2004 Vol. 6, No. 24 4403-4405

Efficient Conversion of O-Substituted 3-Hydroxy-4-imino-oxazolidin-2-ones into O-Substituted α -Hydroxyamidoximes

Thomas Kurz* and Khalid Widyan

Institute of Pharmacy, University of Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany

kurz@chemie.uni.hamburg.de

Received July 7, 2004

ABSTRACT

An efficient and convenient two-step synthesis of O-substituted α-hydroxyamidoximes has been developed. The first step involves a highyielding one-pot synthesis of the so far unknown O-substituted 3-hydroxy-4-imino-oxazolidin-2-ones by reacting cyanohydrins stepwise with 1,1'-carbonyldiimidazole and O-substituted hydroxylamines. The second step represents a novel, sodium methoxide-mediated conversion of O-substituted 3-hydroxy-4-imino-oxazolidin-2-ones into the corresponding O-substituted α -hydroxyamidoximes.

 α -Hydroxyamidoximes are α -functionalized derivatives of amidoximes, a class of compounds that has found applications in organic, analytical, and medicinal chemistry.

As a metal ion chelating functional group, the amidoxime moiety represents a promising pharmacophore for the development of metalloenzyme inhibitors. 1 In analytical chemistry, amidoximes are used as selective extracting reagents for the quantitative spectrophotometric determination of toxic metal cations such as cadmium (II), vanadium (V), and osmium (VIII).² Amidoximes are versatile building blocks for the synthesis of various heterocycles. 1a,3 Furthermore, the ability of O-substituted amidoximes to act as prodrugs of amidines has recently attracted considerable attention in medicinal chemistry.4

O-Alkyl(aralkyl)-substituted amidoximes are commonly prepared by alkylation of hydroxyamidines with alkyl-(aralkyl) halides and alkyl sulfates in the presence of a suitable base. ^{1a} O-Aryl- and O-t-Bu-substituted amidoximes

(1) (a) Eloy, F.; Lenaers, R. Chem. Rev. 1962, 62, 155. (b) Briggs, L.

(2) (a) Chakravarty, S.; Deb, M. K.; Mishra, R. K. J. AOAC Int. 1993, 76 (3), 604. (b) Deb, M. K.; Mishra, N.; Patel, K. S.; Mishra, R. K. Analyst

K.; Cambie, R. C.; Dean, C.; Rutledge, P. S. Aust. J. Chem. 1976, 29, 327.

have not been reported so far. Although the chemistry of amidoximes has been studied intensively, relatively few O-unsubstituted α -hydroxyamidoximes (I) are described in the literature. Compounds I are only accessible by treatment of cyanohydrins and α-hydroxyimidates with hydroxylamine.5 However, due to the weaker nucleophilicity of O-substituted hydroxylamines, these methods cannot be applied for the synthesis of O-substituted α-hydroxyamidoximes (II).

Figure 1. α -Hydroxyamidoximes.

Only two O-substituted α -hydroxyamidoximes (II), which

1885, 18, 1077. (c) Schiff, H. Liebigs Ann. Chem. 1902, 321, 357. (d)

Schwarz, G. Zur Cyclisierenden Carbonylierung von α-Hydroxycarbohy-

droximsäureestern und N-Hydroxycarbamaten, Ph.D. Dissertation, Technical

University Carolo-Wilhelmina, Brunswick, Germany, 1987.

have been prepared by treatment of α -hydroxyamidoximes (5) (a) Tiemann, F. Chem. Ber. 1884, 17, 126. (b) Gross, F. Chem. Ber.

^{1991, 116, 323} (3) (a) Zinner, G. Perner, M., Grünefeld, J., Schecker, H.-G. Arch. Pharm. 1986, 319, 1073. (b) Hussein, A. C. Heterocycles 1987, 26, 163.

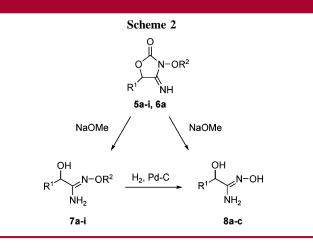
^{(4) (}a) Anbazhagan M., Boykin D. W, Stephens, C. E. Tetrahedron Lett. 2002, 43, 9089. (b) Clement, B. Drug Metab. Rev. 2002, 34, 565.

with trityl chloride in 40 and 60% yields, respectively, are reported in the literature.⁶ In a previous publication we described the synthesis and decarbonylation of O-substituted 3-hydroxyoxazolidin-2,4-diones as a novel synthetic pathway for the preparation of O-protected α -hydroxy-hydroxamates.⁷

The lack of an efficient and general method for the preparation of O-substituted α -hydroxyamidoximes prompted us to investigate the synthesis and applicability of O-substituted 3-hydroxy-4-imino-oxazolidin-2-ones as precursors for the synthesis of the title compounds. So far, O-substituted 3-hydroxy-4-imino-oxazolidin-2-ones (5) have only been reported as intermediates but not isolated and characterized.

Compounds **5a**-**i** have now been synthesized in a convenient one-pot reaction by treatment of 1,1'-carbonyl-diimidazole (CDI) with cyanohydrins (2),^{7,8} followed by addition of O-substituted hydroxylamines to the CDI-activated cyanohydrins (3) at room temperature in 86–91% yield (Scheme 1, Table 1). During the reaction, the formation

of intermediates **3** and **4** was monitored by IR spectroscopy. The disappearance of the (CN) band in the IR spectra at 2231 cm⁻¹ and the formation of two sharp absorption bands at 1695–1705 and 1795–1805 cm⁻¹ clearly indicated the ring closure of **4** to **5**.


Finally, catalytic hydrogenation of **5a**–**c** afforded 3-hydroxy-4-imino-oxazolidin-2-ones (**6a**–**c**) in 92–95% yield.

Conversion of compounds $\mathbf{5a} - \mathbf{i}$ into O-alkyl-, O-aralkyl-, and O-phenyl-substituted α -hydroxyamidoximes ($\mathbf{7a} - \mathbf{i}$) was accomplished in high yields of 90 - 95% by refluxing $\mathbf{5a} - \mathbf{i}$ in the presence of sodium methoxide (0.2 equiv) in methanol for 1 h. When $\mathbf{6a}$ was reacted with sodium methoxide (0.2 equiv), no decarbonylation occurred due to neutralization of sodium methoxide by $\mathbf{6a}$. However, treatment of $\mathbf{6a}$ with an excess of sodium methoxide in methanol afforded $\mathbf{8a}$ in $\mathbf{70}\%$

Table 1. Synthesis of O-Substituted and O-Unsubstituted 3-Hydroxy-4-imino-oxazolidin-2-ones (**5** and **6**)

entry	\mathbb{R}^1	${ m R}^2$	yield
5a	$PhCH_2$	$PhCH_2$	90%
5 b	Ph_2CH	PhCH_2	86%
5c	<i>t</i> -Bu	PhCH_2	91%
5d	C_3H_5	PhCH_2	90%
5e	<i>t</i> -Bu	<i>t</i> -Bu	90%
5f	Ph_2CH	<i>t</i> -Bu	90%
5g	Ph_2CH	3,4-di-(CH ₃ O)C ₆ H ₃ CH ₂	86%
5h	Ph_2CH	CH_3	87%
5i	Ph_2CH	Ph	86%
6a	$PhCH_2$	Н	92%
6b	Ph_2CH	H	91%
6c	t-Bu	Н	95%

(Scheme 2). Catalytic hydrogenation of $7\mathbf{a} - \mathbf{c}$ led to O-unsubstituted α -hydroxyamidoximes $8\mathbf{a} - \mathbf{c}$ in 93–97% yield (Scheme 2, Table 2).

In conclusion, we have developed an operationally simple one-pot protocol for the preparation of previously unpub-

Table 2. Synthesis of O-Substituted and O-Unsubstituted α -Hydroxyamidoximes (7 and 8)

entry	\mathbb{R}^1	$ m R^2$	yield
7a	$PhCH_2$	$PhCH_2$	95%
7 b	Ph_2CH	PhCH_2	92%
7c	$t ext{-Bu}$	PhCH_2	91%
7 d	$\mathrm{C_{3}H_{5}}$	PhCH_2	92%
7e	$t ext{-Bu}$	t-Bu	90%
7f	Ph_2CH	<i>t</i> -Bu	91%
7 g	Ph_2CH	$3,4$ -di- $(CH_3O)C_6H_3CH_2$	90%
7h	Ph_2CH	CH_3	95%
7 i	Ph_2CH	Ph	90%
8a	$PhCH_2$	H	95%
8b	Ph_2CH	H	93%
8c	t-Bu	Н	97%

4404 Org. Lett., Vol. 6, No. 24, 2004

⁽⁶⁾ Tronchet, J. M. J.; Zosimo-Landolfo, G. J. Carbohydr. Chem. 1986, 5, 631.

⁽⁷⁾ Kurz, T.; Widyan, K. Org. Biomol. Chem. 2004, 2, 2023.

⁽⁸⁾ Gassman, P. G.; Talley, J. J. Tetrahedron Lett. 1978, 40, 3773.

lished O-substituted 3-hydroxy-4-imino-oxazolidin-2-ones. Their treatment with sodium methoxide (0.2 equiv) in methanol furnished O-alkyl-, O-aralkyl-, and O-phenyl-substituted α -hydroxyamidoximes in high yields. Furthermore, deprotection of O-benzyl-substituted α -hydroxyamidoximes as well as decarbonylation of 3-hydroxy-4-imino-oxazolidin-2-one $\bf 6a$ led to α -hydroxyamidoximes $\bf 8$.

Acknowledgment. We thank Prof. Dr. D. Geffken for his valuable help in the preparation of this manuscript.

Supporting Information Available: Experimental procedures, spectroscopic data, elemental analysis, and melting points for compounds **5–8**. This material is available free of charge via the Internet at http://pubs.acs.org. OL040045V

Org. Lett., Vol. 6, No. 24, 2004