), 5.94 (d, J = 6.3 Hz, 1 H, 1¢-H), 7.30 (s, 2 H, NH2), 8.13 (s,
1 H, 2-H), 8.34 (s, 0.08 H, 8-H). MS–FAB+: m/z = 611 [M+].
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