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ABSTRACT: Herein we report the development of a scalable and 
synthetically robust building block based on norbornadiene (NBD) 
that can be broadly incorporated into a variety of macromolecular 
architectures using traditional living polymerization techniques. By 
taking advantage of a selective and rapid deprotection with 
tetrazine, highly reactive “masked” cyclopentadiene (Cp) 
functionalities can be introduced into synthetic polymers as chain-
end groups in a quantitative and efficient manner. The 
orthogonality of this platform further enables a cascade click 
process where the “unmasked” Cp can rapidly react with 
dienophiles, such as maleimides, through a conventional Diels–
Alder reaction. Coupling proceeds with quantitative conversions 
allowing high molecular weight star and dendritic block 
copolymers to be prepared in a single step under ambient 
conditions.

Introduction
The concept of “click” chemistry, first introduced by Sharpless and 
coworkers in 2001, is based on the philosophy that chemical 
reactions should be modular, simple, high yielding and orthogonal.1 
These essential characteristics have had a profound impact across 
the broader chemical sciences, transforming scientific disciplines 
ranging from bioconjugation to functional polymer synthesis.2,3 A 
range of post-polymerization modification strategies have emerged 
from the concept of “click” chemistry, enabling the synthesis of 
polymers with a diverse array of functionalities and architectures.4,5 
Among these strategies, the copper catalyzed azide–alkyne click 
(CuACC) represents one of the most highly utilized “click” 
platforms in polymer synthesis, driven by the synthetic availability 
of alkyne and azide building blocks.6 However, a longstanding 
drawback for traditional CuAAC-based systems is the presence of 
metal catalysts. This challenge was mitigated by the development 
of copper-free or strain-promoted azide–alkyne click (SPACC) 
chemistry; based on cyclooctyne derivatives,7 the inherent strain in 
the cyclooctyne ring dramatically increases the rate of the 
uncatalyzed reaction,8 enabling rapid room temperature coupling to 
azides. However the long-term instability of 
dibenzoazacyclooctyne systems (DIBAC) (storage at –20 °C),9 the 
difficulties in scalability and prohibitively high cost10,11 renders 
general use in functional polymer synthesis challenging. As such, 

SPAAC has been mostly limited to small-scale systems such as 
dendritic12 or biological applications.13 

(a) Conventional Diels-Alder for polymer functionalization

(b) Next generation NBD “click” for polymer functionalization
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Figure 1. (a) Current methods for maleimide-polymer conjugation 
using anthracene or furan (b) Strategy reported herein introducing 
masked Cp into polymers, highlighted by red bonds.

A more cost-effective and scalable metal-free “click” platform for 
polymer synthesis is the Diels–Alder (DA) cycloaddition reaction. 
DA systems have been utilized across numerous applications 
ranging from polymer crosslinking,14,15 nanoparticle,16  surface 
functionalization,17 and the preparation of antibody–drug 
conjugates.18 Furan or anthracene-based dienes, in combination 
with maleimide dienophiles, are arguably the most commonly 
utilized building blocks for DA cycloaddition couplings in polymer 
synthesis (Figure 1a).19 However, despite their orthogonality, 
scalability, and wide spread availability, polymeric materials 
prepared by DA cycloadditions are plagued with certain 
fundamental limitations. For example, the propensity for furan-
maleimide DA adducts to undergo retro Diels-Alder (rDA) 
reactions renders them unsuitable for applications requiring 
elevated temperatures.20 Furthermore, the DA cycloaddition of 
anthracene-maleimide suffers from the necessity for high 
temperatures and long reaction times to achieve high coupling 
efficiency.21 
To overcome these challenges, an attractive alternative is to 
significantly increase the reactivity of the diene or dienophile. Du 
Prez and co-workers have reported the use of triazolinedione 
(TAD) compounds as ‘spring-loaded’ dienophiles which react with 
dienes at room temperature within minutes.22 The high reactivity of 
TAD compounds offers an elegant method for functionalizing 
polymers when less reactive dienes are required. In contrast, the 
reactivity of the diene can be increased through the use of 
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cyclopentadiene (Cp) derivatives.23,24 Recognizing the potential of 
Cp as a polymer “click” platform, Barner-Kowollik and coworkers 
have developed synthetic routes to access Cp-functionalized 
polymers for conjugation with maleimides,25 electron-deficient 
dithioesters,26-28 and carbon nanoparticles.29,30 For stable 
backbones such as polystyrene or poly(ethylene glycol), 
nucleophilic substitution using ionic cyclopentadienyl salts 
(NaCp,26 LiCp,31 or Me2AlCp32) allows for the efficient synthesis 
of Cp functionalized chain end derivatives. In the case of reactive 
backbones, such as polyesters, an alternative substitution strategy 
using nickelocene (NiCp2) has been developed.27,33,34 Despite the 
success of these strategies, the ability to incorporate Cp has been 
limited to chain-ends via post-polymerization strategies due to the 
general instability24 of Cp and its high reactivity towards electron-
deficient vinyl monomers.35 
Identifying the limitations of general click strategies and the 
associated promise of cyclopentadiene (Cp) derivatives as a highly 
efficient coupling platform, we report the development of 
norbornadiene (NBD) building block as a “masked” Cp unit that 
can be used for the synthesis of high molecular weight tri-block and 
star copolymers. Our interest is NBD derivatives is driven by their 
scalability (derived from inexpensive starting materials such as 
dicyclopentadiene) and compatibility with a wide variety of 
polymerization techniques such as reversible 
addition−fragmentation chain-transfer (RAFT), atom transfer 
radical polymerization (ATRP) and ring-opening polymerization 
(ROP). A key insight in this study is the use of a cascade sequence 
of DA reactions to quantitatively couple the NBD units with 
dienophiles such as functional maleimides.36 This “unmasking” of 
the NBD group is mediated by small molecule tetrazine derivatives 
through an initial inverse-DA reaction leading to the in situ 
generation of Cp functionalities that can then undergo efficient 
conjugation with maleimide-functionalized materials (Figure 1b). 
This novel cascade platform is metal-free, air tolerant, and 
quantitative for even demanding systems such as the coupling of 
high molecular weight, chain end functionalized linear polymers. 
This allows well-defined block copolymers to be prepared on 
multi-gram scale that are difficult to synthesize using traditional 
polymerization strategies. 

Results and Discussion
Initial studies on the scalable synthesis of an NBD derivative 
employed the commodity chemical dicyclopentadiene (1) and 
methyl 2-octynoate (2), an inexpensive and innocuous flavoring 
agent ($30 per kg). When 1 and 2 are heated neat in a pressure 
vessel at 200 °C, the resulting methyl ester can be isolated via 
distillation and subsequently reduced with DIBAL to furnish the 
NBD alcohol 337 on a 50 g scale in a typical laboratory setting 
(Scheme 1). The simplicity of this process coupled with the 
availability of alkyne derivatives allows a range of other NBD 
derivatives to be prepared. A notable example includes the reaction 
of 1 with propargyl alcohol which affords the unsubstituted NBD 
alcohol directly.38 Significantly it was observed that the NBD 
derivatives were stable and could be stored at room temperature 
under ambient conditions with no observable degradation or 
instability over 6+ months. In addition, a variety of 
functionalization reactions can be performed on the NBD building 
block to give functional initiator units for subsequent 
polymerization reactions (Figure S23–S30). For example, the 
alcohol 3 can be esterified to give the RAFT chain transfer agent, 
4, the ATRP initiator, 5, or the difunctional bis(MPA) ROP 
initiator, 6, in high yields. 
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Scheme 1. Synthesis of norbornadiene polymer building blocks. i) 
neat, pressure vessel, 200 °C, 5 h, 50% ii) DIBAL, THF, 0 °C, 30 
min, 71% iii) CDTPA, EDC·HCl, DMAP, DCM, rt, 16 h, 92% iv) 
-Bromoisobutryl bromide, pyridine, THF, 0 °C, 2 h, 72% v) 2,2-
Bis(tert-butyldimethylsiloxymethyl)propionic acid, EDC·HCl, 
DMAP, DCM, rt, 2 days, 86% vi) TBAF, THF, rt, 2 h, 73%. 

Drawing inspiration from small molecule reports39,40 and the 
pioneering development of additive-free polymer functionalization 
based on norbornene-tetrazine coupling chemistry by Dove, Du 
Prez, and O’Reilly,41 we identified norbornadiene (NBD), as a 
“masked” Cp precursor. Together with the synthetic accessibility 
demonstrated above, we envisaged that the high ring strain (32.2 
kcal/mol)42-45  would allow for a cascade of selective cycloaddition 
reactions when used in conjunction with tetrazine.43–45 This highly 
efficient process proceeds through an initial inverse electron-
demand DA (IEDDA) reaction that releases N2, followed by a 
retro-DA (rDA), to yield pyridazine46 and Cp as products.39,40  This 
strategy therefore permits the facile incorporation of Cp into a 
range of materials through the initial introduction of NBD units. 
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Figure 2. (a) One-pot deprotection of NBD and conjugation with 
maleimide. Note: quenched with norbornene after 4 h. (b) Pyrene 
chain end functionality introduced to PLA. 1H NMR of (c) NBD-
functionalized PLA, P1 and (d) PyrM-functionalized PLA, P2 in 
dichloromethane-d2. 
To demonstrate the versatility of 3 as a stable, “masked” Cp unit, 
end-functionalized polylactide (PLA) P1 (Figure 2a) was prepared 
using the base-catalyzed ROP of D,L-lactide and 3 as an initiator. 
Significantly, the resulting polymer was determined to have a 
degree of polymerization of ~500 (Mn = 42,000 g/mol and Đ = 
1.04), which compares favorably with the theoretical DP of 440 and 
illustrates the compatibility of the NBD unit under basic conditions. 
Additionally, 1H NMR spectroscopy shows the unique signals for 
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the alkene present in the NBD units and confirms the efficient 
introduction of NBD at the end of the high molecular weight PLA 
chain. 
The ability to liberate reactive Cp units was then demonstrated 
through sequential “demasking” of the NBD group followed by 
rapid, DA cycloaddition with readily available maleimide 
dienophiles containing a range of functionality (e.g., dye, 
biomolecule and photoswitch). From a practical point of view, one 
advantage of this approach is that the maleimide group lies dormant 
until the Cp group is revealed leading to a metal-free and room 
temperature “cascade click” functionalization process.36 The 
orthogonality of these cycloaddition processes combined with the 
user-friendly nature of the reaction set-up addresses a number of 
challenges that exist in the synthesis of complex macromolecular 
architectures by coupling of polymeric building blocks. To validate 
the efficient conjugation via a “cascade click” sequence, a solution 
of P1 in CDCl3 was treated with the commercially available 
tetrazine (DpTz, 2.4 equiv) and N-(1-pyrenyl)maleimide (PyrM, 
1.2 equiv) at room temperature with no precaution to exclude water 
or oxygen. As highlighted by Figure 2a, the cascade process 
proceeds through an initial inverse electron-demand DA (IEDDA) 
reaction with DpTz (7) at the unsubstituted olefin of NBD (P1 to 
P1a). Upon release of N2 from P1a a subsequent retro-DA occurs 
to yield an in situ generated terminal Cp unit (P1b) which 
undergoes a DA reaction with the functionalized maleimide (8) to 
give the desired pyrene-functionalized P2. Following purification 

by precipitation, P2 was obtained in quantitative yield with SEC 
characterization before and after functionalization confirming no 
change in molar mass distribution. Significantly, incorporation of 
pyrene was determined to be >95% by both 1H NMR and UV-Vis 
spectroscopy calibrating against known concentrations of PyrM 
(Figure 2d, S31−34). Similar reactivity was observed for a range 
of PLA molecular weights and for maleimides bearing more 
complex biotin or azobenzene functionalities (Figure S35-36, S39-
40). The ability to employ a wide range of functional starting 
materials and high (>40,000 kDa) molecular weight polymers 
highlights the efficiency of NBD as a building block with this 
“cascade click” strategy representing a viable alternative to both 
CuAAC and SPAAC.47 
The facile introduction of reactive Cp units to the chain ends of 
polymeric systems now opens up the intriguing possibility of 
coupling stable, end functionalized polymers to give high 
molecular weight block copolymers and other complex 
macromolecular architectures. To showcase the potential of this 
new strategy, a PLA-b-PEO-b-[G-4 dendron] triblock copolymer 
(P5) was prepared in a single step by coupling of a chain end 
functionalized PLA-NBD ((P3), Mn = 21,800) derivative with a 
maleimide-terminated PEO-b-[G-4 dendron] (P4). Significantly, 
only a minor excess of P4 (1.5 equivalents) was required to drive 
the reaction to completion with SEC showing the expected increase 
in molecular weight for the desired triblock copolymer and no 
detectable P3 (Figure S48). 
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Figure 3. (a) Chemical schematic for synthesis of triblock copolymer, P5, using a sequential deprotection-conjugation strategy between 
NBD-functionalized PLA (P3) and maleimide-terminated PEO-b-[G-4 dendron] (P4); 1H NMR of (b) NBD-functionalized PLA, P3 and (c) 
triblock P5 in chloroform-d.

To further illustrate the power of this cascade click approach for 
the synthesis of complex macromolecular architectures, we took 
inspiration from dendrimer and star copolymer targets. The NBD-
containing diol 6 was subjected to standard lactide ROP conditions 
to obtain a two-armed B2 precursor (P6, Figure 4a) where a 
“masked” Cp unit is located at the mid-point of the PLA chain. This 
allows access to high molar mass AB2 miktoarm star polymers 
when coupled with linear maleimide-terminated polymers. 
Maleimide-terminated poly(n-butyl methacrylate) (PnBMA) P748 

synthesized using metal-free ATRP49 serves as the conjugation 
partner (Mn(SEC) 9,600 g/mol, Đ = 1.26) with the corresponding 
AB2 PnBMA-b-(PLA)2 miktoarm star copolymer P8 obtained after 
room temperature reaction under ambient conditions (Figure 4a). 
It is important to note that excess P7 was removed by simple 
precipitation of the crude reaction mixture into a 1:1 v/v/ 
methanol:isopropanol solution. SEC-RI analysis confirmed the 
efficient coupling and successful formation of a high molecular 
weight AB2 miktoarm block copolymer (Figure 4b). 1H NMR 
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analysis of P8 corroborated a quantitative incorporation of PnBMA 
and PLA blocks (Figure S53) based on the stoichiometric reaction 
between chain-ends and the estimated molecular weight of each 
precursor. Small-angle x-ray scattering (SAXS) provided 
additional evidence for efficient conjugation and the absence of 
unreacted homopolymer. After annealing P8 at 120 °C for 4 h, 
multiple Bragg reflections corresponding to well-ordered lamellae 
were observed with a characteristic length-scale (q* = 0.25 nm -1, d 
= 25 nm) defined by the self-assembly of the neat and symmetric 
AB2 block polymer (fPLA ≈ 0.5). As an additional demonstration of 
the modularity of this platform, a second AB2 miktoarm star (S-

P12) was prepared using polymer precursors of different molar 
masses, targeting a fPLA ≈ 0.7 AB2 miktoarm (Figure S55–56). 
Upon annealing, the miktoarm block copolymer also exhibited 
microphase separation, forming hexagonally packed cylinders as 
evidenced by SAXS (Figure S57). The ability to quickly and 
efficiently link polymer precursors promotes a more facile avenue 
to tune chemical composition and volume fraction of blocks 
through this “mix and match” approach. We envision that this 
strategy will enable easy access to a range of polymeric 
architectures or potentially afford new opportunities in reactive 
compatibilization of polymer blends.

 

Figure 4. (a) Chemical schematic for one-pot AB2 miktoarm star formation using a sequential deprotection-conjugation strategy between 
two-arm NBD-functionalized PLA (P6) and maleimide-terminated PnBMA (P7) to yield P8. Note: quenched with norbornene after 5 h (b) 
SEC-RI overlay of polymer precursors and purified AB2 miktoarm star (P8) (c) SAXS data confirming self-assembly of P8 to a well-ordered 
lamellar structure.

Conclusion
In conclusion, we have developed a cascade click strategy for the 
facile preparation of high molecular weight macromolecular 
architectures. Based on synthetically accessible and chemically 
robust norbornadiene (NBD) building blocks, “masked” Cp units 
can be introduced into a range of polymeric systems. The general 
compatibility of the NBD building block with common 
polymerization techniques (i.e. RAFT, ATRP, ROP) is 
demonstrated, highlighting the versatility and orthogonality of 
NBD. Importantly, upon addition of DpTz, quantitative 
deprotection of NBD to form Cp is observed via a rapid cascade of 
DA reactions, and in the presence of a variety of functional 
maleimide derivatives, in situ coupling then occurs via a traditional 
DA cycloaddition. This metal-free process is highly efficient and 
requires no heating or precaution for an air- or moisture-free 
environment. Importantly, it is amenable across an array of 
functional maleimides, making this strategy accessible to the 
broader scientific community.  
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Next generation norbornadiene “click” for polymer functionalization

one-pot, room temperature

N

O

O

C5H11

R
C5H11

N
R

OO
NN

N N
PyPy

Page 7 of 7

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


