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The C22—-C34 portion (2) of halichondrin B was synthesized from meso-symmetric bis-silyl protected cyclopentenediol (7) in 20 steps and 7%
overall yield. This was accomplished through a two-directional synthesis/terminus differentiation strategy that proceeded via achiral, meso-
symmetric intermediates for eight steps and employed a Pd(0)-mediated asymmetric double cycloetherification to establish both tetrahydropyran

rings.

Halichondrin B (Figure 1) is the most potent member of the tubulin polymerization by binding near the vinca domain.
halichondrin family of polyether macrolides and has been Because of its potential as an effective anticancer agent, the
National Cancer Institute has recommended halichondrin B

I for stage A preclinical trials, although development has been
impeded by low isolated yield from natural sources.

Several efforts have been made to address the demand for
halichondrin B including aquacultutend total synthesis.
Kishi*® has published the only total synthesis of halichondrin
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R.; Hamel, E.; Bai, R.; Schmidt, J. M.; Tackett, L. P.;tRer, K. Gazz.
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Figure 1. Halichondrin B.
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B to date and Yonemit§iand Salomohhave each published

local mesesymmetry about C28, extending from C25

subunit syntheses. We have completed the synthesis of thehrough C31, which would allowubstratecontrolled, two-

C1-C148 C14—C21? and C37C54'° subunits, and in this
Letter we describe a route to the remaining EZ36'*
subunit of halichondrin B.

directional synthesis. However, because C23 and C33 have
the same configuration, as do C24 and CRagentcon-
trolled introduction of these stereocenters 3nvia two-

Our approach to this structurally complex natural product directional synthesis was indicated. The construction of the
has been to utilize both subunit convergence and imbeddedG- and H-rings ir8 was anticipated based on earlier success
symmetry elements to significantly simplify the subunit with Pd(0)-mediated asymmetric double cycloetherification,
syntheses. The retrosynthesis (Scheme 1) of this G,H,I-ringleaving intermediatd to serve as the cyclization substrate.

Scheme 1. Retrosynthesis
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system 1) begins with the disconnection of the I-ring at C34
and differentiation of C23 and C33 vinyl groups to gixe
It was envisioned that the C19 and C@omethylenes in

halichondrin B could be introduced simultaneously at a late
stage in the synthesis in order to increase efficiency. It was
anticipated that imposing a full measure of stereochemical

and functional group symmetry, as & would optimize a
two-directional synthesis stratedd/Note that in3 there is

(4) Synthesis of subunits: (a) Namba, K.; Jun, H.-S.; KishiJYAm.
Chem. So2004 126, 7770. (b) Choi, H.; Demeke, D.; Kang, F.-A.; Kishi,
Y.; Nakajima, K.; Nowak, P.; Wan, Z.-K.; Xie, ®ure Appl. Chem2003
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Fang, F. G.; Forsyth, C. J.; Jung, S. H.; Kishi, Y.; Matelich, M. C.; Scola,
P. M.; Spero, D. M.; Yoon, S. KJ. Am. Chem. S0d.992 114, 3162.
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Our previous efforts toward the G,H-ring system revealed
that introduction of the C32 oxygen functionality could not
be accomplished on the dihydropyran H-ritigtherefore,
the C32 hydroxyl would have to be installed prior to ring
formation to avoid this difficulty. Chiral cyclization precursor
4 could be obtained frommesesymmetric5 after two-
directional chain extension, Sharpless asymmetric epoxida-
tion (SAE)®to install the C24 and C32 oxygen functionalites,
and further two-directional chain extension. Finally, dtol
could be formed froneis-4-cyclopentene-1,3-di@'¢ through
two-directional elaboration.

The synthesis began with the known bis-silyl protected
cyclopentenediol 4),” which was oxidatively cleaved and
exposed to the StitGennart® reagent8 to give theZzZ,z-
diester9 in good yield (Scheme 2). Reduction of the diester

Scheme 2
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with DIBAL gave the bis(allylic alcohol)L0in 83% overall
yield from 7. Hydroboration with BH-THF occurred selec-
tively according to Kishi's empirical rul& establishing

(12) (a) Magnuson, S. Rietrahedron1995 51, 2167. (b) Poss, C. S.;
Schreiber, S. LAcc. Chem. Red994 27, 9.
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Sharpless, K. BJ. Am. Chem. S0d.98Q 102, 5974.
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7569.
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four stereocenters via substrate-controlled asymmetric induc-in double %2 displacement and reductive fragmentation of

tion to set the two stereotriads at C2€25 and C29-C31

the bis(iodo epoxide) using Zn powder in refluxing MeOH

in 11. Selective protection of the C30 and C26 secondary provided bis(allylic alcohol)15 in good yield. Cross-

alcohols in11 while leaving the primary alcohols at C32

and C24 unmasked was accomplished via thephiséth-
oxybenzylidine acetal), which was reduced to the 8ialith
DIBAL.?0

Two-directional chain elongation 06 via Horner-

Wadsworthi-Emmons (HWE) olefination of the derived

dialdehyde and DIBAL reduction gave tineesebis(allylic
alcohol) 13 (Scheme 3). Symmetry breaking itB was

Scheme 3
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accomplished via SAE at each allylic alcohol unit. This

(bis)epoxidation set the key C32 stereocenter along with
introduction of an extraneous oxygen at C24, resulting in
two sets of five contiguous stereocenters on the acyclic chain

in 14.

Installation of the allylic acetates needed for the Pd(0)-
mediated asymmetric double cycloetherification started with

the activation of the two primary alcohols 14 as mesylates

(Scheme 4). Treatment of the dimesylate with Nal resulted

Scheme 4
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metathesis employing the Grubbs catal{$! occurred
readily to install both allylic acetates it8.

Finally, cleavage of both TBS ethers using TBAF yielded
4, the double cycloetherification substrate. Treatment of
tetraol 4 with Pd.dba-CHCI; and the TrostR,R-DPPBA
ligand 19?2 established the bis(tetrahydropyran) G,H-rings
in 3 with control of the absolute stereochemistry at C23 and
C33 (Scheme 5). The stereochemistry of the product was

Scheme 5
OH OH : Pdodbaz*CHCl3
: (20 mol %)
(R,R)-DPPBA
(60 mol %),

CH.Cly, 76%

o) Q 0
N N
H H
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PPh,
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19

determined by 1D NOESY experiments, which gave the
enhancements shown in Figure 2.

HO.
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Figure 2. 1D NOESY enhancements B

At this point, differentiation of the C24 and C32 alcohols
was needed in order to activate the former for removal
(Scheme 6). The equatorial alcohol at C32 proved to be more
reactive than the axial alcohol at C24. Selective protection
using BzOH, DIC, and DMAP resulted in the esgrwith
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Scheme 6

BzOH, DIC

DMAP, CH,Cl,
83% (96% BORSM)

1. 0sOy, (DHQ),AQN,
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Mel 2. DMP, PTSA
100% 57% two steps
(81% BORSM)

Ph3gSnH, AIBN,
PhH, 90%

no discernible formation of the regioisomeric benzoate. This
transformation allowed for the activation of the C24 alcohol
as a xanthate using standard conditfén® give 21 in
excellent yield. Xanthat21 was then treated with BBnH*

and AIBN in refluxing benzene in order to promote the
Bartonr—McCombie deoxygenatioff,however, this resulted

in a mixture of unidentifiable products, all of which appeared
to be more polar than the startirdj. Precedent exists for
the deoxygenation of a homoallylic xanthategut also for

its failure due to competing radical cyclization reactiéhs.

(19) Kishi’'s empirical rule: (a) Cha, J. K.; Christ, W. J.; Kishi, Y.
Tetrahedronl984 40, 2247. For theoretical studies on this model see: (b)
Houk, K. N.; Rondan, N. G.; Wu, Y.-D.; Metz, J. T.; Paddon-Row, M. N.
Tetrahedronl984 40, 2257. (c) Paddon-Row, M. N.; Rondan, N. G.; Houk,
K. N. J. Am. Chem. S0d.982 104, 7162.

(20) Peng, Z.-H.; Woerpel, K. AJ. Am. Chem. So@003 125, 6018.

(21) (a) Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R1.H.
Am. Chem. SoQ003 125 11360. (b) Scholl, M.; Ding, S.; Lee, C. W.;
Grubbs, R. HOrg. Lett.1999 1, 953.

(22) (a) Trost, B. M.; Toste, F. Ol. Am. Chem. S0d.999 121, 4545.
(b) Trost, B. M.; Van Vranken, D. L.; Bingel, Q. Am. Chem. S0d.992
114, 9327.

(23) Barton, D. H. R.; McCombie, S. W. Chem. Soc., Perkin Trans.
11975 1574.

(24) Newcomb, M.Tetrahedron1993 49, 1151.
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This necessitated that the G-ring vinyl substituent be
converted into a spectator group to prevent any unwanted
cyclization and to allow subsequent elaboration of the C33
vinyl group. Selective Sharpless asymmetric dihydroxylation
of the C23 equatorial vinyl group over the C33 axial &ne
was accomplished with the (DHEYQN liganc?® to give the
diol, which was protected as an acetonide to furr&tin
moderate yield, accompanied by 30% recoverp bf

Exposure of22 to PkSnH and AIBN led to the deoxy-
genated produc? in high yield. This resulted in the fully
functionalized G- and H-rings needed for the €Z236
segmentl.

In summary, C22C34 intermediate was synthesized
in 20 steps and 7% overall yield from tineesesymmetric
cyclopentend. Four of the stereogenic centers were set in
the hydroboration of diol0 using substrate control to form
the stereotriads at C21€C25 and C29-C31. Desymmetri-
zation was accomplished by SAE, which set the key C32
oxygen stereocenter as well as introduction of an extraneous
alcohol at C24. Double cycloetherification to form the G-
and H-rings simultaneously occurred usingdfib- CHCl;
and Trost’s chiral ligand.9 to establish the C23 and C33
stereocenters. Finally, removal of the extra hydroxyl group
at C24 under Barton-McCombie conditions furnished the
fully elaborated G- and H-rings i8.
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