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ABSTRACT
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Protected 2 '-deoxynucleoside and nucleoside derivatives of 6-fluoropurine, 6-(3-methylbutyl)sulfanylpurine, and 6-(3-methylbutyl)ylsulfonylpurine
undergo nickel- or palladium-mediated C  —C cross-coupling with arylboronic acids to give good yields of 6-arylpurine products.

Modified purines and purine nucleoside derivatives play a tives into the corresponding 6-iodopurine analogues and
major role in biochemistry and biology and as pharmaceutical noted the markedly increased reactivity of the iodo com-
agents. Recently, 6-arylpurine ribonucleosides have been pounds in certain classical organometallic cross-coupling
shown to exhibit cytostatic activityClassical methods for  reactionst Aryl fluorides have rarely been used in such
synthesis of nucleoside biaryls via Suztkiiyaura proce- processes because of their diminished reactivity.
dures have employed Pd- or Ni-mediated cross-couplings of In 1981, we reported efficient methodology for the
aryl halides or sulfonates with arylboronic acfda/e recently synthesis of 2-fluoropurine nucleosides by nonaqueous
reported a heteroaromatic Finkelstein process for conversiondiazotization fluoro-dediazoniation of the 2-amino group of
of 6-chloropurine 2deoxynucleoside and nucleoside deriva- protected purine nucleosideSecrist et al. have also applied
this protocol for the conversion of 6-amino- to 6-fluoropurine
t Nucleic Acid Related Compounds. 125. Paper 124 is ref 9. nucleoside derivatives\We now report that this diazotative
(1). (a) Brathe, A.; Gunderesen, L.-L.; Rise, F.; Eriksen A. B.;. Vollsnes, fluoro-deamination of protected adenosine ardai€oxy-
R e ooty b e s 5 e adenosine analogues gives the 6-fluoropurine compounds in
483, good yields. We then began an investigation of the utility
(2) (a) Hocek, M.; Holy, A.; Votruba, 1.; Dvorakova, H. Med. Chem.  of 6_flyoropurine nucleoside derivatives as cross-coupling
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partners with arylboronic acids. We report that this opens
an effective new avenue for modifications at C6 of purine
nucleosides.

Our first challenge was to identify a catalytic complex that
would insert readily into the purine & bond. Several
methods involving different transition metal centers have
been described for activation of aromatic carbflnorine
bonds! Cross-couplings of phenylmagnesium halides and

fluorobenzenes have been performed at ambient temperature

with nitrogen-heterocyclic carbene ligands and nickel cata-
lysts8

We first tried Ni(COD) with addition of 1,3-bis(2,6-
diisopropylphenyl)imidazolin-2-ylidene (IPr) (Figure 1) for

Figure 1. Structure of the imidazolium-carbene ligand IPr.

attempted cross-coupling of 4-methoxyphenylboronic acid
and 6-fluoro-9-[2,3,5-tr>-(2,4,6-trimethylbenzoylp-p-ribo-
furanosyl]purine. At ambient temperature, none of the
coupling product was detected. However, we were delighted
to find that the desired 6-(4-methoxyphenyl)-9-[2,3,5Fi-
(2,4,6-trimethylbenzoylp-p-ribofuranosyl]purine 1c) was
produced in high yield (84% isolated) in THF at 6C
(Scheme 1) (Table 1). Different boronic acids were employed

Scheme 1. Couplings with 6-Fluoropurine Nucleosides
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to evaluate the scope of this coupling reaction. Both electron-

Table 1. Yields of Coupling Products from Fluoropurines

entry R R Y product (% yield)
1 Mes OMes H 1a(84)
2 Mes OMes CHj 1b (82)
3 Mes OMes OCHj3 1c (84)
4 Mes OMes F 1d (73)
5 Tol H CHs 1le (60)
6 Tol H F 1f (67)

It is noteworthy that poor results were obtained upon
replacement of Ni(CODR)by Pd(PPBk),4 as the catalyst. With
Pd(PPBb)s, major formation of an oxygen-insertibrcom-
pound?2 (Figure 2) was observed.
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Figure 2. Structure of the oxygen-insertion compouad

We next focused our attention on cross-couplings of
6-alkylsulfanylpurine nucleoside derivatives, which are
readily accessible by\&r displacements with 6-(imidazol-
1-yl)-,20 6-(1,2,4-triazol-4-yl)-! and 6-halopurin® precur-
sors. They also are easily prepared by alkylation of thio-
inosine derivative$?1® which can be obtained by deoxy-
genative thiation of inosine or deaminative sulfhydrolysis
of 6-N-substituted adenosine intermedidfeSross-coupling
of Grignard reagents and 6-(methylsulfanyl)purine derivatives
with a nickel-phosphine complex had been reportéd.

Ouir first cross-coupling of 6-[(3-methylbutyl)sulfanyl]-9-
(2,3,5-tri-0O-acetyl-p-ribofuranosyl) purine and 4-methoxy-
phenylboronic acid was incomplete afteh with Pd(OAc)
IPr/K,COs/THF at 60°C. However, when the solvent was
changed from THF to toluene and the temperature was

rich and electron-poor arylboronic acids underwent coupling _

in good yields with 6-fluoropurine nucleoside derivatives.
Application of this coupling protocol with a protected
6-fluoropurine 2-deoxynucleoside also gave 6-arylpurine
products in good isolated yields (Table 1).
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Scheme 2. Couplings with Sulfanylpurine Nucleosides
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increased to 96C, the coupling reaction was complete in 8 || | R N

h. Electron-rich and electron-poor arylboronic acids were also
well tolerated with the alkylsulfanylpurine substrates (Scheme

2; Table 2).

Table 2. Yields of Coupling Products from Sulfanylpurines

entry R Y product (% yield)
1 Tol CH; 3a (69)
2 Ac OCHj3; 3b (78)
3 Tol F 3c (71)

The oxidation state of the sulfur substituent at C6 was

then briefly probed. Oxidation of 6-benzylsulfanylpurine

Scheme 3. Coupling with a Sulfonylpurine Nucleoside

OCHj
3
0= B(OH),
N7 N 10 mol% Pd(OAc),
l > N 10 mol% IPrsHCI Nk/ | N\>
_—
MesO NT N KaPO4/THF SN
es o OCH, 60°C/8h MesO— 0o
(81%)
MesO OMes MesO OMes
4 1ic

as substrates for Suzuki and Stille couplifgbut we did

not find prior examples of Suzuki couplings with sulfones.
In summary, we have developed nickel- and palladium-

based systems with imidazolium-carbene ligands that catalyze

nucleoside derivatives with Oxone in buffered brine had efficient Suzuki cross-couplings of arylboronic acids and

given 6-benzylsulfonyl compounds in high yiel#Oxida-

6-fluoro-, 6-[(3-methylbutyl)sulfanyl]-, and 6-[(3-methyl-

tion of a protected 6-(isopentylsulfanyl)purine nucleoside butyl)sulfonyl]purine nucleoside derivatives to give the

gave 6-[(3-methylbutyl)sulfonyl]-9-[2,3,5-t®-(2,4,6-tri-
methylbenzoyl)8-b-ribofuranosyl]purine4). The sulfonet

corresponding 6-arylpurine products. These reactions enlarge
the scope of our complementary Suzuki couplings of

and 4-methoxyphenylboronic acid underwent coupling at 60 arylboronic acids and 6-(azolyl)purine derivatives and expand

°C in 8 h [Pd(OACYIPr/KsPOJTHF] to give 1c (81%,
isolated yield) (Scheme 3).

This coupling with the sulfond occurred more readily
(60 °C, THF) than with the corresponding thioether (90
toluene). It was known that arylsulfonyl chlorides function
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possibilities for new medicinal applications.
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