Preparation of Heterocyclic Amines via a Copper(I)-Mediated Oxidative Cross-Coupling of Organozinc Reagents with Lithium Amides

Cora Dunst, Marcel Kienle, Paul Knochel*

Ludwig-Maximilians-Universität München, Department Chemie, Butenandtstrasse 5-13, Haus F, 81377 München, Germany Fax +49(89)218077680; E-mail: paul.knochel@cup.uni-muenchen.de *Received 14 April 2010*

Dedicated to Prof. Dr. Rolf Huisgen on the occasion of his 90th birthday

Abstract: Functionalized heteroaromatic amines are readily prepared by the oxidative coupling of polyfunctional zinc amidocuprates using $PhI(OAc)_2$ as oxidant. Various sensitive heterocyclic organometallics undergo this oxidative cross-coupling reaction furnishing aminated heteroaromatics. A high functional group tolerance and relative insensibility to steric hindrance characterize this general amination reaction. A practical procedure for the preparation of protected primary and secondary as well as tertiary heteroaryl amines is described.

Key words: amination, amidocuprates, C-N bond formation, lithium amides, polyfunctional zinc reagents

Scheme 1 Procedures for the oxidative amination of arylzinc reagents

Introduction

Functionalized aromatics and heteroaromatics are important building blocks for the synthesis of pharmaceuticals, polymers, and materials.¹ Especially, amines containing five-membered heteroaryl groups such as furans, thiophenes, thiazoles, and pyrazoles are found in various target molecules.² Although the Pd-catalyzed amination

SYNTHESIS 2010, No. 13, pp 2313–2318 Advanced online publication: 20.05.2010 DOI: 10.1055/s-0029-1220008; Art ID: C02510SS © Georg Thieme Verlag Stuttgart · New York reaction³ is widely used, these protocols still have some limitations such as long reaction times and the requirement of using strong bases. Furthermore, some functional groups such as iodides and bromides are not compatible with these amination procedures. Inspired by the works of Yamamoto⁴ and Ricci,⁵ we recently reported a Cu(I)-mediated oxidative amination of magnesium reagents with lithium amides using chloranil as oxidant.⁶ However, this protocol is limited due to the low stability of some heteroarylmagnesium reagents. Furthermore, functionalized heteroaromatics bearing halides often underwent halogendance reactions⁷ and could not be employed in this procedure. Finally, the scale-up of this reaction was difficult (over 10 mmol) due to the formation of the corresponding homocoupling product. Therefore, we have recently reported an extension of this work using the more stable organozinc reagents in an oxidative amination reaction, which was mediated by $PhI(OAc)_2^8$ as oxidation reagent.⁹ Beside a large tolerance towards functional groups, the generated organozinc reagents showed a remarkable stability even at higher temperatures. The resulting organozinc compounds reacted in a Cu(I)-mediated oxidative cross-coupling with various lithium amides and furnished the desired amines in moderate to good yields. Herein, we wish to report typical practical procedures illustrating the preparation of functionalized organozinc reagents and subsequent reaction in an oxidative amination reaction.

Scope and Limitations

The required organozinc reagents can either by obtained by direct zincation (Procedure 1), by magnesium insertion in the presence of $ZnCl_2$ (Procedure 2) or by transmetalation of an organomagnesium reagent (Procedure 3; Scheme 1). Thus, the direct zincation of 2,4-dibromothiazole (1a) with $TMP_2Zn \cdot 2MgCl_2 \cdot 2LiCl^{10}$ (TMP = 2,2,6,6tetramethylpiperidyl)¹¹ (0.55 equiv, 25 °C, 45 min) gave the diarylzinc species 2a. This compound was treated with the THF-soluble complex CuCl·2LiCl (1.1 equiv, -50 °C, 30 min) and LiN(SiMe₃)₂ (**3a**, 2.0 equiv, -50 °C, 1 h) affording the corresponding zinc amidocuprate 4a. Subsequent oxidation of 4a using PhI(OAc)₂ (1.1 equiv, -78 °C, 1 h) afforded the heterocyclic amine 5a in 82% yield (Scheme 1, Procedure 1). The magnesium insertion¹² in the presence of LiCl and ZnCl₂ into the heteroaryl bromide 1b gave the corresponding zinc reagent 2b, which reacted with CuCl·2LiCl and secondary TBS-protected lithium amide to the amido cuprate 4b. Subsequent oxidation with PhI(OAc)₂ gave the protected secondary amine **5b** in 60% yield. Finally, the organozinc reagent **2c**, obtained via a Br/Mg exchange¹³ on 3,5-dibromopyridine (1c) and subsequent transmetalation, was reacted in the same manner furnishing the triarylamine 5c in 82% yield (Procedure 3). The mild conditions of this oxidative ami-

Table 1 Oxidative Amination of Zinc Reagents with Various Lithium Amides^a

Entry		Zinc reagent		Lithium amide		Product	Yield (%) ^b
1	2d	Zn S 2	3c	LiNPh ₂	5d	Ph N Ph	60°
2	2d	Zn S 2	3d	Li—N_O	5e		75 ^c
3	2e	$Br \xrightarrow{S} Zn 2$	3 a	LiN(SiMe ₃) ₂	5f		73°
4	2e	Br	3d	Li—N_O	5g	Br S N	80°
5	2e	Br	3e	LDA	5h	Br S N i-Pr	65°
6	2f	PhS S Zn	3 a	LiN(SiMe ₃) ₂	5i	PhS N N TMS	63°
7	2g	ZnBr N N H Me	3c	LiNPh ₂	5j	Ph N~Ph N N Me	66 ^d
8	2c	Br Zn 2	3c	LiNPh ₂	5k	Br, N, Ph	88 ^e
9	2c	Br Zn N 2	3f	$LiN(C_6H_{13})_2$	51	Br C ₆ H ₁₃ C ₆ H ₁₃	54°

^a Reactions were carried out on a 10 mmol scale.

^b Yield of analytically pure products.

^c Arylzinc reagent was obtained via direct metalation using TMP₂Zn·2MgCl₂·2LiCl.

^d The arylzinc reagent was prepared by Mg insertion in the presence of LiCl and ZnCl₂ into the corresponding aryl bromide.

^e The zinc reagent was prepared from the corresponding Mg reagent by transmetalation with ZnCl₂.

nation are compatible with a wide range of functionalized heterocycles (Scheme 1 and Table 1). Moreover, this amination reaction is also suitable for large-scale reactions, when the previously described organozinc reagents are used.

Thus, the zincation of benzothiophene (10 mmol) with TMP₂Zn·2MgCl₂·2LiCl (0.55 equiv, 25 °C, 24 h) afforded the corresponding diarylzinc species 2d, which was reacted with the lithium amides 3c and 3d under the conditions described above. The tertiary amines 5d and 5e were obtained in yields of 60 and 75%, respectively (Table 1, entries 1,2). 2-Bromothiazole was metalated using the same base. Thus, the reaction of 2-bromothiazole (10 mmol) with TMP₂Zn·2MgCl₂·2LiCl (0.55 equiv, 25 °C, 2 h) furnished the zinc reagent 2e. After transmetalation (CuCl·2LiCl, 1.1 equiv) and addition of an appropriate lithium amide such as 3a, 3d,e, the resulting amidocuprates of type 4 were treated with PhI(OAc)₂ to give the desired amines **5f-h** in 65–80% yields (entries 3– 5). The zinc species 2f was obtained by direct zincation of the corresponding thiazole derivative using TMP₂Zn·2MgCl₂·2LiCl (0.55 equiv, 25 °C, 2 h). Amination with $LiN(SiMe_3)_2$ furnished the amine **5i** in a yield of 63% (entry 6). (Phenylthio)thiazoles of this type are useful intermediates since the phenylthio group can serve as a leaving group in cross-coupling reactions.¹⁴

Treatment of 4-bromo-1,3,5-trimethyl-1*H*-pyrazole with Mg turnings in the presence of LiCl and $ZnCl_2$ at 25 °C resulted in the formation of the zinc species **2g** after a reaction time of 25 minutes. Copper(I)-mediated oxidative amination of **2g** with lithium diphenylamide (**3c**) furnished the triaryl amine **5j** in 66% yield (entry 7).

Finally, 3,5-dibromopyridine was treated with *i*-PrMgCl·LiCl (1.1 equiv, 0 °C to 25 °C, 1 h) to give the corresponding monomagnesium reagent. Subsequent transmetalation with the THF-soluble salt ZnCl₂ provided the zinc species **2c**. Oxidative amination with the lithium amides **3c** and **3f** furnished the corresponding tertiary amines **5k** and **5l** in 88 and 54% yield, respectively (entries 8,9).

It has to be highlighted that this oxidative amination reaction is not very substrate-dependent and does not show sensitivity to steric hindrance. Remarkably, all the compounds reported herein were prepared according to the standardized reaction conditions.

In summary, we have extended our previous work to more heteroaromatics and optimized the scale-up for such amination reactions. These reactions could be performed with standard laboratory glassware and did not require the use of expensive chemicals or catalysts. Further studies are under way in our laboratory for extending the scope of this oxidative amination.

Procedures

All reactions were carried out under argon atmosphere in dried glassware. All starting materials were purchased from commercial

suppliers and used without further purification unless otherwise stated. THF was continuously refluxed and freshly distilled from sodium benzophenone ketyl under nitrogen. Yields refer to isolated compounds estimated to be >95% pure as determined by ¹H NMR and capillary GC analysis.

Reagent *i*-PrMgCl·LiCl

Mg turnings (110 mmol) and anhyd LiCl (100 mmol) were placed in a dried argon-flushed flask, and THF (50 mL) was added. A solution of *i*-PrCl (100 mmol) in THF (50 mL) was slowly added at r.t. The reaction starts within few minutes. After the addition was complete, the reaction mixture was stirred for 12 h at r.t. The grey solution of *i*-PrMgCl·LiCl was cannulated from the excess of magnesium to a different flask under argon. A yield of ca. 95–98% of *i*-PrMgCl·LiCl was obtained. The reagent was titrated prior to use by the method of Paquette,¹⁵ or the method developed in our laboratory.¹⁶

Reagent TMPMgCl·LiCl

A dry and N₂-flushed 250 mL Schlenk flask, equipped with a magnetic stirring bar and a septum, was charged with freshly titrated *i*-PrMgCl·LiCl (1.2 M in THF) (100 mL, 120 mmol). 2,2,6,6-Tetramethylpiperidine (TMPH) (19.8 g, 126 mmol, 1.05 equiv) was added dropwise at r.t. The reaction mixture was stirred at r.t. until gas evolution was completed (ca. 24 h). The reagent was titrated with benzoic acid prior to use [4-(phenylazo)diphenylamine as indicator].¹⁷

Reagent TMP₂Zn·2MgCl₂·2LiCl

In an argon-flushed Schlenk flask, $ZnCl_2$ (53.0 mmol, 7.22 g) was dried in vacuo at 140 °C for 4 h. After cooling to 25 °C, freshly titrated TMPMgCl·LiCl (100 mmol, 1.00 M, 100 mL) was added dropwise. The resulting mixture was stirred for 15 h at 25 °C. The freshly prepared TMP₂Zn·2MgCl₂·2LiCl solution was titrated prior to use at 0 °C with benzoic acid using 4-(phenylazo)diphenylamine as indicator. A concentration of 1.60–1.70 M in THF (concentration of Zn) was obtained.

ZnCl₂ (1 M in THF)

ZnCl₂ (27.3 g, 200 mmol) (17.0 g, 400 mmol) was placed in a 500 mL Schlenk flask equipped with a magnetic stirring bar and a septum. The salt was heated at 150 °C in an oil bath for 4 h under high vacuum. Then, after cooling to 25 °C, absolute THF (200 mL) was added. Afterwards, the septum was replaced by a glass stopper and the suspension was left stirring overnight at 25 °C. After 12 h, the salt had completely dissolved, the stirring was stopped and the solution was left for some more time to become completely clear (little particles and insoluble impurities were allowed to settle down in that way). The solution was stored under argon upon use.

Reagent CuCl·2LiCl (1 M in THF)

A dry and argon-flushed 50 mL Schlenk flask, equipped with a magnetic stirrer and a glass stopper, was charged with LiCl (1.7 g, 40 mmol) and heated up to 130 °C under high vacuum for 2 h. After cooling to r.t. under argon, CuCl (1.98 g, 20 mmol, 99.5% Cu) was added under inert atmosphere inside a glove-box. The Schlenk flask was further heated to 130 °C for 5 h under high vacuum, cooled to r.t. (ca. 1 h), charged with freshly distilled THF (20 mL) under argon and wrapped in aluminum foil to protect it from light. The mixture was vigorously stirred until all solid went into solution (ca. 2 h). The reagent CuCl-2LiCl (1 M in THF) was obtained as a colorless or slightly pink solution.

Procedure 1: 2,4-Dibromo-*N*,*N*-bis(trimethylsilyl)-1,3-thiazol-5-amine (5a, Scheme 1)

A dry and argon-flushed Schlenk flask, equipped with a magnetic stirring bar and a septum, was charged with 2,4-dibromo-1,3-thia-zole (**1a**; 243 mg, 1.0 mmol) and THF (1 mL). To the resulting mix-

ture was added dropwise $(TMP)_2Zn \cdot 2MgCl_2 \cdot 2LiCl (1.30 mL, 1.68 M in THF, 0.55 mmol) and stirred for 45 min. CuCl \cdot 2LiCl (1.1 mL, 1.0 M in THF, 1.1 mmol) was added dropwise to$ **2a**at -50 °C under argon and the mixture was stirred for 30 min. LiN(SiMe₃)₂ (**3a**, 2 mmol, 1 M in THF) was added dropwise to the resulting cuprate**4a**, and the mixture was stirred for 1 h at -50 °C. The reaction mixture was cooled to -78 °C, then a solution of PhI(OAc)₂ (354 mg, 1.1 mmol) in anhyd THF (10 mL) was added slowly over a period of 60 min. The mixture was then warmed to -50 °C and stirred for an additional 3 h. Et₂O (100 mL) was poured into the crude reaction mixture. The organic phase was washed with aq 2 M NH₄OH (2 × 10 mL) and back-extracted with Et₂O (2 × 50 mL). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated under reduced pressure. Purification by flash chromatography (pentane; Al₂O₃ III) yielded**5a**(331 mg, 80%) as a colorless oil.

IR (ATR): 2950, 1499, 1412, 1251, 1204, 1154, 1009, 909, 869, 837, 816, 790, 753, 684, 666, 632 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 0.17$ (s, 18 H).

¹³C NMR (150 MHz, CDCl₃): δ = 147.3, 127.7, 119.8, 1.5.

MS (70 eV, EI): *m*/*z* (%) = 402 (18), 399 (18), 387 (32), 385 (14), 323 (15), 321 (14), 125 (12), 123 (11), 97 (11), 83 (11), 73 (100).

HRMS (EI): m/z calcd for $C_9H_{18}^{79}Br_2N_2SSi_2$: 399.9096; found: 399.9086.

Procedure 2: (*tert*-Butyldimethylsilyl)-(3,5-dimethylisoxazol-4-yl)phenylamine (5b, Scheme 1)

A dry and argon-flushed Schlenk flask, equipped with a magnetic stirrer and a septum, was charged with LiCl (104 mg, 2.5 mmol) and dried under vacuum at 450 °C for 5 min. Then, ZnCl₂ (135 mg, 1.0 mmol) was added and also dried under vacuum at 450 °C for 5 min. After cooling to r.t., Mg turnings (61 mg, 2.5 mmol) and THF (5 mL) were added and activated with i-Bu₂AlH (0.1 mL, 0.1 M in THF, 0.01 mmol).¹⁸ 4-Bromo-3,5-dimethylisoxazole (1b; 176 mg, 1.0 mmol) was added in one portion and the resulting mixture was stirred for 25 min at 25 °C and then cannulated to a new Schlenk flask for the reaction with an amine. CuCl·2LiCl (1.1 mL, 1.0 M in THF, 1.1 mmol) was added dropwise to the generated zinc species 2b at -50 °C under argon and the mixture was stirred for 30 min. LiN(TBS)Ph [3b, 2.0 mmol, prepared by adding n-BuLi to a 0.5 M solution of HN(TBS)Ph (414 mg, 2 mmol) in THF at -20 °C and stirring for 30 min] was added dropwise to the resulting cuprate, and the mixture was stirred for 1 h at -50 °C. The reaction mixture was cooled to -78 °C, then a solution of PhI(OAc)₂ (354 mg, 1.1 mmol) in anhyd THF (10 mL) was added slowly over a period of 60 min. The mixture was then warmed to -50 °C and stirred for 3 h. Et₂O (100 mL) was poured into the crude reaction mixture. The organic phase was washed with aq 2 M NH₄OH (2×10 mL) and extracted with Et₂O (2×50 mL). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated under reduced pressure. Purification by flash chromatography (pentane-Et₂O, 20:1) yielded 5b (181 mg, 60%) as a yellow oil.

IR (ATR): 2928, 2855, 1594, 1490, 1472, 1440, 1419, 1276, 1260, 1249, 1241, 1215, 1030, 948, 891, 876, 858, 836, 821, 802, 772, 746, 706, 691, 681, 633 cm⁻¹.

¹H NMR (600 MHz, CDCl₃): δ = 7.16–7.14 (m, 2 H, ArH), 6.88– 6.83 (m, 3 H, ArH), 2.31 (s, 3 H, CH₃), 2.09 (s, 3 H, CH₃), 0.96 (s, 9 H, *t*-C₄H₉), 0.21 [s, 6 H, Si(CH₃)₂].

¹³C NMR (150 MHz, CDCl₃): δ = 164.7, 160.3, 148.7, 128.8, 123.6, 120.9, 120.4, 27.9, 19.9, 11.3, 9.9, -2.1.

MS (70 eV, EI): *m/z* (%) = 302 (23), 246 (20), 245 (96), 204/19), 161 (17), 137 (21), 126 (15), 111 (24), 109 (17), 103 (29), 101 (58), 99 (16), 97 (35), 95 (22), 85 (40), 83 (30), 73 (100), 71 (51), 69 (28), 56 (20), 55 (24), 37 (27).

HRMS (EI): m/z calcd for $C_{17}H_{26}N_2OSi$: 302.1814; found: 302.1822.

Procedure 3: (5-Bromopyridin-3-yl)-(*tert*-butyldimethylsilyl)phenylamine (5c, Scheme 1)

A dry and argon-flushed Schlenk flask, equipped with a magnetic stirring bar and a septum, was charged with 3,5-dibromopyridine (1c; 236 mg, 1.0 mmol). After cooling to 0 °C, *i*-PrMgCl LiCl (0.90 mL, 1.24 M in THF, 1.1 mmol) was added dropwise and stirred for 30 min at this temperature and for a further 30 min at 25 °C. Then, THF (1 mL) was added and the resulting solution was stirred for an additional 10 min at 25 °C. After cooling to 0 °C, ZnCl₂ (0.55 mL, 1.0 M in THF, 0.55 mmol) was added and the mixture was stirred for 30 min at this temperature. CuCl·2LiCl (1.1 mL, 1.0 M in THF, 1.1 mmol) was added dropwise at -50 °C and the resulting mixture was stirred for an additional 30 min at -50 °C. LiN(TBS)Ph [3b; 2.0 mmol, prepared by adding n-BuLi to a 0.5 M solution of HN(TBS)Ph (414 mg, 2 mmol) in THF at -20 °C and stirring for 30 min] was added dropwise to the resulting cuprate, and the mixture was stirred for 1 h at -50 °C. The reaction mixture was cooled to -78 °C, then a solution of PhI(OAc)₂ (354 mg, 1.1 mmol) in anhyd THF (10 mL) was added slowly over a period of 60 min. The mixture was then warmed to -50 °C and stirred for 3 h. Et₂O (100 mL) was poured into the crude reaction mixture. The organic phase was washed with aq 2 M NH₄OH (2×10 mL) and extracted with Et₂O $(2 \times 50 \text{ mL})$. The combined organic layers were dried (Na₂SO₄), filtered, and concentrated under reduced pressure. Purification by flash chromatography (pentane-Et₂O; 19:1) yielded 5c (200 mg, 55%) as a yellow solid; mp 85.5-87.1 °C.

IR (ATR): 2957, 2949, 2929, 2857, 1567, 1542, 1486, 1471, 1462, 1443, 1413, 1318, 1267, 1257, 1230, 1208, 1168, 1103, 1002, 955, 936, 911, 902, 886, 857, 842, 833, 819, 808, 788, 772, 733, 699, 676 cm⁻¹.

¹H NMR (400 MHz, C₆D₆): δ = 8.34 (d, ${}^{4}J_{H,H}$ = 2.35 Hz, 1 H, ArH), 8.31 (d, ${}^{4}J_{H,H}$ = 1.96 Hz, 1 H, ArH), 7.20 (t, ${}^{4}J_{H,H}$ = 2.35 Hz, 1 H, ArH), 6.96–6.91 (m, 2 H, ArH), 6.85–6.81 (m, 2 H, ArH), 6.75–6.72 (m, 1 H, ArH), 0.77 (s, 9 H, *t*-C₄H₉), -0.06 [s, 6 H, Si(CH₃)₂].

¹³C NMR (100 MHz, C_6D_6): $\delta = 147.9$, 146.5, 142.5, 142.3, 130.6, 129.4, 128.9, 125.2, 120.2, 27.3, 20.0, -2.4.

MS (70 eV, EI): *m*/*z* (%) = 308 (17), 307 (98), 306 (17), 305 (100), 135 (14), 73 (12).

HRMS (EI): m/z calcd for $C_{17}H_{23}BrN_2Si$: 362.0814; found: 362.0810.

Benzo[b]thiophen-2-yl-diphenylamine (5d, Table 1, entry 1)

Prepared according to Procedure 1 from benzothiophene (1.34 g, 10.0 mmol) [reaction conditions: deprotonation with $(TMP)_2Zn\cdot 2MgCl_2\cdot 2LiCl$ at 25 °C for 24 h] and LiNPh₂ [20.0 mmol; prepared by adding *n*-BuLi (20.0 mmol) to a 1.0 M solution of Ph₂NH in THF (3.38 g, 20.0 mmol) at -20 °C and stirring for 5 min and further stirring at 0 °C for 30 min]. Purification by flash chromatography (pentane; Al₂O₃ III) yielded **5d** (18.1 g, 60%) as a colorless solid; mp 134.0–136.3 °C.

IR (ATR): 1586, 1562, 1530, 1518, 486, 1458, 1436, 1418, 1316, 1292, 1276, 1250, 1241, 1172, 1158, 761, 750, 726, 695, 688 cm⁻¹.

¹H NMR (400 MHz, C_6D_6): δ = 7.37–7.30 (m, 2 H, ArH), 7.16–7.10 (m, 4 H, ArH), 7.05–6.98 (m, 6 H, ArH), 6.88–6.81 (m, 2 H, ArH), 6.63 (s, 1 H, ArH).

¹³C NMR (100 MHz, C_6D_6): $\delta = 151.9$, 147.6, 139.4, 136.1, 129.2, 124.3, 123.6, 123.5, 123.3, 122.3, 122.0, 114.5.

MS (70 eV, EI): *m*/*z* (%) = 302 (23), 301 (100), 300 (18), 223 (12), 197 (29), 121 (13), 77 (10).

HRMS (EI): *m*/*z* calcd for C₂₀H₁₅NS: 301.0925; found: 301.0919.

4-Benzo[b]thiophen-2-ylmorpholine (5e, Table 1, entry 2)

Prepared according to Procedure 1 from benzothiophene (1.34 g, 10.0 mmol) [reaction conditions: deprotonation with (TMP)₂Zn·2MgCl₂·2LiCl at 25 °C for 24 h] and *N*-lithium morpholide [20.0 mmol; prepared by adding *n*-BuLi (20.0 mmol) to a 0.5 M solution of morpholine in THF (1.74 g, 20.0 mmol) at 0 °C and stirring for 30 min]. Purification by flash chromatography (pentane–Et₂O; 20:1; Al₂O₃ III) yielded **5e** (1.65 g, 75%) as a colorless solid; mp 180.1–181.5 °C.

IR (ATR): 1556, 1528, 1454, 1437, 1375, 1316, 1303, 1264, 1250, 1220, 1211, 1187, 1166, 1117, 1065, 1032, 1024, 1013, 933, 901, 869, 781, 744, 723, 653 cm⁻¹.

¹H NMR (400 MHz, C₆D₆): δ = 7.44–7.40 (m, 2 H, ArH), 7.18–7.14 (m, 1 H, ArH), 6.97–6.93 (m, 1 H, ArH), 5.90 (s, 1 H, ArH), 3.33 (t, ³ $J_{\text{H,H}}$ = 4.89 Hz, 4 H, CH₂CH₂), 2.70 (t, ³ $J_{\text{H,H}}$ = 4.89 Hz, 4 H, CH₂CH₂).

¹³C NMR (100MHz, C₆D₆): δ = 157.7, 140.7, 132.9, 124.5, 121.6, 121.5, 121.0, 99.4, 65.7, 50.6.

MS (70 eV, EI): m/z (%) = 220 (12), 219 (100), 161 (50), 160 (14). HRMS (EI): m/z calcd for C₁₂H₁₃NOS: 219.0718; found: 219.0712.

2-Bromo-*N*,*N*-bis(trimethylsilyl)-1,3-thiazol-5-amine (5f, Table 1, entry 3)

Prepared according to Procedure 1 from 2-bromothiazole (1.64 g, 10.0 mmol) [reaction conditions: deprotonation with $(TMP)_2Zn\cdot 2MgCl_2\cdot 2LiCl$ at 25 °C for 60 min] and LiHMDS (20 mmol, 20 mL, 1 M in THF). Purification by flash chromatography (pentane; Al₂O₃ III) yielded **5f** (2.44 g, 75%) as a colorless oil.

IR (ATR): 2956, 1517, 1436, 1412, 1251, 1185, 1148, 1132, 1001, 919, 874, 840, 818, 756, 699, 686 cm⁻¹.

¹H NMR (400 MHz, C_6D_6): δ = 6.76 (s, 1 H, ArH), -0.02 (s, 18 H).

¹³C NMR (100 MHz, C_6D_6): $\delta = 152.3, 137.1, 128.0, 1.3$.

MS (70 eV, EI): *m*/*z* (%) = 324 (13), 322 (22), 309 (17), 307 (14), 244 (10), 243 (44), 227 (15), 116 (20), 73 (100).

HRMS (EI): m/z calcd for C₉H₁₉⁷⁹BrN₂SSi₂: 321.9991; found: 321.9977.

4-(2-Bromo-1,3-thiazol-5-yl)morpholine (5g, Table 1, entry 4)

Prepared according to Procedure 1 from 2-bromothiazole (1.64 g, 10.0 mmol) [reaction conditions: deprotonation with $(TMP)_2Zn\cdot 2MgCl_2\cdot 2LiCl$ at 25 °C for 60 min] and *N*-lithium morpholide [20.0 mmol; prepared by adding *n*-BuLi (20.0 mmol) to a 0.5 M solution of morpholine in THF (1.74 g, 20.0 mmol) at 0 °C and stirring for 30 min]. Purification by flash chromatography (pentane–Et₂O; 9:1; Al₂O₃ III) yielded **5g** (1.99 g, 80%) as a colorless solid; mp 145.3–147.0 °C.

IR (ATR): 1512, 1448, 1430, 1368, 1336, 1308, 1293, 1272, 1257, 1220, 1211, 1168, 1143, 1112, 1071, 1038, 991, 929, 893, 855, 842, 758, 728 $\rm cm^{-1}.$

¹H NMR (400 MHz, C₆D₆): δ = 6.51 (s, 1 H, ArH), 3.23 (t, ³J_{H,H} = 4.9 Hz, 4 H, CH₂CH₂), 2.31 (t, ³J_{H,H} = 4.9 Hz, 4 H, CH₂CH₂).

¹³C NMR (100 MHz, C₆D₆): δ = 157.6, 122.4, 122.3, 65.7, 51.8.

MS (70 eV, EI): *m*/*z* (%) = 250 (99), 249 (12), 248 (100), 192 (43), 190 (42), 169 (39), 111 (31).

HRMS (EI): m/z calcd for $C_7H_9BrN_2OS$: 247.9619; found: 247.9616.

2-Bromo-*N*,*N*-diisopropyl-1,3-thiazol-5-amine (5h, Table 1, entry 5)

Prepared according to Procedure 1 from 2-bromothiazole (1.64 g, 10.0 mmol) [reaction conditions: deprotonation with

 $TMP_2Zn \cdot 2MgCl_2 \cdot 2LiCl$ at 25 °C for 60 min] and LDA (20 mmol, 20 mL, 0.5 M in THF). Purification by flash chromatography (pentane–Et₂O; 100:1; Al₂O₃ III) yielded **5h** (1.71 g, 65%) as a colorless oil.

IR (ATR): 2968, 2930, 2871, 1538, 1518, 1446, 1416, 1382, 1365, 1328, 1271, 1240, 1204, 1178, 1149, 1122, 1101, 1089, 999, 907, 857, 840, 756, 719, 697, 635 cm⁻¹.

¹H NMR (300 MHz, C₆D₆): δ = 6.83 (s, 1 H, ArH), 3.08 [sept, ³J_{H,H} = 6.8 Hz, 2 H, 2 × CH(CH₃)₂], 0.84 [d, ³J_{H,H} = 6.8 Hz, 12 H, 2 × CH(CH₃)₂].

¹³C NMR (75 MHz, C_6D_6): δ = 150.6, 133.0, 126.1, 51.1, 20.6.

MS (70 eV, EI): m/z (%) = 264 (24), 262 (13), 249 (37), 247 (54), 127 (38), 112 (38), 97 (46), 83 (40), 71 (37), 70 (36), 69 (62), 57 (100), 55 (51), 43 (75).

HRMS (EI): *m/z* calcd for C₉H₁₅BrN₂S: 262.0139; found: 262.0136.

5-(1,1,1,3,3,3-Hexamethyldisilazan-2-yl)-2-phenylsulfanylthiazole (5i, Table 1, entry 6)

Prepared according to Procedure 1 from 2-(phenylthio)thiazole (1.64 g, 10.0 mmol) [reaction conditions: deprotonation with $(TMP)_2Zn\cdot 2MgCl_2\cdot 2LiCl$ at 25 °C for 2 h] and LiN(SiMe₃)₂ (20.0 mmol, 20.0 mL, 1 M in THF). Purification by flash chromatography (pentane–Et₂O; 19:1; Al₂O₃ III) yielded **5i** (2.22 g, 63%) as a yellow oil.

IR (ATR): 2955, 1514, 1500, 1477, 1440, 1403, 1377, 1273, 1251, 1150, 1141, 1016, 922, 874, 840, 819, 739, 701, 686, 624 cm⁻¹.

¹H NMR (400 MHz, C₆D₆): δ = 7.48–7.46 (m, 2 H, ArH), 7.06 (s, 1 H, ArH), 6.97–6.90 (m, 3 H, ArH), 0.00 [s, 18 H, 2 × Si(CH₃)₃].

¹³C NMR (75 MHz, C₆D₆): δ = 156.6, 150.9, 138.1, 137.3, 133.5, 132.2, 129.9, 129.2, 128.1, 1.2.

MS (70 eV, EI): *m*/*z* (%) = 354 (18), 353 (28), 352 (100), 337 (23), 243 (32), 206 (11), 116 (22), 73 (84), 45 (10).

HRMS (EI): m/z calcd for $C_{15}H_{24}N_2S_2Si_2$: 352.0919; found: 352.0912.

Diphenyl(1,3,5-trimethyl-1*H*-pyrazol-4-yl)amine (5j, Table 1, entry 7)

Prepared according to Procedure 2 from 4-bromo-1,3,5-trimethyl-1*H*-pyrazole (1.89 g, 10.0 mmol, stirring for 25 min) and LiNPh₂ [20.0 mmol, prepared by adding *n*-BuLi to a 0.5 M solution of Ph₂NH (3.38 g, 20.0 mmol) in THF at -20 °C and stirring for 30 min at 0 °C]. Purification by flash chromatography (pentane–Et₂O, 1:1) yielded **5**j (1.80 g, 65%) as a yellow solid; mp 78.8–80.3 °C.

IR (ATR): 2919, 1584, 1482, 1457, 1448, 1386, 1373, 1322, 1287, 1276, 1198, 1170, 1153, 1116, 1075, 1037, 1025, 998, 983, 959, 916, 890, 831, 755, 712, 693, 644, 638, 628, 620, 605 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.25–7.20 (m, 4 H, ArH), 7.07–7.03 (m, 4 H, ArH), 6.94–6.89 (m, 2 H, ArH), 3.76 (s, 3 H, CH₃), 2.00 (s, 3 H, CH₃), 1.98 (s, 3 H, CH₃).

¹³C NMR (75 MHz, CDCl₃): δ = 146.9, 145.1, 136.1, 129.0, 123.8, 121.1, 120.2, 36.4, 11.5, 9.2.

MS (70 eV, EI): *m*/*z* (%) = 278 (18), 277 (100), 56 (14).

HRMS (EI): *m*/*z* calcd for C₁₈H₁₉N₃: 277.1579; found: 277.1574.

5-Bromo-*N*,*N*-diphenylpyridin-3-amine (5k, Table 1, entry 8)

Prepared according to Procedure 3 from 3,5-dibromopyridine (2.36 g, 10.0 mmol) and LiNPh₂ [20.0 mmol, prepared by adding *n*-BuLi to a 0.5 M solution of Ph₂NH (3.38 g, 20.0 mmol) in THF at -20 °C and stirring for 30 min at 0 °C]. Purification by flash chromatography (pentane–CH₂Cl₂, 1:1 to 1:2) yielded **5k** (2.88 g, 88%) as a colorless solid; mp 118.4–119.9 °C.

IR (ATR): 1586, 1570, 1557, 1544, 1485, 1456, 1438, 1424, 1329, 1276, 1270, 1232, 1191, 1098, 1069, 1005, 948, 903, 854, 844, 780, 758, 746, 702, 694, 665, 628, 620 cm⁻¹.

¹H NMR (400 MHz, C₆D₆): δ = 8.36 (dd, ³*J*_{H,H} = 6.1 Hz, ⁴*J*_{H,H} = 2.9 Hz, 2 H), 7.37 (t, ⁴*J*_{H,H} = 2.2 Hz, 1 H), 6.97–6.91 (m, 4 H), 6.85–6.76 (m, 6 H).

¹³C NMR (100 MHz, C_6D_6): $\delta = 146.5$, 145.6, 143.7, 142.9, 130.6, 129.9, 125.0, 124.5, 120.7.

MS (70 eV, EI): m/z (%) = 327 (19), 326 (87), 325 (48), 324 (100), 323 (30), 245 (14), 244 (38), 243 (18), 217 (12), 167 (14), 115 (13), 77 (23).

HRMS (EI): *m*/*z* calcd for C₁₇H₁₃BrN₂: 324.0262; found: 324.0257.

(5-Bromopyridin-3-yl)dihexylamine (5l, Table 1, entry 9)

Prepared according to Procedure 3 from 3,5-dibromopyridine (2.36 g, 10.0 mmol) and LiN(C₆H₁₃)₂ [20.0 mmol, prepared by adding *n*-BuLi to a 0.5 M solution of (C₆H₁₃)₂NH (3.71 g, 20.0 mmol) in THF at -20 °C and stirring for 30 min at 0 °C]. Purification by flash chromatography (pentane–Et₂O; 20:1) yielded **51** (1.85 g, 54%) as a yellow oil.

IR (ATR): 2954, 2926, 2870, 2856, 1572, 1533, 1465, 1428, 1368, 1255, 1242, 1228, 1213, 1176, 1164, 1135, 1106, 992, 837, 822, 797, 725, 697, 657 cm⁻¹.

¹H NMR (400 MHz, C₆D₆): $\delta = 8.24$ (d, ⁴*J*_{H,H} = 1.96 Hz, 1 H, ArH), 8.11 (d, ⁴*J*_{H,H} = 2.74 Hz, 1 H, ArH), 6.97 (t, ⁴*J*_{H,H} = 1.96 Hz, 1 H, ArH), 2.81 (t, ³*J*_{H,H} = 7.63 Hz, 4 H, CH₂CH₂), 1.30–1.16 [m, 8 H, (CH₂)₄], 1.13–0.98 [m, 8 H, (CH₂)₄], 0.86 (t, 6 H, ³*J*_{H,H} = 7.23 Hz, 2 × CH₃).

¹³C NMR (100 MHz, C_6D_6): $\delta = 144.8$, 137.2, 133.1, 121.1, 119.4, 50.3, 31.5, 26.7, 26.5, 26.4, 22.6, 13.8.

MS (70 eV, EI): *m*/*z* (%) = 342 (15), 340 (16), 272 (12), 271 (88), 270 (13), 269 (100), 201 (46), 199 (47), 187 (15), 185 (16), 43 (23).

HRMS (EI): *m/z* calcd for C₁₇H₂₉BrN₂: 340.1514; found: 340.1509.

Acknowledgment

We thank the Fonds der Chemischen Industrie, the European Research Council (ERC), and the Deutsche Forschungsgemeinschaft (DFG) for the financial support. We also thank BASF AG (Ludwigshafen), W. C. Heraeus GmbH (Hanau), and Chemetall GmbH (Frankfurt) for the generous gift of chemicals.

References

- (a) Czarnik, A. W. Acc. Chem. Res. 1996, 29, 112. (b) Law, K. Y. Chem. Rev. 1993, 93, 44. (c) MacDiarmid, A. G. Synth. Met. 1997, 84, 27. (d) Gospodinova, N.; Terlemezyan, L. Prog. Polym. Sci. 1998, 23, 1443.
- (2) (a) Metzger, J. V. *Thiazole and its Derivatives*; Wiley: New York, **1979**, and references cited therein. (b) Koike, K.; Jia, Z.; Nikaido, T.; Liu, Y.; Zhao, Y.; Guo, D. *Org. Lett.* **1999**, *1*, 197. (c) Walcynski, K.; Guryn, R.; Zuiderveld, O. P.; Timmermann, H. *Farmaco* **1999**, *54*, 684. (d) Law, K. Y. *Chem. Rev.* **1993**, *93*, 449.

- (3) For selected reviews, see: (a) Surry, D. S.; Buchwald, S. L. Angew. Chem. Int. Ed. 2008, 47, 6338. (b) Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534. For recent reports, see:
 (c) Shekhar, S.; Ryberg, P.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 3584. (d) Strieter, E. R.; Buchwald, S. L. Angew. Chem. Int. Ed. 2006, 45, 925. (e) Surry, D. S.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 10354. (f) Fors, B. P.; Watson, D. A.; Biscoe, M. R.; Buchwald, S. L. J. Am. Chem. Soc. 2008, 130, 13552. (g) Fors, B. P.; Davis, N. R.; Buchwald, S. L. J. Am. Chem. Soc. 2008, 130, 13552. (g) Fors, B. P.; Davis, N. R.; Buchwald, S. L. J. Am. Chem. Soc. 2009, 131, 5766. (h) Schulz, T.; Torborg, C.; Enthaler, S.; Schäffner, B.; Dumrath, A.; Spannenberg, A.; Neumann, H.; Börner, A.; Beller, M. Chem. Eur. J. 2009, 15, 4528.
- (4) Yamamoto, H.; Maruoka, K. J. Org. Chem. 1980, 45, 2739.
- (5) (a) Casarini, A.; Dembech, P.; Lazzari, D.; Marini, E.; Reginato, G.; Ricci, A.; Seconi, G. J. Org. Chem. 1993, 58, 5620. (b) Alberti, A.; Canè, F.; Dembech, P.; Lazzari, D.; Ricci, A.; Seconi, G. J. Org. Chem. 1996, 61, 1677.
 (c) Canè, F.; Brancaleoni, D.; Dembech, P.; Ricci, A.; Seconi, G. Synthesis 1997, 545. (d) Bernardi, P.; Dembech, P.; Fabbri, G.; Ricci, A.; Seconi, G. J. Org. Chem. 1999, 64, 641.
- (6) (a) del Amo, V.; Dubbaka, S. R.; Krasovskiy, A.; Knochel, P. Angew. Chem. Int. Ed. 2006, 45, 7838. (b) Kienle, M.; Dubbaka, S. R.; del Amo, V.; Knochel, P. Synthesis 2007, 1272.
- (7) Arzel, E.; Rocca, P.; Marsais, F.; Quéguiner, G. *Tetrahedron Lett.* **1998**, *39*, 6465.
- (8) For an excellent overview of hypervalent iodine compounds, see: Zhdankin, V. V.; Stang, P. J. *Chem. Rev.* 2008, 108, 5299.
- (9) Kienle, M.; Dunst, C.; Knochel, P. Org. Lett. 2009, 11, 5158; highlighted in Synfacts 2010, 213 and Angew. Chem. Int. Ed. 2010, 49, 2282.
- (10) (a) Wunderlich, S. H.; Knochel, P. Angew. Chem. Int. Ed.
 2007, 46, 7685. (b) Wunderlich, S. H.; Knochel, P. Chem. Commun. 2008, 6387.

Downloaded by: Rutgers University. Copyrighted material

- (11) Krasovskiy, A.; Krasovskaya, V.; Knochel, P. Angew. Chem. Int. Ed. **2006**, 45, 2958.
- (12) Piller, F. M.; Metzger, A.; Schade, M. A.; Haag, B. A.; Gavryushin, A.; Knochel, P. *Chem. Eur. J.* **2009**, *15*, 7192.
- (13) (a) Krasovskiy, A.; Knochel, P. Angew. Chem. Int. Ed. 2004, 43, 3333. (b) Krasovskiy, A.; Straub, B.; Knochel, P. Angew. Chem. Int. Ed. 2006, 45, 159.
- (14) (a) Egi, M.; Liebeskind, L. S. Org. Lett. 2003, 5, 801.
 (b) Metzger, A.; Melzig, L.; Despotopoulou, C.; Knochel, P. Org. Lett. 2009, 11, 4228. (c) Melzig, L.; Metzger, A.; Knochel, P. J. Org. Chem. 2010, 75, 2131.
- (15) Lin, H.-S.; Paquette, L. A. Synth. Commun. 1994, 24, 2503.
- (16) Krasovskiy, A.; Knochel, P. *Synthesis* 2006, 890.
 (17) Hammett, L. P.; Walden, G. H.; Edmonds, S. M. *J. Am. Chem. Soc.* 1934, *56*, 1092.
- (18) For the use of *i*-Bu₂AlH, see: Tilstan, U.; Weinmann, H. *Org. Process Res. Dev.* **2002**, *6*, 906.