Accepted Manuscript

A⁷⁷Se NMR study of elemental selenium reduction using NaBH₄

Alfredo Ricardo Marques de Oliveira, Leandro Piovan, Fabio Simonelli, Anderson Barison, Maria de Fatima C. Santos, Murilo Belini Marcondes de Mello

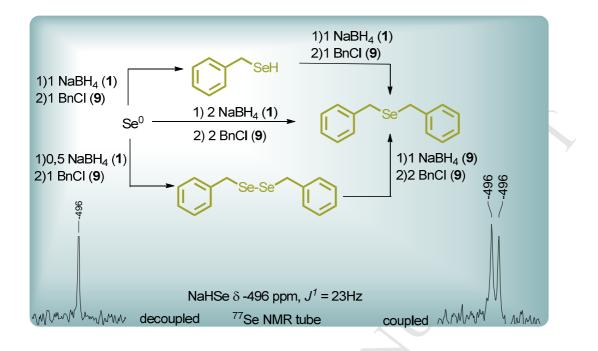
PII: S0022-328X(16)30029-8

DOI: 10.1016/j.jorganchem.2016.01.028

Reference: JOM 19379

To appear in: Journal of Organometallic Chemistry

Received Date: 22 November 2015


Revised Date: 20 January 2016

Accepted Date: 21 January 2016

Please cite this article as: A.R.M. de Oliveira, L. Piovan, F. Simonelli, A. Barison, M. de Fatima C. Santos, M.B.M. de Mello, A⁷⁷Se NMR study of elemental selenium reduction using NaBH₄, *Journal of Organometallic Chemistry* (2016), doi: 10.1016/j.jorganchem.2016.01.028.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CER MAR

A⁷⁷Se NMR study of elemental selenium reduction using NaBH₄

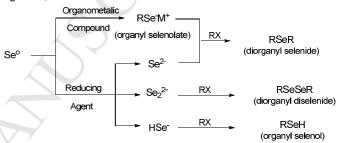
Murilo B. M. de Mello, Maria de Fátima C. Santos, Fabio Simonelli, Leandro Piovan, Andersson Barison, Alfredo R. M. Oliveira^{*}

Abstract: Alkylation or arylation of selenide or diselenide anions is a wellestablished method to obtain organoselenium compounds. Nevertheless, detecting inorganic selenium anions using ⁷⁷Se NMR is still a challenge. In a previous work, alkylation of Na₂Se was found sometimes to yield a mixture of organyl selenides/diselenides in variable amounts. In the literature, this mixture is sometimes attributed to the oxidation of an intermediate alkyl selenol during the extraction. To understand this process, a series of experiments using ⁷⁷Se NMR were performed. It was clear from the ⁷⁷Se NMR experiments that NaHSe⁻ and Se₂²⁻ formation was very dependent on the NaBH₄ stoichiometry used. After alkylation, alkyl selenol and dialkyl diselenide were identified, proving they were not formed during the extraction step. As a result, alkyl selenols, dialkyl selenides or dialkyl diselenides with a high purity degree were obtained. To achieve high purity and selectivity of the organoselenium compound, the stoichiometric ratio between Se⁰/NaBH₄ has to be carefully measured.

Keywords: NaHSe ⁷⁷SeNMR detection, selenium reduction, selenide trapping.

1. Introduction

Over the last 50 years or so, the status of organoselenium compounds has changed from being considered highly toxic to a point where some of its members can be bought as food supplements, at local markets or pharmacies. Selenium is an essential trace element and lower levels of it in humans has been associated to several diseases including cancer and heart diseases.^{1,4a} One illustrative disease related to selenium deficiency was the Keshan disease, which was identified some 50 years ago in northeast part of continental China and recently reviewed.² Selenium ingestion is almost exclusively via food and it's bioavailability contents in it depends of the selenium level in soil.³ Selenium plays an important role as participant of several antioxidant enzymes such as glutathione peroxidase (GPx), thioredoxin reductase (TrxR) and iodothyronine deiodinases (IDD).^{4a-c} Selenocistein, recognized as the 21th amino acid essential for life, is found in several proteins. In mamals at least 30 selenoproteins were identified,^{5,6} and there is an estimative that humans have about 25 selenoproteins.⁷


[a]

Alfredo Ricardo Marques de Oliveira, Leandro Piovan, Fabio Simonelli, Anderson Barison, Maria de FatimaC. Santos and Murilo Belini Marcondes de Mello

Universidade Federal do Paraná, Departamento de Química

Centro Politécnico, Curitiba, Brasil 81.531-980

e-mail:armo@quimica.ufpr.br, <u>lpiovan@quimica.ufpr.br</u>, murilo@ufpr.br http://www.quimica.ufpr.br Organoselenium compounds can be obtained mainly through two synthetic strategies starting from elemental selenium: a) reaction with a convenient organometallic compound (RLi, RMgBr, etc.) to generate an organyl selenolate anion (RSe^{M+}); or b) reduction of Se⁰ to selenide or diselenide anion (Se²⁻ or Se₂²⁻), followed by alkylation (Scheme 1). To accomplish reduction, several agents, such as alkaline metals in liquid ammonia⁸, Li(Et)₃BH,⁹ Sml₂¹⁰, NaH in DMF,¹¹ or Rongalite¹², can be used.

Scheme 1. Methods to selectively synthesize selenium compounds.

It is well known that the reaction of inorganic selenium anion (Se²⁻ or Se_2^{2-}) with an organic electrophile (RX) allows the synthesis of organyl selenols (RSeH), diorganyl selenides (RSeR) or diorganyl diselenides (RSeSeR). Moreover, selectivity depends on the stoichiometry ratio used at the reduction step.¹³ Since the use of liquid ammonia imposes a series of experimental restrictions, the reduction reaction of selenium with NaBH₄ (1) in ethanol is a convenient method to prepare selenide anion. In addition, to simplify the experimental procedure, Yang reported that the presence of NaOH in this reaction eliminates hydrogen generation, when synthesizing sodium diselenide (Na₂Se₂).¹⁴ Recently we had reported that during the synthesis of bis-2-methylene-2-oxazolinyl selenide (which involved the use of Na2Se from the reduction of Se⁰ (2) using NaBH₄ (1) in ethanol), a mixture of dioxazolinyl selenides and dioxazolinyl diselenides has sometimes been observed, even when oxygen and water was carefully avoided.¹⁵ The available literature about this reduction reports conflicting results, where different stoichiometric ratios of reducing agent to Se⁰ have been used to generate the same species or even worse, mixed species in different ratios (Se2- + Se22-).16 This apparent contradiction prompted us to make a deeper ⁷⁷Se NMR study to investigate which selenium species were generated under selected conditions.⁷⁷Se has a 1/2 spin nucleus, no quadrupolar moment and isotopic abundance around 8%. These properties allows to acquire high resolution NMR spectra with sharp and high intensity signals over a wide chemical shift range.⁷⁷Se NMR spectroscopy can be used as a tool to follow reaction progress in an easy and direct way than those by ¹H and ¹³C, where spectra are far more complex. ⁷⁷Se NMR spectroscopy was previously used by McFarlane¹⁷ to investigate the Sex²⁻ (x>2) anion. Eggert¹⁸ and Björgvinsson¹⁹ used the same tool to investigate the formation and

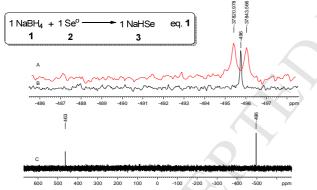
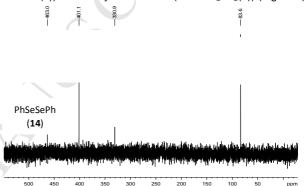
1

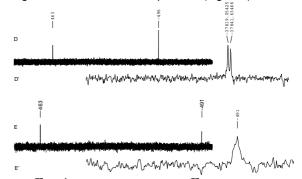
stability of polyselenides. However, the results were disappointing, since none of the authors could identify Se₂²⁻ species.²⁰ Similarly, in 1991 Cusik and Dance²¹ reported the characterization of [HSe]⁻ and [Se_x]²⁻ ions using ⁷⁷Se NMR but were unable to identify the [Se₂]²⁻ ion. Low temperature studies from the same group, shows that δ_{Se} for [HSe]⁻ in DMF is large, around 1 ppm per degree. Having this in mind, we decided to trap any selenium species formed in the reduction reaction using an alkylating agent and following the results with ⁷⁷Se NMR analysis.

2. Results

2.1 Synthesis and ⁷⁷Se NMR study of NaHSe (3) species.

We began our work²² by using ⁷⁷Se NMR to investigate the nature of the selenium species generated from the reaction of Se⁰ with different stoichiometric ratios of NaBH4 (1) in ethanol, into NMR tubes. For all NMR assays, diphenyl diselenide (14) (463 ppm) was employed as external reference. Thus, one equiv. of Se⁰ (2) (19.7 mg, 0.25 mmol) and one equiv. of NaBH₄ (1) (9.4 mg. 0.25 mmol) (eq. 1) were placed into a 5 mm NMR tube followed by careful addition of 1 mL of anhydrous ethanol. The tube was capped with a small rubber septum with an outlet needle and degassed using purified nitrogen gas. This solution was limpid and light reddish-brown colored. The 77Se hydrogen decoupled NMR spectrum for this solution showed only one signal at -496 ppm. When a coupled spectrum was acquired, this signal split into a doublet with a coupling constant of 23 Hz (Figure 1) that was assigned to NaHSe (3). Cusik¹⁴ reported a similar result in water, with a chemical shift of -519 ppm and a coupling constant of 26 Hz.


Figure 1. (A) NaHSe ⁷⁷Se NMR spectrum. Expanded ⁷⁷Se {¹H} NMR (B). (C) ⁷⁷Se {¹H} NMR full spectrum of NaHSe (3) in ethanol solution. When one equivalent of benzyl chloride (BnCl) (9) was added to quench the reactive intermediates, the signal at -496 ppm rapidly was replaced by three new signals: one at 85 ppm, assigned to benzyl selenol (6), one at 330 ppm referring to dibenzyl selenide (7) and one at 401 ppm, assigned to dibenzyl diselenide (8) (Figure 2).23 These assignments were supported by the multiplicities of the signals observed on the corresponding coupled ⁷⁷Se NMR spectra (See supplementary information). Formation of dibenzyl diselenide (8) was not expected to occur in a reductive medium. In order to verify if any oxidation process was taking place, oxygen was bubbled in the NMR tube for 30 minutes and a new spectrum was acquired. The changes in signal intensities for benzyl selenol (6) and for dibenzyl diselenide (8) were not evident, showing that the oxidation process is relatively slow. Benzyl selenol (6) was still the major compound in the mixture. Compounds 7 and 8 were present in small varying amounts and their presence was related with the reaction color, where a darker solution

indicated greater amounts of **7** and/or **8** in solution, as confirmed by 77 Se NMR analysis.

It is known that NaBH₄ (1) slowly decomposes in the presence of ethanol.²⁴Thus, to study its influence on the reduction of Se⁰ (2), one equiv. of NaBH₄ (1) was carefully weighed and dissolved in 1 mL of anhydrous ethanol. It was immediately possible to detect a small amount of gas being slowly released. Upon addition of this solution to a flask containing solid Se⁰ (2), a copious amount of hydrogen was released. This indicates that most NaBH₄ (1) was active, but the final solution had a reddish-brown color. Titrating the resulting solution with a small volume of diluted NaBH₄ (1) ethanol solution yielded a colorless limpid solution. As expected, further addition of BnCl (9) yielded only benzyl selenol (6). This result indicates that generation of pure NaHSe (3) is very sensitive to the amount/quality of NaBH₄ (1) used and any deviation can result in formation of varying amounts of alkyl selenol (from NaHSe (3)), dialkyl selenide (from double alkylation of NaHSe (3)) and dialkyl diselenides (from Na₂Se₂(5)) (Figure 2).

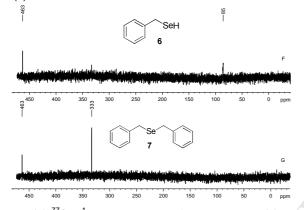


Figure 2. ⁷⁷Se {¹H} NMR spectrum showing the signals for benzyl selenol (**6**) (83.6 ppm), dibenzyl selenide (**7**) (330.9 ppm), dibenzyl diselenide **8** (401.1 ppm) and diphenyl diselenide(**14**) (463 ppm). This reaction was repeated in an attempt to identify Na₂Se (**4**) and the NMR spectrum was swept for a wide spectral width, to look for the presence of any other selenium species. The only observed signal was the singlet at -496 ppm. Its coupled spectrum showed a doublet (*J*=23Hz) assigned to NaHSe. Upon treatment with a 5% NaOH aqueous solution, the coupled spectra changed to a deformed singlet at -491 ppm. This signal is not compatible with a Na₂Se (**4**) species since it has the same chemical shift of NaHSe (**3**).²⁵ The observed line broadening can be attributed to a fast exchange of Se²⁻ with HSe⁻²¹. Once more, the NMR field was swept for a wide spectral width and no other signal was detected in this experiment (Figure 3).

Figure 3: ⁷⁷Se {¹H} NMR spectra (**D**) and ⁷⁷Se (**D**') before addition of a 5% NaOH aq. sol. to the NaHSe (**3**) and (**E**) and (**E**') after addition.

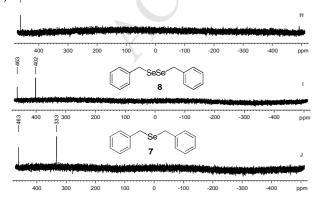

When a ratio of 2:1 equiv. of NaBH₄ (1):Se⁰ (2) was used, the only observable signal²⁶ was at -496 ppm and its coupled spectra splits into a doublet, indicating Se-H coupling. This shows that the NaBH₄ (1) excess is not basic enough to promote the second deprotonation. However, when the reaction mixture was treated with two equivalents of BnCl (9), dibenzyl selenide (7) was exclusively formed. In order to get further information about this reaction, we also performed it in two steps. Thus, initial reduction of Se⁰ (2) with one equiv. of NaBH₄ (1) followed by addition of one equiv. of BnCl (9) only furnished benzyl selenol (6). Then, addition of a second equivalent of NaBH₄ (1) (CARE! Rapid hydrogen evolution) followed by another equiv. of BnCl (9) yielded dibenzyl selenide (7) as the only product (Figure 4). Therefore, the above results indicate that NaBH₄ (1) is basic enough to promote the deprotonation of benzyl selenol (6) but not to deprotonate NaHSe (3).

Figure 4: (F) ⁷⁷Se $\{^{1}H\}$ NMR spectra of benzyl selenol (6) and (G) after alkylation yielding (7).

2.2 Synthesis and ⁷⁷SeNMR study of Na₂Se₂ (5) species.

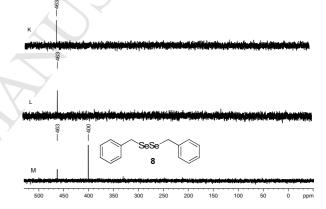

To complete our investigation was necessary to obtain $Se_2^{2^*}$ in a reproducible way. There are two general methods described to generate Na_2Se_2 (5) from elemental selenium: a) using a 3:2 ratio of Se^0 (2):NaBH₄ (1) in ethanol as solvent, yielding a mixture of Na_2Se_2 (5) and H_2Se (10) (which was driven off by a stream of an inert gas), and b) formation of Na_2Se_2 (4), using NaBH₄ (1), followed by addition of one more equiv. of Se^0 (2). After generating Na_2Se_2 (5) using the first method no signal was observed in the ⁷⁷Se {¹H} NMR spectrum. However, addition of BnCl (9) rapidly generated a strong signal at 402 ppm, which was assigned to the dibenzyl diselenide (8). Reduction of 8 using one equivalent of NaBH₄ (1) followed by addition of one equivalent of BnCl (9) forms selectively dibenzyl diselenide (7) (Figure 5).

Figure 5. (H) ⁷⁷Se {¹H} NMR spectrum of Se⁰ (2) reduction to Na₂Se₂ (5). (I) Compound 8 after alkylation. (J) Conversion to 7.


The fact that Na₂Se₂ (**5**) has no detectable signal by ⁷⁷Se NMR spectroscopy is known and has been described elsewhere.^{20, 21} Only HSe⁻ (**3a**) specie could be identified and no other selenium negative ions were observed. Therefore a freshly prepared Na₂Se₂ (**5**) solution was acidified with HCl and its ⁷⁷Se NMR spectrum was acquired. We were unable to detect any signal for H₂Se₂ (**12**) in this system even when exploring a very wide spectral window.

One last experiment was performed to try to detect the presence of the anion BnSeSe⁻ (14). Dibenzyl diselenide (8) was synthesized in a 1 mmol scale and was isolated in 97% yield using Na₂Se₂ as a precursor. 0.1 mmol of compound 8 was reduced with 0.2 mmol of NaBH₄ (1) and the ⁷⁷Se NMR acquired to verify the presence of BnSe⁻ (13). No signals were observed. To this solution was added another equivalent of Se⁰ (2), forming a limpid and brownish solution (possibly BnSeSe⁻) (14). Again, this solution gave no signal in the ⁷⁷Se {¹H} NMR spectrum. After 5 minutes, another equivalent of BnCl (9) was added to regenerate BnSeSeBn (8) was obtained as a major product and trace amounts of benzyl selenide (7) (Figure 6).

Figure 6.⁷⁷Se {¹H} NMR spectra (**K**) showing the reduction of dibenzyl diselenide (**8**). (**L**) Reaction with elemental selenium. (**M**) Alkylation with BnCl (**9**). BnSe⁻ (**13**a) and BnSeSe⁻ (**13**) does not shows signals in ⁷⁷Se {¹H} NMR spectra.

Scheme 3 displays a summary of all reaction made to detect which selenium anion species were in solution after reduction of elemental selenium. It is worth of note that no polyselenides were trapped or detected using ⁷⁷Se NMR, coupled or decoupled, spectroscopy.

Scheme 3. Summary of all selenium anions species that could trapped and identified in this work.

No signal for polyselenides anions or dibenzylpolyselenides were detected. Eggert^{18b} reported the ⁷⁷Se NMR shifts for BnSe_xBn (x=2-4) and using the specified experimental conditions these higher selenides were not observed.

3. Conclusions.

The results shows that the generation of pure NaHSe (3) was very sensitive to the stoichiometric ratio between Se^0 (2) and NaBH₄ (1). If there is an excess of Se^0 (2), then selenides or diselenides (or a mixture) were obtained. If NaBH₄ (1) was in excess, dibenzyl selenide (7) was generated. Either way, the benzyl selenol (6) was always the main product when there was a small error in the measurement of NaBH₄ (1). We also demonstrated that Na₂Se₂ (4) formation is in equilibrium with NaHSe (3) and is not formed as part of an oxidation process on extraction. In addition, NaBH₄ (1) is not basic enough to deprotonate NaHSe (3) but can easily deprotonate benzyl selenol (6), yielding the corresponding selenolate. For the Na₂Se₂ (4) alkylation process, any deviation of the stoichiometry of NaBH₄ (1) used always leads to the formation of benzyl selenol (6) in small amounts and dibenzyl diselenide (8) as the major compound. In a last attempt to detect a negative selenium ion, (8) was reduced, using the established protocol and one equivalent of Se⁰ (2) was added to the resulting colorless solution. No signal was observed for the presence of BnSeSe⁻ (13), which after alkylation regenerates the dibenzyl diselenide (8). It is clear that $Se^{2^{-}}$ or $Se_{2}^{2^{-}}$ or any other selenium anion does not give any signal in the ⁷⁷Se {¹H} NMR spectrum although using an alkylating agent allowed the trapping of several selenium anions in solution. Moreover, several insights over the ⁷⁷Se NMR chemical shifts were presented that can help researches in their works in the synthesis of selenium compounds, been them organic or inorganic ones.

4. Acknowledgements

We are grateful to the Brazilian funding agencies Fundação Araucária, CAPES and CNPq for financial support. We are also grateful to the NMR Center of UFPR for all NMR analyses.

5 References.

- ¹ Ujang Tinggi, *Environ. Health Prev. Med.* **2008**, 13(2), 102–108. ² Junshi Chen, Asia Pac. J. Clin. Nutr. **2012**;21(3), 320-326.
- ³ Navarro-Alarcon, M. and Cabrera-Vique, C. Sci. Total Environ., 2008. 400. 115-141.
- a) Roman, M., Jitarub, P., Barbante, C., Metallomics, 2014, 6, 25-54.; b) Alberto, E. E., do Nascimento, V., Braga, A. L., J. Braz. Chem. Soc., 21 (11), 2032-2041, 2010; c) Nogueira, C. W., Zeni, G. and Rocha, J. B. T., Chem. Rev. 2004, 104, 6255-6285.
- Mugesh, G.; DuMont, W. W.; Sies, H., Chem. Rev., 2001, 101, 2125-2180.
- Brown, K.M., Arthur J.R., Public Health Nutrition, 2001, 4 (2B), 593-599.
- ⁷ Kryukov, G.V., Castellano, S., Novoselov, S. V., Lobanov, A. V.,
- Zehtab, O., Guigo, R, et al., Science. 2003, 300, 1439-43.
- ⁸For Na₂Se in NH₃: (a) Brandsma, L., Wijers, H.E., Red. Trav. Chim. Pays-Bas, 1963, 82, 68; (b) Harvey, A.B., Durig, J.R., Morrissey., A.C., *J. Chem. Phys.*, **1969**, <u>50</u>, 4949.; c) Denison, G.H., Condit, P.C., *Ind. Eng. Chem.*, **1949**,<u>41</u>, 944. For Na₂Se₂ in NH₃, see Shlyk, Y.N., Bogolyubov, G.M., Petrov, A.A. Obshch. Khim., 1968, 38, 1199. Sicianowski, J., Tet. Letters, 2005, 46, 3331-3334.
- ⁹Gladysz, J.A., Hornby, J.L., Garbe, J.E., *J.* Org. *Chem.,* **1978**, <u>43</u>,
- 6, 1204. ¹⁰ Zhang, Y., Jia, X., Zhou, X., Synth.Commun.,**1994**, 24(9), 1247-1252.

¹¹Krief, A., Derock, M., *Tet. Lett*, **2002**, <u>43</u>, 3083–3086.

¹²(a) Comasseto, J. V.; Ferreira, J. T. B.; Val Fontanillas, J. A., J.Organornet. Chem., 1984, 277, 261. (b) Ferreira, J. T. B.; Comasseto, J. V.; Braga, A. L., Synth.Commun., 1982, 12, 595. (c)Ferraz, H. M. C.; Petragnani, N. Can.J. Chem., 1985, 63, 3216. ³Martynov, A.V., Monareva, N.S., Larina, L.I., Amosova,

S.V., *Russian J. Org. Chem.*, **2013**, <u>49</u>, 943–945. ¹⁴Yang, X., Wang, Q. Tao, H. and Xu, H., *J. Chem. Research (S),* 2002, 160-161.

de Mello, M.B.M. Clososki, G. C. , Piovan, L., Oliveira, A.R.M., J.Organomet. Chem., 2015, 794, 11-16.

¹⁶Klayman, D.L. and Griffin, T.S., J. Am. Chem. Soc., **1973**, <u>95</u>, 197-199.

⁷McFarlane, W., Wood, R.J., *J.C.S. Dalton*, **1972**, 1397-1402.

¹⁸ a) Eggert, H., Nielsen, O., Henriksen, L., J. Am. Chem. Soc., 1986, 108, 8, 1725-1730.; b) Johannsen, I., Eggert, H., J. Am.

Chem. Soc., 1984, 106, 1240-1243.

Bjorgvinsson, M., Schrobilgen, G. J., Inorg. Chem., 1991, 30, 2540-2547. ²⁰Lyons, L.E., Young, T.L., *Aust.J.Chem.*, **1986**, <u>39</u>, 511-27.

 ²¹Cusik, J., Dance, I., *Polyhedron*, **1991**, 10, 2629-2640.
²² In all ⁷⁷Se NMR spectra diphenyl diselenide was used as a çapillary reference.

Reich, H. J., http://www.chem.wisc.edu/areas/reich/handouts/ nmr/se-data.htm, accessed in 10/11/2015. ²⁴Brown, C.A. and Krishnamurthy, S., *J. Org. Chem.*, **1978**, <u>43</u>,

2731-2732.

Selenium species are very sensitive with changes in electronegativity around the nucleus. Selenium negative species should have a low frequency while positive species should have a high frequency shift.

The variations in the ⁷⁷Se NMR chemical shift can be attributed to its medium dependence properties, especially with temperature changes.

- An in-depth analysis of inorganic selenide anions ⁷⁷Se NMR is reported.
- Selenium anions species not detected by ⁷⁷Se NMR could be trapped by alkylation.
- Dialkyl selenides, dialkyl diselenides or alkylselenols were selectively obtained.
- ⁷⁷Se NMR spectra for organic and inorganic selenide anions is reported.