Tetrahedron Letters 54 (2013) 4309-4312

Contents lists available at SciVerse ScienceDirect

**Tetrahedron Letters** 

journal homepage: www.elsevier.com/locate/tetlet

# Rhodium-catalyzed hydroaroylation of $\alpha$ , $\beta$ -unsaturated esters using aroyl chlorides and Et<sub>2</sub>MeSiH



Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu 376-8515, Japan

#### ARTICLE INFO

Article history: Received 3 May 2013 Revised 30 May 2013 Accepted 4 June 2013 Available online 11 June 2013

Keywords: Rh-catalyzed Three-component coupling Aroyl chloride Hydrosilane

## Introduction

Transition-metal catalyzed multicomponent reactions (MCRs) involving C-C bond formation have been recognized as versatile procedures for constructing the polyfunctional organic molecules.<sup>1</sup> Neutral and cationic rhodium(I) complexes with monodentate or bidentate phosphines as spectator ligands are widely investigated as the catalyst for MCRs.<sup>2,3</sup> In particular, RhX(PR<sub>3</sub>)<sub>n</sub> and [Rh(diene)(PR<sub>3</sub>)<sub>2</sub>]<sup>+</sup> types of complexes have been used for catalytic, three-component reductive aldol condensations with aldehydes or ketones,  $\alpha,\beta$ -unsaturated carbonyl compounds, and reducing reagents such as hydrosilanes or hydrogen gas (Scheme 1).<sup>4,5</sup> The rhodium-catalyzed reactions with hydrosilanes proceed via the in situ generation of enolate species which attacks aldehydes or ketones to give the C-C bond formation products. Thus, the three-component systems have significant advantages over the conventional twocomponent aldol reactions since, in the latter case, the enolate species should be prepared independently from carbonyl compounds using a stoichiometric amount of strong bases.

Development of the Rh-catalyzed systems applicable to a variety of electrophiles instead of aldehydes and ketones would provide efficient synthetic procedures for carbonyl compounds, however, such examples are limited to only an aldimine and a ketimine as the electrophiles.<sup>6</sup> We and co-workers have investigated on rhodium-catalyzed three-component couplings of electrophiles (allyl carbonates, aryl isocyanates, and aldimines),  $\alpha$ , $\beta$ -unsaturated carbonyl compounds, and hydrosilanes.<sup>6a,7</sup> In these reactions, functionalized carbonyl compounds, such as  $\gamma$ , $\delta$ -unsaturated-,

## ABSTRACT

Hydroaroylation of methyl acrylate **2a** to give the  $\alpha$ -aroyl esters **4** took place in the three-component reaction of **2a**, aroyl chlorides **1**, and Et<sub>2</sub>MeSiH in the presence of 1 mol % of [Rh(cod)(PR<sub>3</sub>)<sub>2</sub>]OTf (cod = 1,5-cyclooctadiene, OTf = OSO<sub>2</sub>CF<sub>3</sub>, R = Ph (**3a**), OPh (**3b**)) in CH<sub>2</sub>Cl<sub>2</sub>. GC and <sup>1</sup>H NMR investigation revealed that the rhodium-catalyzed hydroaroylation proceeds via two successive transformations, that is, hydrosilylation of **2a** to afford silyl enol ether **5a** followed by C–C bond formation between **5a** and **1a**. © 2013 Elsevier Ltd. All rights reserved.







Scheme 2. Rh-catalyzed hydroaroylation of  $\alpha,\beta$ -unsaturated esters 2 with aroyl chlorides 1 and Et\_2MeSiH.

 $\alpha$ -amido-, and  $\beta$ -amino carbonyls, are selectively produced owing to preferential enolate generation followed by selective C–C bond formation with electrophiles. During the course of the study, we found that aroyl chloride **1** is applicable as an electrophile to the rhodium-catalyzed three-component reaction system. Aroyl chlorides have been known as efficient substrates for introducing a keto group to aromatic substrates electrophilically, that is, Lewis acid induced/catalyzed Friedel–Crafts acylation.<sup>8</sup> Aroyl chlorides have also been used for palladium-catalyzed cross-couplings with organometallic reagents, including organoboron, organotin, and organozinc reagents, to afford aromatic ketones.<sup>9</sup> However, the organometallic reagents required for the catalytic cross-coupling





Tetrahedror

<sup>\*</sup> Corresponding author. Tel./fax: +81 277 30 1260. *E-mail address:* ueno@gunma-u.ac.jp (K. Ueno).

<sup>0040-4039/\$ -</sup> see front matter  $\odot$  2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2013.06.009

systems are not readily available and also more than stoichiometric amounts of organometallic reagents should be employed to complete the reaction. Except for the aforementioned palladiumcatalyzed reactions, only a few examples have been reported on the transition-metal catalyzed transformation using aroyl chlorides as a source of the keto functional group.<sup>10</sup> We report here the rhodium-catalyzed three-component reaction of aroyl chloride **1**,  $\alpha$ , $\beta$ -unsaturated carbonyl compound **2** and Et<sub>2</sub>MeSiH to afford  $\beta$ -keto ( $\alpha$ -aroyl) ester **4** in high yield (Scheme 2). This reaction can be categorized as a formal hydroaroylation of **2** in which the  $\alpha$ -aroyl ester **4** is formed via regioselective introduction of hydride and aroyl groups to the  $\beta$ - and  $\alpha$ -positions of **2**, respectively.

#### Table 1

Rhodium-catalyzed hydroaroylation of 2a with 1a and Et<sub>2</sub>MeSiH<sup>a</sup>

| - |       |             |        |      |                   |  |
|---|-------|-------------|--------|------|-------------------|--|
|   | Entry | Precatalyst | Temp.  | Time | Yield of $4a^{b}$ |  |
|   |       | _           | °C     | h    | (%)               |  |
|   | 1     | 3a          | 25     | 10   | 61                |  |
|   | 2     | 3a          | reflux | 5    | 72                |  |
|   | 3     | 3b          | 25     | 10   | 74                |  |
|   | 4     | 3b          | reflux | 5    | 84                |  |
|   |       |             |        |      |                   |  |

<sup>a</sup> A CH<sub>2</sub>Cl<sub>2</sub> solution of benzoyl chloride **1a**, **2a**, Et<sub>2</sub>MeSiH, and 1 mol% of **3a** or **3b** was stirred at 25 °C for 10 h or heated at reflux for 5 h. <sup>b</sup> Isolated yield.

Ö

Q

Q

isolated yr

#### Table 2

Scope of the rhodium-catalyzed hydroaroylation<sup>a</sup>

### **Results and discussion**

Treatment of benzoyl chloride **1a**, methyl acrylate **2a**, and Et<sub>2</sub> MeSiH in CH<sub>2</sub>Cl<sub>2</sub> in the presence of 1 mol % of [Rh(cod)(PPh<sub>3</sub>)<sub>2</sub>]OTf (**3a**, cod = 1,5-cyclooctadiene, OTf = OSO<sub>2</sub>CF<sub>3</sub>) at 25 °C for 10 h afforded  $\alpha$ -aroyl ester **4a**<sup>11</sup> in 61% yield with a concomitant formation of Et<sub>2</sub>MeSiCl (Eq. 1). The yield of **4a** slightly increased to 74% when the Rh complex was changed from **3a** to its P(OPh)<sub>3</sub> analogue, [Rh(cod){P(OPh)<sub>3</sub>}<sub>2</sub>]OTf (**3b**) (entry 3 in Table 1), and reached 84% under reflux for 5 h (entry 4 in Table 1).

$$\begin{array}{c} O & O \\ \hline & & 1 \\ \hline & & O \\ \hline \hline & & O \\ \hline \hline \hline$$

The scope of the hydroaroylation was explored using **3b** as catalyst, aroyl chloride **1**,  $\alpha$ , $\beta$ -unsaturated ester **2**, and Et<sub>2</sub>MeSiH (Table 2). Hydroaroylation to methyl crotonate **2b** was sluggish owing to its  $\beta$ -Me substituent and the corresponding product

0 0

1 mal0/ 2h

|       | 1          | <sup>"</sup> 2a | Me <sup>-</sup> ™<br>2b, <i>trans-</i> 3-№<br>2c, 2-Me | - Et <sub>2</sub> MeSi | Cl <sub>2</sub> / **<br>Cl H(Me<br>4 | )         |                           |
|-------|------------|-----------------|--------------------------------------------------------|------------------------|--------------------------------------|-----------|---------------------------|
| Entry | ArCOCI (1) |                 | 2                                                      | Product 4              |                                      | time<br>h | yield <sup>b</sup><br>(%) |
| 1     | CI         | 1a              | 2a                                                     | OO                     | 4a <sup>11</sup>                     | 5         | 84                        |
| 2     | CI         | 1a              | 2b                                                     | OMe                    | 4a' <sup>12</sup>                    | 20        | 35                        |
| 3     | СІ         | 1a              | 2c                                                     | OMe                    | 4a" <sup>13</sup>                    | 24        | 3                         |
| 4     | СІ         | 1b              | 2a                                                     | OMe                    | 4b <sup>11b</sup>                    | 6         | 50                        |
| 5     | CI         | 1c              | 2a                                                     | OMe                    | 4c <sup>11b</sup>                    | 6<br>16   | 81<br>93                  |
| 6     | Br         | 1d              | 2a                                                     | Br OMe                 | 4d                                   | 3         | 86                        |
| 7     | CI         | 1e              | 2a                                                     | OMe                    | 4e <sup>11b,14</sup>                 | 13        | 85                        |
| 8     | Br         | 1f              | 2a                                                     | O O<br>Br OMe          | 4f <sup>11b</sup>                    | 5         | 86                        |
| 9     | CI         | 1g              | 2a                                                     | OMe                    | 4g <sup>15</sup>                     | 6         | 67                        |
| 10    | CI<br>S    | 1h              | 2a                                                     | OMe                    | 4h <sup>16</sup>                     | 10        | 86                        |

**4a**<sup>'12</sup> was formed in low yield after prolonged heating (35%, entry 2). Methyl group at the α-position in α,β-unsaturated ester hampered C–C bond formation. Thus the catalytic hydroaroylation with methyl methacrylate **2c** provided almost no coupling product (entry 3). Steric hindrance around the C(=O)Cl functionality in aroyl chloride **1** also influenced the progress of hydroaroylation. Catalytic reaction with *o*-toluoyl chloride **1b** gave hydroaroylation product **4b** in a modest yield after a mixture of **1b**, **2a**, and Et<sub>2</sub>Me-SiH with 1 mol % of **3b** was refluxed for 6 h (entry 4). In contrast to this result, aroyl chlorides with methyl and bromo substituents on *meta*- and *para*-positions **1c–1f** were successfully converted into corresponding α-aroyl esters **4c–4f** under usual conditions (entries 5–8). Hetero aroyl chlorides, 2-furoyl chloride **1g**, and 2-thioyl chloride **1h**, were also transformed into the corresponding α-aroyl esters **4g** and **4h**, respectively, in high yields (entries 9 and 10).

Rhodium-catalyzed reductive aldol reactions have been proposed to proceed via nucleophilic attack of the in situ generated Rh-enolates to aldehydes and ketones.<sup>17</sup> To explore the reaction mechanism, 3b-catalyzed hydroaroylation of 2a with benzoyl chloride **1a** and Et<sub>2</sub>MeSiH was monitored by gas chromatography (GC) and <sup>1</sup>H NMR spectroscopy. The reaction profiles are summarized in Figure 1. Formation of the silvl enol ether **5a**,<sup>7b</sup> along with a small amount of the final product 4a, was observed immediately after mixing of substrates and the catalyst. After 1 h. almost all of 2a and Et<sub>2</sub>MeSiH were converted into **5a**. The yield of **4a** gradually increased and reached 86% after 12 h along with consumption of 1a and 5a. Without the Rh complex, neither the reaction of the three components nor that between isolated  $5a^{7b}$  and 1a took place. These observations revealed that the Rh-catalyzed hydroaroylation proceeds via two successive transformations, i.e., Rh-catalyzed generation of the silyl enol ether **5a**<sup>7b</sup> by 1,4-hydrosilylation of 2a with Et<sub>2</sub>MeSiH followed by C–C bond formation between resulting silvl enol ether 5a and 1 by the catalysis of the rhodium complex.

A possible reaction mechanism for Rh-catalyzed hydroaroylation of **2a** with aroyl chloride **1** and  $Et_2MeSiH$  is shown in Scheme 3. The reaction starts from the oxidative addition of  $Et_2MeSiH$  to [Rh] complex to give complex **A**. The insertion of **2a** to the Rh-H or/and Rh-SiEt<sub>2</sub>Me bond in **A** results in the formation of **B** or/and **B**'. Isomerization to **C** or/and **C**' followed by reductive elimination of **5a** regenerates [Rh] species. It is well established that both silyl enol



**Figure 1.** The reaction profile for the hydroaroylation of **2a** (2.1 mmol,  $\blacksquare$ ) with **1a** (0.96 mmol,  $\blacklozenge$ ) and Et<sub>2</sub>MeSiH (2.0 mmol, not shown) in the presence of **3b** (0.0096 mmol, not shown) in CH<sub>2</sub>Cl<sub>2</sub> under reflux condition. The yield of **4a** ( $\blacklozenge$ ) reached 0.83 mmol (86%) via the initial formation of the intermediate **5a** ( $\blacktriangle$ ). The data of **2a** at 0 min were omitted for clarity.



Scheme 3. A possible reaction mechanism of Rh-catalyzed hydroaroylation.

ethers and aroyl chlorides could be activated by rhodium complex.<sup>18,19</sup> Thus the [Rh] species activates both aroyl chloride **1** and silyl enol ether **5a** for the C–C bond forming reaction to take place, which affords **4** and Et<sub>2</sub>MeSiCl as the final products.

#### Acknowledgment

This work was supported by Grants-in-Aid for Scientific Research (Nos. 23550066 and 24750053) and the "Element Innovation" Project from the Ministry of Education, Culture, Sports, Science and Technology of Japan. T. M. acknowledges The Japan Prize Foundation for a research grant.

## Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2013.06. 009.

#### **References and Notes**

- (a) Zhu, J.; Bienayme, H. Multicomponent Reactions; Weinheim, Germany: Wiley-VHC, 2005; (b) Wasilke, J.-C.; Obrey, S. J.; Baker, T.; Bazan, G. C. Chem. Rev. 2005, 105, 1001; (c) Domling, A. Chem. Rev. 2006, 106, 17; (d) Toure, B. B.; Hall, D. G. Chem. Rev. 2009, 109, 4439; (e) Wessjohann, L. A.; Rivera, D. G.; Vercillo, O. E. Chem. Rev. 2009, 109, 796.
- Modern Rhodium-Catalyzed Organic Reactions; Evans, P. A., Ed.; Wiley-VCH: Weinheim, Germany, 2005.
- (a) Kong, J. R.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 16040; (b) Yoshida, Y.; Murakami, K.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2010, 132, 8878; (c) Miyauchi, Y.; Kobayashi, M.; Tanaka, K. Angew. Chem., Int. Ed. 2011, 50, 10922; (d) Bai, T.; Ma, S.; Jia, G. Tetrahedron 2007, 63, 6210.
- (a) Nishiyama, H.; Shiomi, T. Top Curr. Chem. 2007, 279, 105; (b) Nagi, M.-Y.; Kong, J.-R.; Krische, M. J. J. Org. Chem. 2007, 72, 1063; (c) Nishiyama, H.; Ito, J.; Shiomi, T.; Hashimoto, T.; Miyakawa, T.; Kitase, M. Pure Appl. Chem. 2008, 80, 743; (d) Han, S. B.; Hassan, A.; Krische, M. J. Synthesis 2008, 2669; (e) Revis, A.; Hilty, T. K. Tetrahedron Lett. 1987, 28, 4809; (f) Matsuda, I.; Takahashi, K.; Sato, S. Tetrahedron Lett. 1990, 31, 5331; (g) Taylor, S. J.; Morken, J. P. J. Am. Chem. Soc. 1999, 121, 12202; (h) Taylor, S. J.; Duffey, M. O.; Morken, J. P. J. Am. Chem. Soc 2000, 122, 4528; (i) Emiabata-Smith, D.; McKillop, A.; Mills, C.; Motherwell, W. B.; Whitehead, A. J. Synlett 2001, 1302; (j) Zhao, C.-X.; Bass, J.; Morken, J. P. Org. Lett. 2001, 3, 2839; (k) Jang, H.-Y.; Huddleston, R. R.; Krische, M. J. J. Am. Chem. Soc. 2002, 124, 15156; (I) Huddleston, R. R.; Krische, M. J. Org. Lett. 2003, 5, 1143; (m) Koech, P. K.; Krische, M. J. Org. Lett. 2004, 6, 691; (n) Freiria, M.; Whitehead, A. J.; Tocher, D. A.; Motherwell, W. B. Tetrahedron 2004, 60, 2673; (o) Russell, A. E.; Fuller, N. O.; Taylor, S. J.; Aurriset, P.; Morken, J. P. Org. Lett. 2004, 6, 2309; (p) Nishiyama, H.; Shiomi, T.; Tsuchiya, Y.; Matsuda, I. J. Am. Chem. Soc. 2005, 127, 6972; (q) Fuller, N. O.; Morken, J. P. Synlett 2005, 1459; (r) Jung, C.-K.; Garner, S. A.; Krische, M. J. Org. Lett. 2006, 8, 519; (s) Jung, C.-K.; Krische, M. J. J. Am. Chem. Soc. 2006, 4, 17051; (t) Shiomi, T.; Ito, J.; Yamamoto, Y.; Nishiyama, H. Eur. J. Org. Chem. 2006, 5594; (u) Shiomi, T.; Nishiyama, H. Org. Lett. 2007, 9, 1651; (v) Hashimoto, T.; Ito, J.; Nishiyama, H. Tetrahedron 2008, 64, 9408; (w) El-Zaria, M. E.; Arii, H.; Nakamura, H. Inorg. Chem. 2011, 50, 4149
- (a) Isayama, S.; Mukaiyama, T. Chem. Lett. **1989**, 2005; (b) Baik, T.-G.; Luis, A. L.; Wang, L.-C.; Krische, M. J. J. Am. Chem. Soc. **2001**, 123, 5112; (c) Wang, L.-C.; Jang, H.-Y.; Roh, Y.; Lynch, V.; Schultz, A. J.; Wang, X.; Krische, M. J. J. Am. Chem. Soc. **2002**, 124, 9448; (d) Kiyooka, S.; Shimizu, A.; Torii, S. Tetrahedron Lett. **1998**, 39, 5237; (e) Zhao, C.-X.; Duffey, M. O.; Taylor, S. J.; Morken, J. P. Org. Lett.

2001, 3, 1829; (f) Duffey, M. O.; LeTiran, A.; Morken, J. P. J. Am. Chem. Soc. 2003, 125, 1458; (g) Chiu, P. Synthesis 2004, 2210; (h) Chiu, P.; Leung, S. K. Chem. Commun. 2004, 2308; (i) Lam, H. W.; Joensuu, P. M. Org. Lett. 2005, 7, 4225; (j) Deschamp, J.; Chuzel, O.; Hannedouche, J.; Riant, O. Angew. Chem., Int. Ed. 2006, 45, 1292; (k) Chuzel, O.; Deschamp, J.; Chusteur, C.; Riant, O. Org. Lett. 2006, 8, 5943; (l) Welle, A.; Diez-Gonzalez, S.; Tinant, B.; Nolan, S. P.; Riant, O. Org. Lett. 2006, 8, 6059; (m) Lipshutz, B. H.; Amorelli, B.; Unger, J. B. J. Am. Chem. Soc. 2008, 130, 14378; (n) Deschamp, J.; Riant, O. Org. Lett. 2009, 11, 1217; (o) Kato, M.; Oki, H.; Ogata, K.; Fukuzawa, S. Synlett 2009, 1299.

- (a) Muraoka, T.; Kamiya, S.; Matsuda, İ.; Itoh, K. Chem. Commun. 2002, 1284; (b) Townes, J. A.; Evans, M. A.; Queffelec, J.; Taylor, S. J.; Morken, J. P. Org. Lett. 2002, 4, 2537; (c) Nishiyama, H.; Ishikawa, J.; Shiomi, T. Tetrahedron Lett. 2007, 48, 7841; (d) Garner, S. A.; Krische, M. J. J. Org. Chem. 2007, 72, 5843; (e) Du, Y.; Xu, L.-W.; Shimizu, Y.; Oisaki, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2008, 130, 16146.
- (a) Muraoka, T.; Matsuda, I.; Itoh, K. J. Am. Chem. Soc. 2000, 122, 9552; (b) Muraoka, T.; Matsuda, I.; Itoh, K. Organometallics 2001, 20, 4676; (c) Muraoka, T.; Matsuda, I.; Itoh, K.; Ueno, K. Organometallics 2007, 26, 387.
- (a) Friedel-Crafts and Related Reactions; Olah, G. A., Ed.; John Wiley & Inc: London, 1964. vol. 3; (b) Olah, G. A. Friedel-Crafts Chemistry; Wiley: New York, 1973; Sartori, G.; Maggi, R. Advances in Friedel-Crafts Acylation Reactions: Catalytic and Green Processes; CRC Press, 2009.
- (a) Dieter, R. K. Tetrahedron 1999, 55, 4177; (b) Bumagin, N. A.; Korolev, D. N. Tetrahedron Lett. 1999, 40, 3057; (c) Haddach, M.; MacCarthy, J. R. Tetrahedron Lett. 1999, 40, 3109; (d) Chen, H.; Deng, M.-Z. Org. Lett. 2000, 2, 1649; (e) Urawa, Y.; Ogura, K. Tetrahedron Lett. 2003, 44, 271; (f) Bandgar, B. P.; Patil, A. V. Tetrahedron Lett. 2005, 46, 7627; (g) Xin, B.; Zhang, Y.; Cheng, K. J. Org. Chem. 2006, 71, 5725; (h) Polackova, V.; Toma, S.; Augustinova, I. Tetrahedron 2006, 62, 11675; (i) Kells, K. W.; Chong, J. M. J. Am. Chem. Soc 2004, 126, 15666; (j) Lerebours, R.; Camacho-Soto, A.; Wolf, C. J. Org. Chem. 2005, 70, 8601; (k) Lee, K.; Gallagher, W. P.; Toskey, E. A.; Chong, W.; Maleczka, R. E., Jr. J. Organomet. Chem 2006, 691, 1462; (l) Xuor, H.; Ekoue-Kovi, K.; Wolf, C. J. Org. Chem. 2006, 73, 7638; (m) Rao, M. L. N.; Venkatesh, V.; Jadhav, D. N. Tetrahedron 2007, 63, 47, 6975; (n) Rao, M. L. N.; Venkatesh, V.; Banerjee, D. Tetrahedron 2007, 63,

12917; (o) Chen, J.-Y.; Chen, S.-C.; Tang, Y.-J.; Mou, C.-Y.; Tsai, F.-Y. J. Mol. Cat. A Chem. **2009**, 307, 88; (p) Karpov, A. S.; Muller, T. J. J. Org. Lett. **2003**, 5, 3451; (q) Boersch, C.; Merkul, E.; Muller, T. J. J. Angew. Chem., Int. Ed **2005**, 50, 10448.

- (a) Kashiwabara, T.; Kataoka, K.; Hua, R.; Shimada, S.; Tanaka, M. Org. Lett. 2005, 7, 2241; (b) Iwai, T.; Fujihara, T.; Terao, J.; Tsuji, Y. J. Am. Chem. Soc. 2009, 131, 6668; (c) Wu, F.; Lu, W.; Qian, Q.; Ren, Q.; Gong, H. Org. Lett. 2012, 14, 3044.
- (a) Hirai, Y.; Aida, T.; Inoue, S. J. Am. Chem. Soc. **1989**, *111*, 3062; (b) Zhang, Z.; Liu, Y.; Gong, M.; Zhao, X.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. **2010**, 49, 1139; (c) Tomozane, H.; Takeuchi, Y.; Yamato, M. Chem. Pharm. Bull. **1988**, 36, 401; (d) Royals, E. E. J. Am. Chem. Soc. **1948**, 70, 489.
- 12. Reddy, C. P.; Tanimoto, S. J. Chem. Soc. Perkin Trans. 1 1988, 411.
- 13. Cantrell, T. S.; Allen, A. C. J. Org. Chem. 1989, 54, 135.
- 14. Sørensen, U. S.; Falch, E.; Krogsgaard-Larsen, P. J. Org. Chem. 2000, 1003, 65.
- (a) Akita, H.; Furuichi, A.; Koshiji, H.; Horikoshi, K.; Oishi, T. *Chem. Pharm. Bull.* 1984, 32, 1333; (b) Royals, E. E.; Hoppe, J. C.; Jordan, A. D., Jr.; Robinson, A. G., III *J. Am. Chem. Soc.* 1951, 73, 5857.
- Furuichi, A.; Akita, H.; Koshiji, H.; Horikoshi, K.; Oishi, T. Chem. Pharm. Bull 1984, 32, 1619.
- (a) Slough, G. A.; Bergman, R. G.; Heathcock, C. H. J. Am. Chem. Soc. 1989, 111, 938; (b) Hayashi, T.; Takahashi, M.; Takaya, Y.; Ogasawara, M. J. Am. Chem. Soc. 2002, 124, 5052.
- (a) Sato, S.; Matsuda, I.; Izumi, Y. Tetrahedron Lett. **1986**, 27, 5517; (b) Reetz, M. T.; Vougioukas, A. E. Tetrahedron Lett. **1987**, 28, 793; (c) Sato, S.; Matsuda, I.; Izumi, Y. Tetrahedron Lett. **1987**, 28, 6657; (d) Sato, S.; Matsuda, I.; Izumi, Y. J. Organomet. Chem. **1988**, 352, 223; (e) Hollmann, C.; Eilbracht, P. Tetrahedron Lett. **1999**, 40, 4313; (f) Hollmann, C.; Eilbracht, P. Tetrahedron **2000**, 56, 1685; (g) Muraoka, T.; Matsuda, I.; Itoh, K. Tetrahedron Lett. **2000**, 41, 8807.
- (a) Courtis, B.; Dent, S. P.; Eaborn, C.; Pidcock, A. J. Chem. Soc., Dalton Trans. 1974, 2460; (b) Kampmeier, J. A.; Mahalingam, S. Organometallics 1984, 3, 489; (c) Kokubo, K.; Matsumasa, K.; Miura, M.; Nomura, M. J. Org. Chem. 1996, 61, 6941; (d) Sato, K.; Yamazoe, S.; Yamamoto, R.; Ohata, S.; Tarui, A.; Omote, M.; Kumadaki, I.; Ando, A. Org. Lett. 2008, 10, 2405.