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ABSTRACT

(þ)-Allomatrine (1) has been synthesized using an imino-aldol reaction and N-acyliminium cyclization as key steps. Strategically, use of the
tert-butylsulfinimine derivative of (E)-4-(trimethylsilyl)but-2-enal enabled the staged formation of three C�C bonds, a C�N bond, and the four
stereogenic centers within the target.

(þ)-Allomatrine (1) is a tetracyclic lupin alkaloid of the
matrine structural class (Figure 1) first reported in 1952 as
a product of chemical epimerization of (þ)-matrine (2)
at C6.1�3 While (þ)-matrine (2) was obtained from the
root bark of Sophora flavescens byNagai as early as 1889,4

(þ)-allomatrine has only recently been reported as a
chemical component from theSophora species.5Curiously,

Orechoff isolated an alkaloid, (�)-leontine (3),6 from
Leontice eversmanniBge. in the 1930s that was later shown
to be the enantiomer of (þ)-allomatrine (1).7 Matrine (2)
and its related alkaloids exhibit a variety of interesting
biological activities such as anticancer, promotion of hair
growth, and antiviral activity.5b,8 Notably, (þ)-allomatrine
(1) mediates antinociception in mice through selective
activity at the κ-opioid receptor while being structurally
distinct from known pharmacological agents.9

Three total syntheses of racemic matrine have been
accomplished with varying levels of diastereocontrol,10�12

andamixture enriched in (()-allomatrine ((()-leontine) was
obtained by Mandell and co-workers from Pd-catalyzed
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isomerization of synthetic (()-matrine.10 Okuda et al.
also reported a semisynthesis of (þ)-allomatrine from
octadehydromatrine,13 which required optical resolution of
an intermediate. We are not aware of any stereocontrolled
total syntheses of allomatrine, although Zard and co-
workersobtaineda tetracyclic intermediatewith the required
relative stereochemistry as a minor diastereoisomer during
their total synthesis of (()-matrine using a xanthate-
mediated radical cascade approach.12

As a prelude to the enantiocontrolled synthesis of tetra-
cyclic lupin alkaloids containing a quinolizidine core, we
recently described a short stereoselective synthesis of
epilupinine14 using an imino-aldol reaction of a tert-
butylsulfinimine as the key step.15,16 The high level of syn
diastereoselectivity attained by using the imino-aldol was
considered to provide an excellent platform for a stereo-
controlled synthesis of other quinolizidine-containing
lupin alkaloids.3 Here we describe a stereocontrolled
synthesis of (þ)-allomatrine (1) using an imino-aldol reac-
tion and N-acyliminium ion cyclization as key steps.

Analysis of the tetracyclic framework of allomatrine (1)
suggested that the C7�C11 bond could be formed through
addition of anN-acyliminium ion to a sufficiently reactive
pendant alkene, such as an allylsilane (Scheme 1).17,18

Closure of the final B ring of the tetracycle would then
proceed by using RCM.19 The key allylsilane functionality
could be introduced through an imino-aldol reaction of the
enolate obtained from phenyl 5-chloropentanoate and the
tert-butylsulfinimine of (E)-4-(trimethylsilyl)but-2-enal,14

where the ester group would later provide suitable
functionality to append the C/D ring precursor to the
N-acyliminium ion.

First, a convenient access to sulfinimine 7 was achieved
in 77% yield over two steps through formation of the tert-
butylsufinimine 6 of acrolein followed by cross-metathesis
with allyltrimethylsilane (Scheme 2).20 The alternative
order of steps gave inferior yields and the inconvenience
of a rather volatile and sensitive aldehyde intermediate. The
lithium enolate of phenyl 5-chlorovalerate (8) underwent

Scheme 2. Imino-aldol Reaction and Subsequent Synthesis of
N-Allylated Piperidine 10

Figure 1. Tetracyclic alkaloids of the matrine family.

Scheme 1. Synthetic Plan for (þ)-Allomatrine (1)
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addition to sulfinimine 7 with near-perfect diastereoselec-
tivity (onlyonediastereoisomerwasobservedby 1HNMR);
a single syn adduct 5 was isolated in 75% yield.21 The
stereochemical assignment was confirmed in subsequent
derivatives (see below) and is consistent with a cyclic chair-
like transition-state model previously described.14,15 This
highly functionalized imino-aldol 5 was subjected to a one-
pot deprotection, cyclization, and allylation sequence fur-
nishing the alkylatedpiperidine 9 in 81%yieldover the three
steps. A single equivalent of HCl in dioxane was employed
in the deprotection of the sulfinyl group, with preservation
of the allylsilane functionality. Subsequent LiAlH4 reduc-
tion of the phenyl ester yielded primary alcohol 10, in
preparation for attachment of the C/D-ring precursor.
In the first approach to closing the C-ring, the primary

alcohol 10was coupled with glutarimide underMitsunobu
conditions to secure the bicyclic derivative 11 in 75% yield
(Scheme 3). TheN-acyliminium precursor, aminal 12, was
accessed by reduction of glutarimide 11 with NaBH4/HCl
at �15 �C.22 Although this reduction proved to be capri-
cious, it allowed the cyclization to be explored. Pleasingly,
treatment of 12 with TfOH afforded the desired tricyclic
diene 13 in 74% yield as a predominant diastereoisomer.
The stereochemical course of the cyclization can be ac-
counted for by a kinetically controlled reaction proceeding
through a trans-decalin chairlike arrangement in the
transition state (Figure 2).18d Spectroscopic evidence to
support the stereochemical assignment of tricyclic diene 13
came from 1H NMR analysis and was later corroborated
with X-ray structural data for the tetracycle 16 formed
after successful RCM (see below).
Attempts to improve the efficiency of the reduction of

glutarimide 11 under a variety of conditions met with
limited success, typically yieldingN-acyliminiumprecursor
12 with low conversion or as a complex mixture.23 There-
fore, 5,5-dimethoxypentanamidederivative 15was targeted
as an alternative cyclization precursor (Scheme 3).24

The required primary amine 14 was obtained by conver-
sion of the alcohol 10 to the azide followed by azide reduc-
tion using LiAlH4. 5,5-Dimethoxypentanoic acid25 was
then coupled with primary amine 14 in 69% yield using
the cyclic triphosphate coupling reagent T3P (propylphos-
phonic anhydride). Treatment of acetal15with an excess of
BF3 3OEt2 initiated a sequence of reactions culminating in
N-acyliminium ion formation and ring-closure to produce
tricylic diene 13 in 84% yield, effectively doubling the
overall yield for the transformation of 10 to diene 13.

The total synthesis of (þ)-allomatrine (1) was completed
by inducing RCM of the diene 13 by exposure to the
Hoveyda�Grubbs II (HG II) catalyst in CH2Cl2, followed
by hydrogenation of 8,9-dehydroallomatrine (16) over
Pd/C. Gratifyingly, 8,9-dehydroallomatrine (16) afforded
crystals suitable for structural determination by X-ray

Scheme 3. N-Acyliminium Cyclization and Total Synthesis of
(þ)-Allomatrine (1)

Figure 2. Proposed chairlikeTSarrangement in theN-acyliminium
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diffraction (Figure 3),26 thus confirming the stereochemical
assignment of the product 13 from the N-acyliminium
cyclization. In addition, spectroscopic and physical data
for synthetic (þ)-allomatrine (1) were consistent with those
previously reported.1,27

In conclusion, a highly diastereoselective synthesis of
(þ)-allomatrine has been described (13% overall yield,
13 steps) involving an imino-aldol reaction and an intra-
molecular addition of an allylsilane to an N-acyliminium
as key steps. The introduction of the tert-butylsulfinimine
derivative of (E)-4-(trimethylsilyl)but-2-enal (7) is note-
worthy as this functional group-rich fragment is ultimately
responsible for the staged formation of 3 C�C bonds,
a C�N bond, and the four stereogenic centers within
the natural product and may be applied in the synthesis
of other polycyclic amines.
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Figure 3. X-ray structure of 8,9-dehydroallomatrine (16).
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