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Transfer Hydrogenation Reaction Using Novel lonic liquid Based Rh(l) and Ir(ll)-

Phosphinite Complexes as catalyst
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For the first time, (1-chloro-3-(3-methylimidazolidin-1-yl)propan-2-yl diphenylphosphinite
chloride) (chloro n*-1,5-cyclooctadiene rhodium(l))] and (1-chloro-3-(3-methylimidazolidin-1-
yl)propan-2-yl  diphenylphosphinite chloride) (dichloro  n°-pentamethylcyclopentadienyl
iridium(I11))] complexes have been synthesized with high yields. The novel catalysts were applied to
transfer hydrogenation of various using 2-propanol as a hydrogen source. Notably, rhodium(l)
complex is much more active in the transfer hydrogenation, giving the corresponding & cohols up to

99% conversionsin 5 min (TOF < 1176 h').
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ABSTRACT

Hydrogen transfer reduction methods are attradtiogeasing interest from synthetic chemists in vigvtheir
operational simplicity. Thus, interaction of [RhCl)(cod)h, and Ir§®>CsMes)(u-CI)Cl], with phosphinite
ligand [(PRPO)-GH1:N,CIICI, 1 gave new monodendate (1-chloro-3-(3-methylimitidizo1-yl)propan-2-yl
diphenylphosphinite  chloride)  (chloron*1,5-cyclooctadiene  rhodium(l))], 2 and (1-chloro-3-(3-
methylimidazolidin-1-yl)propan-2-yl diphenylphospite chloride)  (dichlora’-pentamethylcyclopentadienyl
iridium(111))], 3 complexes, which were characterized by a comhinatf multinuclear NMR spectroscopy, IR
spectroscopy, and elemental analydis{>'P} NMR, *H-*C HETCOR or*H-'H COSY correlation experiments
were used to confirm the spectral assignmehitee novel catalysts were applied to transfer hyenagion of
acetophenone derivatives using 2-propanol as aolgdr source. The results showed that the corresppnd
alcohols could be obtained with high activity (up 99 %) under mild conditions. Notably, (1-chlorg3
methylimidazolidin-1-yl)propan-2-yl diphenylphospite chloride) (chloray*-1,5-cyclooctadiene rhodium(1))],
2 complex is much more active than the other analsgamplex3 in the transfer hydrogenatioRurthermore,
compound acts as excellent catalysts, giving the corresipgnalcohols in 97-99% conversions in 5 min (TOF

<1176 R.
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1. Introduction

Ketones are the most common unsaturated suisstused in organic synthesis. Extensive
efforts have been devoted to their reduction inexosdary alcohols especially via
hydrogenation J]. Catalytic transfer hydrogenation (TH) with thiel @f a stable hydrogen
donor is a useful alternative process for catalifdrogenation by molecular hydrogen for
the reduction of ketone2 3. In transfer hydrogenation, organic moleculeshsas primary
and secondary alcoholdg][or formic acid and its salts5[6] have been employed as the
hydrogen source. The use of the hydrogen donorsbase advantages over the use of
molecular hydrogen since it avoids risks and camsérassociated with hydrogen gas as well
as the necessity for pressure vessels and othgmeejot.

Transition metal complexes are powerful catalyer organic transformations and when
the suitable ligands are associated with the noetatler, they can offer chemio, regio or stereo
selectivity under mild condition§]. However, the appropriate choice of metal preatgand
the reaction conditions are crucial for catalytiogerties §]. A number of transition metal
complexes are known to be catalyzing hydrogen teanfom an alcohol to a ketone
[9,10,11. Over the last three decades, most effort on dyeination has been focused on the
use of rutheniumi2,13,14, rhodium and iridium catalyst4%$,16,17] Rhodium and iridium
complexes have been proven to lead to very effipencesses along with potential industrial
applications 18,19,20(.

In the past few years room temperature ioniaidig, consisting of 1,3-dialkylimidazolium
cations and their counter ions, have attracted mvinterest 21,22,23,2 These ionic
liquids are potential replacements for organic eots both on laboratory and industrial scales
due to their green characteristics such as thestalility, lack of vapor pressure, non-
flammability, wide liquid range, wide range of sbility and miscibility 25]. They can be
readily recycled; have profoundfect on the activity and selectivity in reactionsl am some

cases, facilitate the isolation of products. Themef ionic liquids are considered viable
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substitute for volatile organic solvent26]. An unusual feature of ionic liquids is the
tunability of their chemical and physical propestigy selection of appropriate anion—cation
combinations 27]. Metal-containing ionic liquids are regarded asmising new materials
that combine the properties of ionic liquids withd@ional intrinsic magnetic, spectroscopic,
or catalytic properties, depending on the incorfeatanetal ion28].

The chemistry oP-based ligands has also been intensively explaragdent years2p).
These compounds are extremely attractive as patehgjands since various structural
modifications are accessible via simple P-N, P-@ &O bond formation30]. Many
modified P-based ligands have important applications in oogaetallic chemistry and
catalysis, giving selective catalysts for hydrofglation, hydrosilylation and transfer
hydrogenation 31,32,33,3% While much effort has been devoted to the sysitheof
aminophosphines and their metal complexes, sirsiladies on the analogous phosphinites
are less extensive3$,3q, even though some of their complexes have prdwdae efficient
catalysts 37,38. In addition, well-known phosphine ligands havsoafound widespread
applications in transition metal catalyzed transfations B9,4Q. Phosphinites provide
different chemical, electronic and structural pmips compared to phosphines. The metal-
phosphorus bond is often stronger for phosphiritespared to the related phosphine due to
the presence of electron-withdrawing P-OR groupadidition, the empty*-orbital of the
phosphinite P(OR)Ris stabilized, making the phosphinite a bettereptar B1]. Although
some phosphinite ligands and their derivatives hmen employed successfully as ligands in
the transfer hydrogenation of ketond® 43,44 references therein), a screening of catalytic
activities of ionic liquid based phosphinites istheaction is not common in the literature. To
the best of our knowledge, there is no report an utility of these complexes including
phosphinite ligands based on ionic liquid in Rh(l&nd Ir(lll) catalyzed transfer
hydrogenation reaction. Extending our study to tlgveseful and very magnificent catalysts,

in this paper, we report)(the synthesis and full characterization of twodiam and iridium
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complexes, andi) for the first timetheir subsequent application in transfer hydrogenatf
the ketones.

2. Experimental

2.1. Materials and methods

Unless otherwise stated, all reactions were camigdunder an atmosphere of argon using
conventional Schlenk glassware, solvents were drethg established procedures and
distilled under argon immediately prior to use. Atiaal grade and deuterated solvents were
purchased from Merck. PRBI, epichlorohydrin, 1-methylimidazole, [RrCl)(cod)L and
Ir(n°>-CsMes)(u-Cl)Cl], are purchased from Fluka and were used as recdivextidition, 1-
chloro-3-(3-methylimidazolidin-1-yl)propan-2-ol adiide and [(PBPO)-GH1iN2CI|Cl [45]
were prepared according to the literature procedd®,47.The infrared spectra was
measured by a Perkin Elmer FT-IR Spectrum one anBegkin Elmer Lambda 25,
respectively. The FTIR spectra were recorded usingniversal ATR sampling accessory
(4000-550 crf). *H (400.1 MHz),**C NMR (100.6 MHz) and'P-{*H} NMR spectra (162.0
MHz) were recorded spectra on a Bruker AV400 speatter, witho referenced to external
TMS and 85% HPO, respectively. Elemental analysis was carried ouadfisons EA 1108
CHNS-O instrument. Melting points were recordedaballenkamp Model apparatus with
open capillaries.

2.2. Transfer Hydrogenation of Ketones

Typical procedure for the catalytic hydrogen transfeaction: a solution of cataysts (1-
chloro-3-(3-methylimidazolidin-1-yl)propan-2-yl dignylphosphinite chloride)  (chlorg-
1,5-cyclooctadiene rhodium(l))]2 or (1-chloro-3-(3-methylimidazolidin-1-yl)propanry2
diphenylphosphinite chloride) (dichlorg-pentamethylcyclopentadienyl iridium(Il))B
(0.005 mmol), NaOH (0.025 mmol) and the correspogdietone (0.5 mmol) in degassed 2-
propanol (5 mL) were refluxed until the reactioner&v completed. Then, a sample of the

reaction mixture was taken off, diluted with acetand analyzed immediately by GC. The
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conversions are related to the residual unreact¢ohk. GC analyses were performed on a
Shimadzu 2010 Plus Gas Chromatograph equippedcaghiary column (5% biphenyl, 95%
dimethylsiloxane) (30m x 0.32mm x 0448). The GC parameters for transfer hydrogenation
of ketones were as follows; initial temperature,®80 initial time, hold min 1 min; solvent
delay, 4.48 min; temperature ramp 15 °C/min; fteatperature, 270 °C, hold min 5 min; final
time, 20.67 min; injector port temperature, 200 8€&tector temperature, 200 °C, injection
volume, 2.0pL.

2.3. Synthesis of Compounds

2.3.1. Synthesis and Characterization of (1-chlor8-(3-methylimidazolidin-1-yl)propan-
2-yl diphenylphosphinite chloride) (chloron*1,5-cyclooctadiene rhodium(1))], (2)
[Rh(u-Cl)(cod)l (0.062 g, 0.127 mmol) and [(F#0O)-GH1:N.CI|CI, 1 (0.100 g, 0.253
mmol) were dissolved in dry GBI, (25 ml) under argon atmosphere and stirred forat h
room temperature. The volume was concentrated .td-€a mL under reduced pressure and
addition of petroleum ether (20 ml) gave the cqroesling rhodium(l) complex as a yellow
microcrystalline solid. The product was collectedfittration and dried in vacuoYield:140
mg, 86.3 %; m.p.:146-142); 'H NMR (400.1 MHz, CDCl;, ppm): & 10.37 (s, 1H, -
(CHs)NCHN-), 6.93-7.85 (m, 12H, P(Els),+-NCHCHN-), 6.05 (br, 1H, -EBIOP), 5.73 (br,
2H, CH of cod), 4.90 (br, 1H, NB,, (a)), 4.70 (m, 1H, NB», (b)), 4.37 (br, 1H, -G.Cl,
(@), 4.12-4.15 (m, 1H, 4&,Cl, (b)), 3.95 (s, 3H, NB3), 3.30 (br, 1H, @& of cod), 2.98 (br,
1H, CH of cod), 2.44 (br, 4H, B, of cod ), 2.12 (br, 2H, B, of cod ), 1.90 (br, 2H, B, of
cod); *C NMR (100.6 MHz, CDCk ppm): 5 28.07, 28.80, 32.46, 33.68Ki, of cod), 36.73
(NCHs), 46.10 (CH,CI), 51.21 (NCH,), 77.40 (d2J = 22.1 Hz, (CHOP), 71.70 (dXJ = 13.1
Hz, CH of cod ), 111. 01 (d\J = 7.0 Hz,CH of cod), 122.46, 122.77 (@HCHN-), 127.96

(d, *Ja1p_13c= 11.1 Hz,mP(CgHs)-), 131.50 p-P(CeHs)2), 133.33 (d2Js1p_13c= 15.1 Hz,0-
P(CeHs)2)), (not observedP(CeHs)2), 138.86 (-(CH)NCHN-); assignment was based on the

'H-3C HETCOR, DEPT and *H-'H COSY spectra; *'P-{*H} NMR (162.0 MHz, CDCl3



137 ppm): & 124.22 (d,lJ(103Rh_31p):175.8 Hz, ®Ph); IR: v 3055 (aromatic C-H), 2942, 2879,
138 2830 (aliphatic C—H), 1433 (P-Ph), 1047 (O-P)cr@,H33N,OCIsPRh (641.81 g/mol):
139 calcd. C 50.53, H 5.18, N 4.37; found C 50.18, 814N 4.08 %.

140 2.3.2. Synthesis and Characterization of (1-chlor8-(3-methylimidazolidin-1-yl)propan-
141 2-yl diphenylphosphinite chloride) (dichloro n°-pentamethylcyclopentadienyl
142 iridium(lN)], 3

143 [Ir(°-CsMes)(u-CI)Cl], (0.101 g, 0.127 mmol) and [(F*0)-GH11N,CIICI, 1 (0.100 g, 0.253
144 mmol) were dissolved in dry GBI, (25 ml) under argon atmosphere and stirred forat h
145 room temperature. The volume was concentrated .td-€a mL under reduced pressure and
146 addition of petroleum ether (20 ml) gave the cqroesling iridium (Ill) complex as an orange
147 microcrystalline solid. The product was collecte¢ Hhltration and dried in vacuo.
148  Yield:171mg, 85.2 %; m.p.:133-133); *H NMR (400.1 MHz, CDCl; ppm): & 9.96 (s, 1H,
149  -(CH3)NCHN-), 7.53-7.87 (m, 12H, P¢ls),+-NCHCHN-), 5.34 (br, 1H, -€10OP), 4.67 (br,
150 1H, NCHj, (a)), 4.54 (m, 1H, N8, (b)), 4.09 (s, 3H, NB3), 3.29 (br, 2H, -&.Cl), 1.34 (s,
151 15H, (Hs of Cpx(CsMes); *C NMR (100.6 MHz, CDCk, ppm): & 8.19 (GMes), 36.78
152  (NCHs), 43.46 (CH.CI), 50.47 (NCH,), 74.52 (CHOP), 94.27 (dJ = 12.0 Hz,CsMes),,
153 123.28, 123.40 (-SHCHN-), 128.54 (d,%Js1p_13c= 9.5 Hz, mP(CsHs),), 131.99 p-
154  P(CeHs)2), 134.73 (d2Jz1p_13c= 12.1 Hz,0-P(CeHs),)), (not observed-P(CeHs),), 138.22 (-
155 (CHs)NCHN-); assignment was based on the 'H-"*C HETCOR, DEPT and 'H-'H COSY
156  spectra; *'P-{*H} NMR (162.0 MHz, CDCl; ppm): & 96.36 (s, ®Phy); IR: v 3055 (aromatic
157  C-H), 2945, 2912 (aliphatic C—H), 1437 (P-Ph), 1082P) cm; Ca0H3sN20CI4PIr (793.62
158 g/mol): calcd. C 43.89, H 4.57, N 3.53; found C783.H 4.45, N 3.44 %.

159 3. Results and Discussion

160 3.1. Synthesis of the new complexes

161 First of all, the synthesis of 1-(3-chloro-2-@ngxypropyl)-3-methyl-imidazolium chloride,

162 [C;H1:N,OCI]CI, was accomplished in one step from the reactionmwiethylimidazole and
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epichlorohydrin in ethanol at room temperature,oadinng to a reported procedure [48].
Furthermore, as shown in Scheme[[Bh,PO)-C;H11N.CIICI, 1 was prepared from the
commercially available starting material BEhand [C;H12N,OCI|CI, in the presence of
triethylamine by hydrolysis 49,50. In Scheme 1, phosphinite ligang(Ph,PO)-
C7H11N:CI]CI, 1 was synthesized from the starting material £Phin CH,CI, solution by
the hydrolysis method as in a previously descripeacedure $1]. The LICl salt was
separated by filtration and the ligand was obtaimg@xtracting the solvent in vacuo in good
yields. The progress of this reaction was convehjefollowed by *P-{*H} NMR
spectroscopy. The signals of the starting mat@ibCl atd 81.0 ppm disappeared and new
singlet appeared downfield due to the corresponpimmsphinite ligand. Th&P-{*H} NMR
spectrum ofl show no unexpected features. As expected,*¥g*H} NMR spectra of
phosphinite,[(Ph,PO)-C;H11N.CI]CIl, 1 shows single resonances due to phosphinité at
118.46, (see Figure 1)52,53,54,55,56]in line with the values previously observed for
similar compoundsH7,58,59,6Q The appropriate assignment of th& chemical shifts was
derived from 2D HH-COSY spectra and that of @ chemical ones from DEPT and 2D
HMQC spectra. Furthermore, characterisiigp.13c)coupling constants of the carbons of the
phenyl ring are observed in th%& NMR spectra (includingr, o-, m-, p- carbons of phenyl
rings, for details see experimental section), whacé consistent with the literature values
[61]. The structures for these ionic based monodengdatesphinite ligands are consistent
with the data obtained from IR spectra and elenientalysesfor details see experimental

section).

Insert Scheme 1 Here

Firstly, we investigated simple coordination chemyi®f [Rh(u-Cl)(cod)L with [(PhPO)-

C/H11N2CI]CI, 1 ligand Reactions of [Rh(-Cl)(cod)L with [(PRPO)-GH1i1N-CI|CI, 1 in
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CH.Cl; in a ratio of 1/2:1 at room temperature for 1 lweganicro-crystalline precipitate of
complex (1-chloro-3-(3-methylimidazolidin-1-yl)propan-2-ydiphenylphosphinite chloride)
(chloron*1,5-cyclooctadiene rhodium(l))R. Complexation reactions were straightforward,
with coordination to rhodium being carried out@m temperature. This ligand was expected
to cleave the [R-Cl)(cod)L dimer to give the corresponding complex via monohap
coordination of the phosphinite. Bridge cleavage tbé dimer [Rh{-Cl)(cod)lL with
phosphinite gave the mononuclear complexes in Yigla. This complex is highly soluble in
CH.Cl, and slightly soluble in hexane and they can bestatijzed from CHCI,/hexane
solution. The coordination of the ligand througk  donor was confirmed by tA#-{*H}
NMR spectroscopy. The comple®,were isolated as indicated by doublets in e {*H}
NMR spectra at§) 124.22 (d Jrns 175.8 Hz), $2,63 (Figure 1), indicating that ionic based
phosphinite ligand acting as monodendate ligdhdand*C NMR spectra of compoun2|
display all the signals of coordinated ligands. Tie NMR spectrum?2 displays the
anticipated multiplets a 7.85-6.93 ppm for the protons of phenyls, broaglsits atd 5.73,
3.30, 2.98, 2.44, 2.12 and 1.90 ppm for cod pmtdn the*C-{*H} NMR spectrum of
compound2, J*P-*C) coupling constants of the carbons of the pheings were observed,
which are consistent with the literature valug4 [for details see experimental section). The
structural compositions of the compl@xwere further confirmed by IR spectroscopy and

microanalysis, and found to be in good agreemettt thie theoretical values.
Insert Figure 1 Here

Reactions of the ionic based monodendate phosphiith metal [Ir(>-CsMes)(u-CI)Cl]2
precursor is also depicted in Scheme 1. (1-chleg@-Bhethylimidazolidin-1-yl)propan-2-yl

diphenylphosphinite chloride) (dichlorg-pentamethylcyclopentadienyl iridium(ll))B
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was obtained by the reaction of ligand withi{feCsMes)(u-CI)Cl]2 in a molar ratio of 2/1 at
room temperature for 1 h. In tf&P-{*H} NMR spectrum, resonance &196.36 ppm may be
attributed to complex @ (Figure 1). The®H NMR spectra are consistent with the anticipated
structure. Analysis byH NMR reveals this compound to be diamagnetic, tgithiy signals
corresponding to the aromatic rings it 7.87-7.53 ppm. Another signal consisting of a
singlet centered at 1.34 ppm are due to the preseihthe methyl protons in the Cp* group,
this information is complemented by the presencesigihal at 9.96 ppm (s, 1H, -
(CH3)NCHN-). Furthermore, in th&C NMR spectrum of the complékdisplays singlet ai
8.19 ppm attributable to methyl carbons of Cp* dodblet ai 94.27 due to carbons of Cp*
ring. The structural composition of the compxwas further confirmed by IR spectroscopy
and microanalysis, and found to be in good agreémvih the theoretical values (for details
see experimental section). Although, single crgstélboth complexewere obtained by slow
diffusion of diethyl ether into a solution of thermapound in dichloromethane over several
days, unfortunately we were not able to proteattifiem rapid decomposition in air.
3.2. Catalytic transfer hydrogenation of ketones

Because of the good catalytic performance drad Higher structural permutability of
phosphinite based transition metal complexes irredection of ketone$p,64, recently, we
have reported that the novel half-sandwich comekased on ligands with P-O backbone
[67,68. The observed activity of these complexes haemrged us to investigate other
analogous ligands and other transition metal coxegleof these ligands. In this context,
complexes (1-chloro-3-(3-methylimidazolidin-1-ylypan-2-yl diphenylphosphinite chloride)
(chloro n*1,5-cyclooctadiene rhodium(l))]2 and (1-chloro-3-(3-methylimidazolidin-1-
yl)propan-2-yl diphenylphosphinite chloride) dhioro n°>-pentamethylcyclopentadienyl
iridium(lll))], 3 were selected as catalysts, 2-propanol/NaOH agetiecing system and
acetophenone as a model substr&ehéme 2, and the results are listed in Table 1. In a

preliminary study, when the reaction temperature imareased to 82 °C, smooth reduction of
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acetophenone into 1-phenylethanol occurred wittversion up to 99 % after 1/3 h farand
1 h for 3 of reaction Table 1 (Entries 1 and 2). From thsults, it is noteworthy that the
complexes2 and3 display the differences in reactivity, with a cdegNaOH ratio of 1/5.
Complex2 is more active, quantitatively converting acetopiree with a high TOF of 297 h
! From these preliminary results, it can be conetlthat (1-chloro-3-(3-methylimidazolidin-
1-yl)propan-2-yl diphenylphosphinite chloride) chloron*-1,5-cyclooctadiene rhodium(l))],
2 is more effective than  (1-chloro-3-(3-methylimidédin-1-yl)propan-2-yl
diphenylphosphinite chloride) (dichlorg-pentamethylcyclopentadienyl iridium(I1)B

complex.

Insert Scheme 2 Here

At room temperature no appreciable formatiorigfhenylethanol was detected (Table 1,
entries 3 and 4). As can be inferred from the Tdb{Entries 5 and 6) the catalysts as well as
the presence of NaOH are necessary to observecigipeeconversions. The base facilitates
the formation of alkoxide by abstracting protontbé alcohol and subsequently alkoxide
undergoes-elimination to give metal hydride, which is aniaetspecies in this reaction.
This is the mechanism proposed by several workershe studies of transition metal
catalyzed transfer hydrogenation reaction by netdtide intermediate$p,70. In addition,
the replacement of the reaction atmosphere fromenh gas to an ambient atmosphere had no
negative effect on the activity of the catalyst ifleal, Entries 7 and 8). Therefore, the
hydrogenation reactions were performed in air. &ligh, performing the reaction with the
addition of water slowed the reaction, it had nituence on conversion of the product (Table
1, entries 9 and 10). As shown in Table 1 (Enttiksl4), increasing the substrate-to-catalyst

ratio do not lower the conversions of the productriost cases except the time lengthened.

10
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Remarkably, the transfer hydrogenation of acetophencould be achieved up to 99 %

conversion even when the substrate-to-catalyst ratiched to 1000:1.

Insert Table 1 Here

The catalytic activity of complexes (1-chlorg&methylimidazolidin-1-yl)propan-2-yl
diphenylphosphinite chloride)  (chlond-1,5-cyclooctadiene rhodium(l))R and (1-chloro-
3-(3-methylimidazolidin-1-yl)propan-2-yl diphenylpsphinite chloride) (dichloray>-
pentamethylcyclopentadienyl iridium(lll))]3 were also extensively investigated with
acetophehone derivatives. The catalytic reduatfoacetophenone derivatives was all tested
with the conditions optimized for acetophenone #ralresults are summarized in Table 2.
The fourth column in Tabl2 illustrates conversions of the reduction perforrmed 0.1 M of
2-propanol solution containing@ or 3 and NaOH (Ketone:Cat..NaOH = 100:1:5). As
expected, electronic properties (the nature andiposof the substituents on the phenyl ring
of the ketone caused the changes in the reducate An ortho- or para- substituted
acetophenone with an electron-donor substituesat, 2-methoxy or 4-methoxy is reduced
more slowly than acetophenone (Table 2, entry 51%,and 12) 71]. In addition, the
introduction of electron withdrawing substituenssich as N@ F, Cl and Br to thepara-
position of the aryl ring of the ketone decreadexidlectron density of the C=0 bond so that

the activity was improved giving rise to easier togenation (Entries 1-4 and 7-102[73.

Insert Table 2 Here

We also carried out further experiments to stuayedffect of bulkiness of the alky groups
on the catalytic activity and the results were giwe Table 3 (entries 1-12). A variety of

simple aryl alkyl ketones were transformed to theresponding secondary alcohols. It was
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found that the activity is highly dependent on skeric bulk of the alkyl group. The reactivity
gradually decreased by increasing the bulkineskeofilkyl groups74]. That's to say, when

the size of alkyl group is increased, the actiws remarkable decreasé®[7q.

Insert Table 3 Here

Encouraged by the high catalytic activitiesamimtd in these preliminary studies, we next

extended our investigations to include hydrogematib various simple ketone§dble 4).
Investigation of catalytic activity of these (1-ohb-3-(3-methylimidazolidin-1-yl)propan-2-yl
diphenylphosphinite chloride)  (chlord-1,5-cyclooctadiene rhodium(1))R and (1-chloro-
3-(3-methylimidazolidin-1-yl)propan-2-yl diphenylpsphinite chloride) (dichloray>-
pentamethylcyclopentadienyl iridium(lll))]3 has shown that they are efficient catalysts
affording almost quantitative transformation of k&ones in short times a@ds more active
than3 (Table 3). However, their efficiency was lower leading émd¢jer conversion times. For
instance, hydrogenations of cyclohexanone coulddbéeved in 30 min and 2 h by (1-chloro-
3-(3-methylimidazolidin-1-yl)propan-2-yl diphenylpsphinite chloride) (chlore’-1,5-
cyclooctadiene rhodium(l))],2 and (1-chloro-3-(3-methylimidazolidin-1-yl)propanyl
diphenylphosphinite chloride)  (dichlorg-pentamethylcyclopentadienyl iridium(l1))B,
respectively. In addition, conversion of methyliatyl ketone occurred in 1 h and 3 h by
and 3, respectively, while that of diethyl ketone ocewrin 2 h and 4 h by and 3,

respectively.

Insert Table 4 Here
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4. Conclusions

In summary, for the first time (1-chloro-3-(3-melinyidazolidin-1-yl)propan-2-yl
diphenylphosphinite chloride)  (chlord-1,5-cyclooctadiene rhodium(l))] and (1-chloro-3-
(3-methylimidazolidin-1-yl)propan-2-yl diphenylphatsinite chloride) (dichloron®-
pentamethylcyclopentadienyl iridium(lll))] complexehave been synthesized with high
yields. The complexes were characterized usingimultlear NMR, IR and microanalysis.
The use of the new complexes for the reductiorhefketonic C=0 bond of ketones under
hydrogen transfer conditions was also investigai®@ found that these complexes are
efficient homogeneous catalytic systems that canrdaily implemented and lead to
secondary alcohols from good to excellent convessioEspecially, (1-chloro-3-(3-
methylimidazolidin-1-yl)propan-2-yl diphenylphospiie chloride) (chloron*1,5-
cyclooctadiene rhodium(l))] was a more efficientatgst in the transfer hydrogenation
reaction. The modular construction of these catalghd their flexibility toward transfer
hydrogenation make these systems to pursue. Fudtuglies of other transition metal
complexes of this ligand are in progress and vélréported in due course.
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Captions

Scheme 1 Synthesis of the [(BRO)-GH11N,CI|Cl, 1, (1-chloro-3-(3-methylimidazolidin-1-yl)propan-2-yl
diphenylphosphinite chloride) (chlor@*-1,5-cyclooctadiene rhodium(l))],2 and (1-chloro-3-(3-
methylimidazolidin-1-yl)propan-2-yl diphenylphospite chloride)  (dichlora’-pentamethylcyclopentadienyl
iridium(11))], 3 (i) 1 equiv. PHPCI, 1 equivn-BuLi, CH,Cl,; (ii) 1/2 equiv. [Rhg-Cl)(cod)L, CH,Cly; (iii) 1/2
equiv. [Ir¢;>-CsMes)(u-Cl)Cl],, CH,Cl,.

Figure 1 The3P{*H} NMR spectra of ligand and its complex¢&h,PO)-GH:N,CI]CI, 1, (1-chloro-3-(3-

methylimidazolidin-1-yl)propan-2-yl diphenylphospiie chloride) (chloro n*-1,5-cyclooctadiene
rhodium(l))], 2 and (1-chloro-3-(3-methylimidazolidin-1-yl)propa@nyl diphenylphosphinite chloride)
(dichloron®-pentamethylcyclopentadienyl iridium(lll))R.

Scheme 2Hydrogen transfer from 2-propanol to acetophenone
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Table 1 Transfer hydrogenation of acetophenone with 2-pmopacatalyzed by (1-chloro-3-(3-
methylimidazolidin-1-yl)propan-2-yl diphenylphospite chloride) (chloro n*1,5-cyclooctadiene
rhodium(1))], 2 or (1-chloro-3-(3-methylimidazolidin-1-yl)propary2 diphenylphosphinite chloride) (dichloro
n°-pentamethylcyclopentadienyl iridium(I1))3B.

S/C/NaOH i Conversion(%)!" TOF(h)K

100:1:5 99 297
100:1:5 98 9¢

100:1:5 trace
100:1:5 trace

100:1 <5
100:1 <5

100:1:5 99
100:1:5 98

100:1:5 98
100:1:5

500:1:5
500:1:5

1000:1:5
1000:1:5

Reaction conditions:

B[l Refluxing in 2-propanol; acetophenone/Cat/NaOH, 0:1%; ™ At room temperature;
acetophenone/Cat./NaOH, 100:1'8; Refluxing in 2-propanol; acetophenone/Cat., 10@hlthe absence of
base; ¥ Refluxing the reaction in air!® Added 0.1 mL of HO; [ Refluxing in 2-propanol;
acetophenone/Cat./NaOH, 500:1:8! Refluxing in 2-propanol; acetophenone/Cat/NaOH,0at0:5;
Determined by GC (three independent catalytic érpents); M Referred at the reaction time indicated in
column; TOF= (mol product/mol)Cat.)x*h



Table 2 Transfer hydrogenation results for substituted guetnones with the catalyst systems prepared from
[(Ph,PO)-GH1:N,CI|Cl, 1 and [Rh(1-Cl)(cod)L or [Ir(n°>-CsMes)(u-CICl], .

O OH
| AN OH Cat. | AN o]
R—| + )\ > R + )k
G G
Entry R Time Conversion(%)" TOF(h™Y)d
Cat: Rh(l) complex, 2
1 4-F 5min 98 1176
2 4-Cl 10 min 99 594
3 4-Br 15min 9% 384
4 4-NO, 5min 97 1164
5 2-MeO 1h 95 95
6 4-MeO 2h 92 46
Cat: Ir(111) complex, 3
7 4-F 10 min 98 588
8 4-Cl 25min 97 333
9 4-Br 45 min 96 128
10 4-NO, 10min 98 588
11 2-MeO 2h 93 47
12 4-MeO 7/12h 90 26

[ Catalyst (0.005 mmol), substrate (0.5 mmol), 2-Brmp (5 mL), NaOH (0.025 mmol %), 82 °C, respediive
the concentration of acetophenone derivativeslisM).™ Purity of compounds is checked by NMR and GC
(three independent catalytic experiments), yieléstmsed on methyl aryl keton& TOF = (mol product/mol
Cat.) x h".



Table 3 Transfer hydrogenation results for substituted laihenyl ketones with the catalyst systems prepared
from [(PhPO)-GH11N,CI|Cl, 1 and[Rh(u-Cl)(cod)L and [Ir(>-CsMes)(u-Cl)Cl], .2

Entry Cat. Time Substrate Product Conv. (%) TOF(hY)d
1 2 30 min o OH 99 198
2 3 2h O)‘\/ O)\/ 98 49
3 2 1h 0 OH 98 98
4 3 3h ©)\/\ O)\/\ 08 33
5 2 2h % OH 97 49
6 3 5h O)\( O)\( 99 20
7 2 4h % OH 98 25
8 3 9h O)]\’< O)\’< 99 11

[l Catalyst (0.005 mmol), substrate (0.5 mmol), 2-prap (5 mL), NaOH (0.025 mmol %), 82 °C, respesijy
the concentration of alkyl phenyl ketones is 0.1 M;

I Purity of compounds is checked by NMR and GC @hrelependent catalytic experiments), yields asetha
on methyl aryl ketone;

[ TOF = (mol product/mol Cat.) x’h



Table 4 Transfer hydrogenation of various simple ketoneshw2-propanol catalyzed by (1-chloro-3-(3-
methylimidazolidin-1-yl)propan-2-yl diphenylphospite chloride) (chlorg*1,5-cyclooctadiene rhodium(1))],
2 and (1-chloro-3-(3-methylimidazolidin-1-yl)prop&nayl diphenylphosphinite chloride) (dichlorg’-
pentamethylcyclopentadienyl iridium(I11))g.?

Entry Cat. Substrate Product Time Conv. (%)™ TOF(h™Hd
1 2 ) OH 30 min 98 196
2 3 é @ 2h 99 50
3 2 30 min 99 198

IN
w

0] OH
O O w o w

5 2 )\/lol\ )\ﬂ 1h 98 98

6 3 3h 99 33
7 2 \)?\/ \)O\H/ 2h 99 50
8 3 4h 98 25

Reaction conditions:

[ Refluxing in 2-propanol; acetophenone/Cat./NaOH): 1(;

I Determined by GC (three independent catalytic @rpents), purity of compounds is checked by NMR and
GC (three independent catalytic experiments), giele based on methyl aryl ketone

[ TOF = (mol product/mol Cat.) x'h
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RESEARCH HIGHLIGHTS

v

We have shown, for the first time synthesizing of a new kind of two Rh(l)-, Ir(II)-
phosphinite catalysts based on ionic liquid.

Both of them are efficient catalyst for the transfer hydrogenation of various ketones and

and lead to secondary alcohols from good to excellent conversions.

Especially,  1-chloro-3-(3-methylimidazolidin-1-yl)propan-2-yl  diphenylphosphinite
chloride)  (chloro n*1,5-cyclooctadiene rhodium(l))] acts as excellent catalysts, giving the

corresponding alcoholsin 97-99% conversionsin 5 min (TOF <1176 h™).



