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Abstract:  Racemic 1-azaspiro[4.4]nonane-2,6-dione 1 was easily synthesized from
cyclopentanone in five steps and resolved via chiral acetals into enantiomers. Cephlotaxine
(-)-3 and its enantiomer (+)-3 were obtained from (—)-1 and (+)-1, respectively, according
to the literature. (© 1997 Published by Elsevier Science Ltd. All rights reserved.

Key intermediate 2 for the total synthesis of (+)-cephalotaxine 3, as reported by Kuehne et al!
includes the 1-azaspiro[4.4]nonane-2,6-dione skeletone 1 (Scheme 1). Compound 2 has been prepared
by the oxidative rearrangement of bicyclic ene-lactam 4 with lead tetraacetate.! This paper presents a
facile synthesis of 1 and the resolution of its enantiomers via chiral acetals. The absolute configuration
of each enantiomer was determined based on CD spectra and X-ray analysis and were converted to
the optical active cephalotaxine (—)-3 and its enantiomer (+)-3 by the method of Kuehne without
racemization.

The synthesis2 of 1 and separation of its enantiomers were carried out as shown in Scheme 2.
2-(2-Methoxycarbonylethyl)cyclopentanone 5, readily available by the alkylation of the pyrrolidine
enamine of cyclopentanone with methyl acrylate (68%),3 was used with isopropenyl acetate to obtain
enol acetate 6 in 72% yield, which was nitrated to 7 with a mixture of trifluoroacetic anhydride and
ammonium nitrate in 68% yield. The desired spirolactam 1 was obtained by reduction of 7 with zinc
in acetic acid—ethanol (2:1) in good yield (80%).* The acetalization of 1 with (R,R)-2,3-butanediol in
the presence of catalytic p-toluenesulfonic acid gave a mixture of diastereomeric acetals (8 and 9) in
quantitative yields. By HPLC on silica gel by elution with chloroform, 8 and 9 were easily separated
in the first and second fractions, respectively. The hydrolysis of 8 and 9 with a mixture of AcOH-H>0
(5:95) gave (+)-1 and (—)-1 in quantitative yields, respectively. Each enantiomer was confirmed pure
by HPLC using a chiral column (Figure 1.3

Scheme 1.

* Corresponding author. Email: nagasaka@ps.toyaku.ac.jp
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Scheme 2. Reagents and Conditions: a) isopropenyl acetate, p-TsOH, 110°C, 5 h; b) trifluoroacetic anhydride, ammonium

nitrate, CHClp, rt., 30 min; ¢) Zn, AcOH-EtOH (2:1), reflux, 5 h; d) i) (R,R)-(-)-2,3-butanediol, p-TsOH, CgHg,

reflux, 8 h, ii) column chromatography on silica gel by elution with CHCl3; €) 5% AcOH, reflux, 2 h; f) NaH, 2-(3,4-
methylenedioxyphenyl)ethanol p-toluenesulfonate, CgHg.

Chromatograms of ()1, (-1 and (+)-1

l ®-1 ’\ '~ by HPLC packed with the chiral column.*
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Column : 50x0.1 (i.d.) cm stainless tube
packed with modificd silica gel
(0.8 mmol/g silica gel)
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Flow rate : 60 pl/min at 20°C.
Solvents : 8% EtOH - n-hexane.
Detecter : a UV-detector at 230 nm.
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Figure 1.
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Figure 2. The CD-spectra of (+)-1 (—) and (-)-1 (- - -) in MeOH.

Figure 3. ORTEP diagram of (+)-8.

The CD spectra of (+)-1 and (—)-1 showed opposite absorptions as shown in Figure 2. The absolute
configurations of (+)-1 and (—)-1 were suggested by comparison of the CD spectra of (+)-1 and (—)-1
with those of the known (R)-(+)- and (S)-(—)-l,7-diazaspiro[4.4]nonane:—2,6—di0nes.6 X-ray analysis’
of (+)-8 shown in Figure 3 confirmed this consideration.

Finally, the syntheses of optical active cephalotaxine (—)-3 and its enantiomer (+)-3 were success-
fully carried out from (—)-118 and (+)-108, respectively, by the method reported in the literature.!?
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