Alternative I–D Exchange Reaction on Pyrimidine and Purine Nuclei Mediated by Tributyltin Hydride Using THF- d_8 as a Deuterium Source

Tomonobu Mutsumi,*a,b Kazuo Maruhashi,a Yasunari Monguchi,b Hironao Sajikib

^a Chemical Technology Laboratory, Taiho Pharmaceutical Co., Ltd., 200-22 Kodama-Gun, Saitama 367-0241, Japan Fax +81(495)774598; E-mail: t-mutsumi@taiho.co.jp

^b Department of Medicinal Chemistry, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585, Japan *Received 2 July 2008*

Abstract: A method for the regioselective deuteration of pyrimidine and purine rings mediated by Bu_3SnH using THF- d_8 as a deuterium source on the basis of a radical reaction was developed.

Key words: regioselective deuteration, pyrimidine, purine, THF- d_8 , tributyltin hydride

Many organic compounds containing a pyrimidine or purine ring, especially nucleic acid derivatives, have been recognized as biologically important compounds on the basis of their antitumor or virus activities.¹ The development of deuterium-labeling methods of such compounds has been demanded for a wide range of studies involving the metabolism and structural analysis.² One of the useful labeling methods so far reported is the radical-mediated iodine–deuterium (I–D) exchange using Bu₃SnD as the D source.³

During our research related to nucleic acid chemistry, the I–D exchange reaction at the 5-position of 2',3',5'-tri-O-benzoyl-5-iodocytidine using Bu₃SnD (98 atm% D) and 2,2'-azobis(2,4-dimethylvaleronitrile) (V-65) was found to proceed with low D incorporation in THF (4% D efficiency, Table 1, entry 1), EtOAc (13% D efficiency), acetone (6% D efficiency), MeOH (22% D efficiency), EtOH (11% D efficiency), or MeCN (19% D efficiency).

Table 1Reaction Using Bu₃SnD or Bu₃SnH in THF or THF-d₈

However, a nearly quantitative incorporation (99% D efficiency) was achieved when using THF- d_8 as the solvent (entry 2). Interestingly, the use of Bu₃SnH instead of Bu₃SnD also worked well for the exchange (96% D efficiency, entry 3). These results indicate that THF- d_8 plays a crucial role in the present deuteration.

A part of the ¹H NMR charts of the 5-deuterated product (Table 1, entry 3), 2',3',5'-tri-O-benzoylcytidine, and the starting 2',3',5'-tri-O-benzoyl-5-iodocytidine are indicated as (a), (b), and (c) in Figure 1, respectively. A trace peak for the 5-position (0.04 H, 96% D efficiency) and a singlet peak for the 6-position were observed on chart (a). The D introduction into the 5-position was also confirmed by ²H NMR and MS spectra.

A variety of deuterated solvents were examined as the D source for the D incorporation into the cytidine derivatives. As shown in Table 2, the most preferable solvent to achieve a high D content was THF- d_8 .⁴ Deuterated methanol (CD₃OD) and deuterated ethanol (CH₃CD₂OH) produced higher D contents of 92% and 79%, respectively (entries 3 and 6), compared to the deuterated methanol and ethanols possessing different labeling patterns such as CH₃OD, CD₃CH₂OH, and CH₃CH₂OD (entries 4, 5, and 7).

Entry	Substrate (mg)	Reagent (equiv)	V-65 (equiv)	Solvent (mL)	Time (h)	D content ^a (%)	Yield ^b (%)
1	100	Bu ₃ SnD (1.7)	0.3	THF (2)	4	4	68
2	20	Bu ₃ SnD (1.2)	0.2	THF- $d_8(2)$	1	99	64
3	20	Bu ₃ SnH (2.4)	0.4	THF- $d_8(2)$	2.5	96	42

^a Determined by ¹H NMR spectroscopy in DMSO-*d*₈. ^b Isolated yield.

SYNLETT 2008, No. 18, pp 2811–2814 Advanced online publication: 15.10.2008 DOI: 10.1055/s-0028-1083548; Art ID: U06908ST © Georg Thieme Verlag Stuttgart · New York

Figure 1 ¹H NMR (270 MHz, DMSO- d_8) spectra: (a) 2',3',5'-tri-*O*-benzoyl-5-deuterocytidine; (b) 2',3',5'-tri-*O*-benzoylcytidine; (c) 2',3',5'-tri-*O*-benzoyl-5-iodocytidine

 Table 2
 D Content on Using Various Solvents

^a The solvent (mL) use is expressed as the ratio based on the weight (g) of 2',3',5'-tri-*O*-benzoyl-5-iodocytidine.

^b Determined by ¹H NMR spectroscopy in DMSO-*d*₈ and D₂O.

^c The ratio of volume to volume.

It appears that the deuterium atoms on the carbon atoms adjacent to the oxygen atoms of solvents are quite important for the efficient deuteration. When the reaction was carried out in $CD_3CO_2C_2D_5$, a moderate D incorporation

was achieved (Table 2, entry 9), while a low D efficiency was obtained in CD₃CN (entry 8). We next investigated the transfer of deuterium from THF- d_8 diluted with EtOAc, MeCN, or THF (entries 10–12). The mixed solvent of THF- d_8 and MeCN produced a higher D efficiency (78%) than the mixture of THF- d_8 and EtOAc (49%). These results indicated that the transfer of D from THF- d_8 is more strongly obstructed by the solvent which works better as a hydrogen (deuterium) donor (entries 8 vs. 9 and 10 vs. 11). Moreover, the mixture of THF- d_8 and THF gave only a low D content (9%), that is, a hydrogen atom from THF is more easily incorporated into the cytosine ring by comparison with a deuterium atom from THF- d_8 based upon the deuterium isotope effect.

We also investigated the relation between the use of THF- d_8 and the D efficiency (Table 3). Decreasing the use of THF- d_8 led to lower D contents.

Table 3 The Effect of Solvent Volume on the D Content

^a The use of THF- d_8 (mL) is expressed as the ratio based on the weight (g) of 2',3',5'-tri-O-benzoyl-5-iodocytidine.

^b Determined by ¹H NMR spectroscopy in DMSO-*d*₈ and D₂O.

The I–D exchange reaction described above using Bu₃SnH would proceed by a radical mechanism because the reaction rate significantly decreased by the addition of 6 equivalents of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)⁵ as a radical scavenger. Moreover, the lack of the radical initiator (V-65) significantly suppressed the reaction progress.

The reaction of 5-iodo-1,3-dimethyluracil with Bu_3SnH also proceeded with a 90% D efficiency (Scheme 1), indicating that uracil as well as cytidine derivatives could be applicable to the reaction. To specify which deuterium atoms of THF- d_8 are likely to be introduced on the uracil ring during the present deuteration, we compared the proton peak intensities of THF on the ¹H NMR charts before and after the reaction. Since a significant increase in the peak intensity corresponding to the protons at the 2- and 5-positions (adjacent to oxygen atom) of THF was observed, it is obvious that the deuterium abstraction mainly took place at the 2- and 5-positions of THF- d_8 (Figure 2).

Scheme 1 Deuteration of 5-iodo-1,3-dimethyluracil with Bu_3SnH and $THF-d_8$

Figure 2 ¹H NMR (270 MHz, DMSO- d_6) spectra of residual proton peaks in THF- d_8 before (a) and after (b) the deuteration of 5-iodo-1,3-dimethyluracil using Bu₃SnH and V-65 in THF- d_8

The deuteration of 2',3',5'-tri-O-benzoyl-5-iodouridine⁶ (Table 4, entry 1), 3',5'-di-O-tert-butyldimethylsilyl-2'-deoxy-5-iodouridine (entry 2), and 2',3',5'-tri-O-tert-butyldimethylsilyl-8-iodoadenosine⁷ (entry 3) also provided

Table 4 Deuteration of Other Pyrimidine and Purine Nucleosides

Bu₃SnH, V-65 THF-*d*₈ (4 mL)

base

regioselectively deuterated products in high D efficiencies (90–92%). The present I–D exchange method is applicable to the deuteration of both the pyrimidine and purine nucleosides.

In summary, we have developed a new regioselective introduction method of a deuterium atom into pyrimidine and purine nuclei using THF- d_8 as the D source and Bu₃SnH (not necessary to use Bu₃SnD) as a radical mediator.

2',3',5'-Tri-O-benzoyl-5-deuterocytidine (Table 1, entry 3): Typical Procedure for the I–D Exchange Reaction

To a solution of 2',3',5'-tri-*O*-benzoyl-5-iodocytidine (20 mg, 0.029 mmol) and 2,2'-azobis(2,4-dimethylvaleronitrile) (V-65, 1.5 mg, 0.006 mmol) in THF- d_8 (2 mL) was added Bu₃SnH (9.4 µL, 0.035 mmol), and the mixture was stirred under reflux for 1.5 h. Then, V-65 (1.8 mg, 0.007 mmol) and Bu₃SnH (9.4 µL, 0.035 mmol) were added, and the reaction mixture was stirred under reflux for another 1 h. After cooling to r.t., hexane (8 mL) was added to the reaction mixture. The precipitate was corrected on the filter paper and washed with hexane to give 2',3',5'-tri-*O*-benzoyl-5-deuterocytidine (6.8 mg, 42%). ¹H NMR (270 MHz, DMSO- d_6): δ = 4.58–4.72 (m, 3 H, 4'-H, 5'-H), 5.74 (d, *J* = 7.3 Hz, 0.04 H, 5-H), 5.89–5.98 (m, 2 H, 2'-H, 3'-H), 6.07 (d, *J* = 3.1 Hz, 1 H, 1'-H), 7.35–8.02 (m, 18 H, 6-H, Bz, NH₂). ²H NMR (61 MHz, DMSO- d_6): δ = 5.77 (br). MS–FAB⁺: *m/z* = 557 [M + 1].

5-Deutero-1,3-dimethyluracil (Scheme 1)

1,3-Dimethyl-5-iodouracil (40.0 mg, 0.150 mmol), Bu_3SnH (48 μ L, 0.178 mmol), V-65 (7.5 mg, 0.030 mmol), and THF- d_8 (4 mL) were

substrate (40	mg)	substrate	substrate-d			
	Substrate			Substrate-d		
Entry	Base	R^1	R ²	Base-d	D content (%) ^a	Yield (%) ^b
1°		OBz	OBz		90	67
2 ^d		OTBDMS	Н		92	97
3°		OTBDMS	OTBDMS		92	91

base-d

^a Determined by ¹H NMR spectroscopy in DMSO- d_8 .

^b Isolated yield.

^d Bu₃SnH (1.2 equiv), V-65 (0.2 equiv), reflux, 3 h.

^e Bu₃SnH (2.4 equiv), V-65 (0.4 equiv), reflux, 5 h.

^c Bu₃SnH (2.4 equiv), V-65 (0.4 equiv), reflux, 5 h.

used. After the completion of the reaction, hexane (16 mL) was added to the reaction mixture, and the precipitate was corrected on the filter paper to give 5-deutero-1,3-dimethyluracil (13.2 mg, 62%). ¹H NMR (270 MHz, DMSO-*d*₆): δ = 3.15 (s, 3 H, NCH₃), 3.29 (s, 3 H, NCH₃), 5.66 (d, *J* = 7.9 Hz, 0.10 H, 5-H), 7.67 (t, 1 H, 6-H). ²H NMR (61 MHz, DMSO-*d*₆): δ = 5.67 (s). MS (EI⁺): *m/z* = 141 [M⁺].

2',3',5'-Tri-O-benzoyl-5-deuterouridine (Table 4, entry 1)

2',3',5'-Tri-*O*-benzoyl-5-iodouridine (40.0 mg, 0.059 mmol), Bu₃SnH (37.6 μL, 0.140 mmol), V-65 (6.3 mg, 0.025 mmol), and THF-*d*₈ (4 mL) were used. Purification by column chromatography on silica gel (hexane → hexane–EtOAc = 2:1) produced the 2',3',5'tri-*O*-benzoyl-5-deuterouridine (22.0 mg, 67%). ¹H NMR (270 MHz, DMSO-*d*₆): δ = 4.60–4.75 (m, 3 H, 4'-H, 5'-H), 5.68 (d, *J* = 8.1 Hz, 0.10 H, 5-H), 5.89–5.96 (m, 2 H, 2'-H, 3'-H), 6.16 (d, *J* = 3.6 Hz, 1 H, 1'-H), 7.42–8.02 (m, 16 H, 6-H, Bz), 11.51 (s, 1 H, NH). MS–FAB⁺: *m/z* = 558 [M + 1].

3',5'-Di-*O-tert*-butyldimethylsilyl-2'-deoxy-5-deuterouridine (Table 4, entry 2)

3',5'-Di-*O*-*tert*-butyldimethylsilyl-2'-deoxy-5-iodouridine (40.2 mg, 0.069 mmol), Bu₃SnH (22.3 µL, 0.083 mmol), V-65 (3.5 mg, 0.014 mmol), and THF- d_8 (4 mL) were used. Purification by column chromatography on silica gel (hexane → hexane–EtOAc = 2:1) produced the 3',5'-di-*O*-*tert*-butyldimethylsilyl-2'-deoxy-5-deuterouridine (30.5 mg, 97%). ¹H NMR (270 MHz, DMSO- d_6): $\delta = 0.07$ and 0.09 (each as s, 12 H, SiMe), 0.88 and 0.89 (each as s, 18 H, Sit-Bu), 2.08–2.26 (m, 2 H, 2'-H), 3.68–3.80 (m, 3 H, 4'-H, 5'-H), 4.26–4.31 (m, 1 H, 3'-H), 5.50 (d, *J* = 8.2 Hz, 0.08 H, 5-H), 6.13 (t, 1 H, 1'-H), 7.70 (t, 1 H, 6-H), 11.32 (s, 1 H, NH). MS–FAB⁺: *m/z* = 458 [M + 1].

2',3',5'-Tri-*O-tert*-butyldimethylsilyl-8-deuteroadenosine (Table 4, entry 3)

2',3',5'-Tri-*O-tert*-butyldimethylsilyl-8-deuteroadenosine (40.1 mg, 0.054 mmol), Bu₃SnH (34.8 μL, 0.129 mmol), V-65 (5.5 mg, 0.022 mmol), and THF- d_8 (4 mL) were used. Purification by column chromatography on silica gel (hexane → hexane–EtOAc = 2:1) produced the 2',3',5'-tri-*O-tert*-butyldimethylsilyl-8-deuteroadenosine (30.2 mg, 91%). ¹H NMR (270 MHz, DMSO- d_6): δ = -0.35, -0.10, 0.09, 0.12, and 0.14 (each as s, 18 H, SiMe), 0.72, 0.90, and 0.93 (each as s, 27 H, Sit-Bu), 3.71–3.79 (m, 1 H, 4'-H), 4.00–4.05 (m, 2 H, 5'-H), 4.33 (br, 1 H, 3'-H), 4.90–4.94 (m, 1 H, 2'-H), 5.94 (d, *J* = 6.3 Hz, 1 H, 1'-H), 7.30 (s, 2 H, NH₂), 8.13 (s, 1 H, 2-H), 8.34 (s, 0.08 H, 8-H). MS–FAB⁺: *m/z* = 611 [M⁺].

Acknowledgment

We thank Dr. Shozo Yamada and Mr. Ichiro Yamawaki at Taiho Pharmacetical Co., Ltd., for stimulating discussions.

References and Notes

 For example, see: (a) Townsend, L. B. Chemistry of Nucleosides and Nucleotides; Plenum Press: New York, **1988**. (b) Nucleosides and Nucleotides as Antitumor and Antiviral Agents, Chu C. K., Baker D. C.; Plenum Press: New York, **1993**. (c) Haraguchi, K.; Itoh, Y.; Tanaka, H. *Synth. Org. Chem. Jpn.* **2003**, *61*, 974. (d) Matsuda, A.; Sasaki, T. *Cancer Sci.* **2004**, *95*, 105. (e) Kim, C.; Marguez, V. E.; Broder, S.; Mitsuya, H.; Driscoll, J. S. *J. Med. Chem.* **1987**, *30*, 862. (f) Ohrui, H.; Kohgo, S.; Kitano, K.; Sakata, S.; Kodama, E.; Yoshimura, K.; Matsuoka, M.; Shigeta, S.; Mitsuya, H. *J. Med. Chem.* **2000**, *43*, 4516.

- (2) (a) Sajiki, H.; Aoki, F.; Esaki, H.; Maegawa, T.; Hirota, K. Org. Lett. 2004, 6, 1485. (b) Sajiki, H.; Kurita, T.; Esaki, H.; Aoki, F.; Maegawa, T.; Hirota, K. Org. Lett. 2004, 6, 3521. (c) Sajiki, H.; Ito, N.; Esaki, H.; Maesawa, T.; Maegawa, T.; Hirota, K. Tetrahedron Lett. 2005, 46, 6995. (d) Maegawa, T.; Akashi, A.; Esaki, H.; Aoki, F.; Sajiki, H.; Hirota, K. Synlett 2005, 845. (e) Sajiki, H.; Esaki, H.; Aoki, F.; Maegawa, T.; Hirota, K. Synlett 2005, 1385. (f) Esaki, H.; Aoki, F.; Maegawa, T.; Hirota, K.; Sajiki, H. Heterocycles 2005, 66, 361. (g) Ito, N.; Watahiki, T.; Maesawa, T.; Maegawa, T.; Sajiki, H. Adv. Synth. Catal. 2006, 348, 1025. (h) Esaki, H.; Ito, N.; Sakai, S.; Maegawa, T.; Monguchi, Y.; Sajiki, H. Tetrahedron 2006, 62, 10954. (i) Esaki, H.; Ohtaki, R.; Maegawa, T.; Monguchi, Y.; Sajiki, H. J. Org. Chem. 2007, 72, 2143. (j) Esaki, H.; Aoki, F.; Umemura, M.; Kato, M.; Maegawa, T.; Monguchi, Y.; Sajiki, H. Chem. Eur. J. 2007, 13, 4052. (k) Kurita, T.; Hattori, K.; Seki, S.; Mizumoto, T.; Aoki, F.; Yamada, Y.; Ikawa, K.; Maegawa, T.; Monguchi, Y.; Sajiki, H. Chem. Eur. J. 2008, 14, 664. (l) Ito, N.; Watahiki, T.; Maesawa, T.; Maegawa, T.; Sajiki, H. Synthesis 2008, 1467. (m) Kurita, T.; Aoki, F.; Mizumoto, T.; Maejima, T.; Esaki, H.; Maegawa, T.; Monguchi, Y.; Sajiki, H. Chem. Eur. J. 2008, 14, 3371. (n) Maegawa, T.; Fujiwara, Y.; Inagaki, Y.; Esaki, H.; Monguchi, Y.; Sajiki, H. Angew. Chem. Int. Ed. 2008, 47, 5394. (o) Ito, N.; Esaki, H.; Imamiya, E.; Maesawa, T.; Maegawa, T.; Sajiki, H. Bull. Chem. Soc. Jpn. 2008, 81, 278. (p) Pieniaszek, H. J.; Mayersohn, M.; Adams, M. P.; Reinhart, R. J.; Barrett, J. S. J. Clin. Pharmacol. 1999, 39, 817. (q) Yen, K. C.; Stone, J. A.; Carides, A. D.; Rolan, P.; Woolf, E.; Ju, W. D. J. Pharm. Sci. 1999, 88, 568. (r) Gani, D.; Young, D. W. J. Chem. Soc., Chem. Commun. 1983, 576. (s) Gani, D.; Hitchcock, P. B.; Young, D. W. J. Chem. Soc., Chem. Commun. 1983, 898.
- (3) (a) Neumann, W. P. Synthesis 1987, 665. (b) Oba, M.; Nishiyama, K. Synthesis 1994, 624. (c) Albert, H. J.; Neumann, W. P. Synthesis 1980, 942.
- (4) Lusztyk and Ingold et al. reported that the benzene radical, which was derived from the reaction of iodobenzene with Bu₃SnH, abstracted a deuterium atom from THF-d₈ to form C₆H₅D, see: Garden, S. J.; Avila, D. V.; Beckwith, A. L. J.; Bowry, V. W.; Ingold, K. U.; Lusztyk, J. J. Org. Chem. **1996**, *61*, 805.
- (5) Lucarini, M.; Marchesi, E.; Pedulli, G. F. J. Org. Chem. 1998, 63, 1687.
- (6) Asakura, J.; Robins, M. J. Tetrahedron Lett. 1988, 29, 2855.
- (7) (a) Moriarty, R. M.; Epa, W. R.; Awasthi, A. K. *Tetrahedron Lett.* **1990**, *31*, 5877. (b) Hayakawa, H.; Tanaka, H.; Sasaki, K.; Haraguchi, K.; Saitoh, T.; Takai, F.; Miyasaka, T. *J. Heterocycl. Chem.* **1989**, *26*, 189. (c) Hayakawa, H.; Tanaka, H.; Haraguchi, K.; Mayumi, M.; Nakajima, M.; Sakamaki, T.; Miyasaka, T. *Nucleosides Nucleotides* **1988**, 7, 121.

Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.