2004 Vol. 6, No. 21 3853-3856

Stereocontrolled Construction of Either Stereoisomer of 12-Oxatricyclo[6.3.1.0^{2,7}]dodecanes Using Prins—Pinacol Reactions

Larry E. Overman* and Emile J. Velthuisen

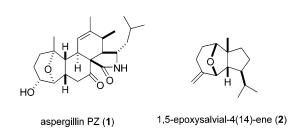
Department of Chemistry, 516 Rowland Hall, University of California, Irvine, California 92697-2025

leoverma@uci.edu

Received August 28, 2004

ABSTRACT

12-Oxatricyclo[6.3.1.0^{2,7}]dodecanes can be efficiently synthesized in a stereoselective manner by Prins—pinacol reactions. By biasing the transition state of the Prins cyclization, it is possible to access either stereoisomer of this oxatricyclic ring system.


The Prins—pinacol reaction is a powerful method to construct complex carbo- and oxacyclic ring systems. Various natural products containing fused or bridged rings have been synthesized using this reaction as the central strategic step.¹ In the context of ongoing efforts to synthesize the fungal metabolite aspergillin PZ (1), we report herein that the Prins—pinacol reaction can be tuned to construct either stereoisomer of the 12-oxatricyclo[6.3.1.0^{2.7}]dodecane ring system.

Aspergillin PZ (1) is an isoindolone alkaloid isolated recently by Pei and co-workers from the soil fungus *Aspergillus awamori*.² It is an attractive target for total synthesis because of its antitumor activity and the challenge involved in constructing its unique pentacyclic ring system, which features eight contiguous stereocenters and a 12-oxatricyclo[6.3.1.0^{2,7}]dodecane moiety. A related oxatricycloundecane unit is found in several members of the salvialane sesquiterpene family, exemplified by 1,5-epoxysalvial-4(14)-ene (2) (Figure 1).³ The relative configuration of the three rings in the natural products 1 and 2 differs: in

aspergillin PZ (1) the fused and bridged rings are oriented in a trans fashion about the central tetrahydrofuran ring, whereas in 1,5-epoxysalvial-4(14)-ene (2) they are displayed cis (Figure 2).

Our plan for preparing aspergillin PZ (1) is based upon two strategic disconnections: an intramolecular Diels—Alder cyclization (5 \rightarrow 1) to form the isoindolone unit⁴ and a Prins—pinacol reaction (7 \rightarrow 6) to construct the 12-oxatricyclo[6.3.1.0^{2.7}]dodecane core (Scheme 1).

In the proposed Prins—pinacol reaction, formation of the correct relative configuration of the 12-oxatricyclo[6.3.1.0^{2,7}]-

Figure 1. Natural products containing bridged oxatricyclic ring systems.

⁽¹⁾ For a recent review, see: Overman, L. E.; Pennington, L. D. J. Org. Chem. **2003**, *68*, 7143–7157.

⁽²⁾ Zhang, Y.; Wang, T.; Pei, Y.; Hua, H.; Feng, B. J. Antibiot. 2002, 55, 693-695.

⁽³⁾ Maurer, B.; Hauser, A. Helv. Chim. Acta 1983, 66, 2223-2235.

Figure 2. Comparison of the oxatricyclic ring systems 3 and 4 contained in aspergillin PZ (1) and 1,5-epoxysalvial-4(14)-ene (2).

dodecane moiety requires that the Prins cyclization takes place by a boat topography (Scheme 2). Cyclization occurring through a chair topography would afford an 12-oxatricyclo- $[6.3.1.0^{2.7}]$ dodecane having the configuration found in the congeneric unit of 1,5-epoxysalvial-4(14)-ene (2). In general, Prins cyclizations that form six-membered rings occur by chair topographies,⁵ which has been the case in previous Prins—pinacol reactions reported from our laboratories.¹ In the reaction pathways analyzed in Scheme 2, we conjectured that the chair process might be disfavored because of the cofacial disposition of the two six-membered rings in the conversion $\mathbf{8} \rightarrow \mathbf{9}$ (Scheme 2).

Scheme 1. Retrosynthetic Analysis of Aspergillin PZ (1)

As there was no precedent for the projected Prins—pinacol reaction $7 \rightarrow 6$, we set out to explore the feasibility of this transformation in simpler systems. Synthesis of the first model substrate was accomplished by halogen—lithium exchange of 1-iodocyclohexene⁶ (11) with *t*-BuLi, followed

Scheme 2. Stereoselection in Prins—Pinacol Reactions Assembling 12-Oxatricyclo[6.3.1.0^{2,7}]dodecanes

Boat Topography

OSiR₃

$$R_{2'}$$
 R_{1}
 R_{1}

by the addition of hydropyran aldehyde **10** (Scheme 3).⁷ The resulting 4:1 mixture of alcohols **12** and **15** was separated by HPLC, and the resulting pure epimers were silylated to provide Prins—pinacol precursors **13** and **16**. The relative configuration of these epimers was confirmed by single-crystal X-ray analysis of the *p*-nitrobenzoyl ester derivative **14** of alcohol **12**.⁹

Scheme 3. Synthesis of Prins-Pinacol Precursors **13** and **16**^a

^a Reagents and conditions: (i) *t*-BuLi, then **11**, THF, −78 °C; (ii) TESCl, imidazole, DMF, rt; (iii) 4-nitrobenzoyl chloride, pyr, DMAP, CH₂Cl₂.

Cyclohexenyl acetals **13** and **16** were exposed to several Lewis acids in order to initiate their Prins—pinacol conversions. Transformations of acetal **16** were found to be cleanest in the presence of SnCl₄. For example, reaction of **16** with 0.5 equiv of SnCl₄ in CH₂Cl₂ for 0.5 h at 0 °C provided a mixture of the 12-oxatricyclo[6.3.1.0^{2,7}]dodecane aldehyde **17** (33%) and 13-oxatricyclo[7.3.1.0^{0,0}]tridecan-8-one **19** (55%) (Scheme 4).⁸ In contrast, exposure of **13** to identical reaction conditions afforded a complex mixture of products

3854 Org. Lett., Vol. 6, No. 21, 2004

⁽⁴⁾ This strategy has been employed widely in the synthesis of alkaloids containing the isoindolone unit such as cytochalasin D and aspochalasin C; see: (a) Harkin, S. A.; Jones, R. H.; Tapolczay, D. J.; Thomas, E. J. *Chem. Soc., Perkin. Trans. I* 1989, 489–497. (b) Craven, A. P.; Dyke, H. J.; Thomas, E. J. *Tetrahedron* 1989, 45, 2417–2429. (c) Thomas, E. J.; Watts, J. P. *Chem. Soc., Perkin. Trans. I* 1999, 3285–3290.

⁽⁵⁾ For reviews of Prins cyclizations, see: (a) Arundale, E.; Mikeska, L. A. *Chem. Rev.* **1952**, *52*, 505–555. (b) Snider, B. B. In *The Prins Reaction and Carbonyl Ene Reactions;* Trost, B. M., Fleming, I., Heathcock, C. H., Ed.; Pergamom Press: New York, 1991; Vol. 2, pp 527–561.

⁽⁶⁾ Barton, D. H. R.; Bashiardes, G.; Fourrey, J.-L. Tetrahedron 1988, 44, 147–162.

⁽⁷⁾ Jurczak, J.; Bauer, T.; Tetrahedron 1986, 42, 5045-5052.

⁽⁸⁾ Prins-pinacol reaction of the TIPS analogue of **16** under similar conditions provided oxatricyclic products **17** and **19** in a 3:1 ratio (¹H NMR analysis).

Scheme 4. Prins-Pinacol Cyclization of Model Systems 13 and 16^a

^a Reagents and conditions: (i) SnCl₄, CH₂Cl₂, 0 °C; (ii) thiosemicarbazide, AcOH; (iii) DBU, benzene, 60 °C; (iv) tosyl hydrazine, AcOH.

in which aldehyde 17 and a second aldehyde of unknown structure were present in equal amounts (¹H NMR analysis), albeit in low yield.

Structures of the tricyclic products formed from cyclohexenyl acetal **16** were established as follows. The constitution and relative configuration of **17** was confirmed by single-crystal X-ray analysis of thiosemicarbazone derivative **18**.9 Ketone **19** was equilibrated to the thermodynamically more stable epimer **20**, which provided a tosylhydrazone derivative **21** suitable for single-crystal X-ray analysis.9

Formation of the *cis*-12-oxatricyclo[$6.3.1.0^{2.7}$]dodecane aldehyde **17** from Prins—pinacol transformation of **16** establishes that cofacial orientation of the two six-membered rings is feasible with Prins cyclization occurring by a chair topography (**22** \rightarrow **23**). The byproduct, oxatricyclotri-

Scheme 5. Hydride versus Carbon Bond Migration in a Chair Topography Cyclization

decanone **19**, would arise from the resulting carbenium ion intermediate **23** undergoing hydride migration competitively with migration of the ring bond (Scheme 5).

To favor a boat topography for the Prins cyclization, we chose to introduce additional steric hindrance between the cofacial six-membered rings by having the R² substituent of the generalized sequence depicted in Scheme 2 be a group other than hydrogen. In the context of a synthetic approach to aspergillin PZ (1), incorporating a 1,3-dithiane as a carbonyl surrogate adjacent to the oxocarbenium ion was particularly appealing.

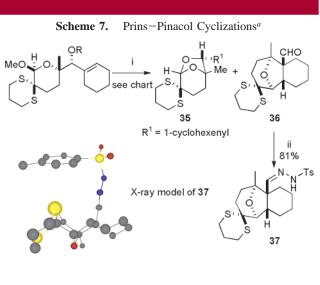
The synthesis of such a Prins—pinacol precursor is outlined in Scheme 6. The sequence commenced with the reaction

Scheme 6. Synthesis of Prins—Pinacol Precursors in the Dithiane Series^a

^a Reagents and conditions: (i) *m*-CPBA, MeOH, 0 °C; (ii) oxalyl chloride, DMSO, Et₃N; (iii) propanedithiol, BF₃•OEt₂, CH₂Cl₂, rt; (iv) LiAlH₄, Et₂O; (v) *t*-BuLi, then **11**, Et₂O, −78 °C; (vi) TESCl, imid, DMF; (vii) TIPSOTf, pyr, DMAP, CH₂Cl₂, rt.

of dihydropyran **24**¹⁰ with *m*-CPBA in MeOH to deliver tetrahydropyran **25**, which upon Swern oxidation provided ketone **26** as a mixture of methoxy anomers.¹¹ Subsequent treatment of this keto acetal with propanedithiol and BF₃•

Org. Lett., Vol. 6, No. 21, 2004


⁽⁹⁾ Crystallographic data for this compound was deposited at the Cambridge Crystallographic Data Centre; CCDC numbers: **14**, 249137; **18**, 249133; **21**, 249132; **29**, 249135; **31**, 249134; **37**, 249136.

⁽¹⁰⁾ Smith, C. W.; Norton, D. G.; Ballard, S. A. J. Am. Chem. Soc. 1951, 73, 5270-5272.

⁽¹¹⁾ Mancuso, A. J.; Huang, S.; Swern, D. J. Org. Chem. 1978, 43, 2480–2482.

OEt₂ yielded the desired 1,3-dithiane **27** as a 4:1 mixture of methoxy anomers. The major anomer, isolated by flash chromatography in 45% yield, was advanced through a standard reduction/oxidation sequence to produce aldehyde **29**. At this point, the relative configuration of the two stereocenters of **29** could be established by single-crystal X-ray analysis.⁹ Coupling of aldehyde **29** with cyclohexenyllithium provided a 4:1 mixture of alcohol epimers **30** and **33**. These diastereomers were separated by HPLC and independently silylated to generate potential Prinspinacol substrates **31**, **32**, and **34** (Scheme 6). The triethylsilyl derivative **31** provided single crystals, allowing its relative configuration to be established by X-ray analysis.⁹

Prins—pinacol rearrangement in the dithiane series was investigated initially with triethylsilyl derivative **31**. Exposing this intermediate to $SnCl_4$ (0.5 equiv) for 0.5 h at 0 °C in CH_2Cl_2 provided a 3:1 mixture of the tricyclic acetal **35** and the desired *trans*-12-oxatricyclo[6.3.1.0^{2,7}]dodecane aldehyde **36** (Scheme 7). The relative configuration of this latter

 entry
 R
 ratio (35:36)^b
 yield

 1 (30)
 H
 (>20:1.0)
 99%

 2 (31)
 TES
 (3.0:1.0)
 nd

 3 (32)
 TIPS
 (1.0:>20)
 81%

 a Reagents and conditions: (i) SnCl₄ (0.5 eq), CH₂Cl₂, 0 °C; (ii) TsNHNH₂, AcOH.

product was signaled initially by the <1 Hz coupling constant observed between its angular hydrogen and the adjacent

hydrogen of the tetrahydrofuran ring. This coupling would only be expected if the dihedral angle between these hydrogens is $\sim 90^{\circ}$. The relative configuration of **36** was confirmed subsequently by single-crystal X-ray analysis of tosylhydrazone derivative **37**.

The competitive formation of tricyclic acetal **35** most likely results from partial loss of the SiEt₃ group under the reaction conditions. Supporting this theory, SnCl₄-promoted reaction of hydroxy acetal **30** under identical reaction conditions yielded cyclic acetal **35** as the sole product. Buffering the reaction of triethylsilyl acetal **31** with 0.5 equiv of 4-methyl-2,6-di-*tert*-butylpyridine did not fully inhibit formation of cyclic acetal **35**.¹³ Accordingly, the more robust TIPS silyl ether **32** was examined. In this case, Prins—pinacol reaction occurred cleanly to provide *trans*-oxatricyclododecane aldehyde **36** in 81% isolated yield (Scheme 7). As observed in the earlier model series, the stereoisomeric triisopropylsiloxy acetal **34** afforded an intractable mixture of products under identical reaction conditions.

In summary, using a Prins—pinacol strategy, it is possible to stereoselectively construct 12-oxatricyclo[6.3.1.0^{2.7}]dodecanes having either the cis or trans relationship of the fused and bridged rings that adorn the central tetrahydrofuran unit. With sterically unbiased substrates, the Prins cyclization preferentially occurs in a chair topography to yield the cis stereoisomer. However, it is also possible to exploit unfavorable steric interactions to disfavor the chair transition structure and force the reaction to proceed through a boat topography to provide the stereoisomeric trans oxatricyclic product. This latter result lends credence to the synthetic approach to aspergillin PZ (1) adumbrated in Figure 1.

Acknowledgment. This research was supported by the NIH Neurological Disorders & Stroke Institute (NS-12389); fellowship support for E.J.V. from Amgen is gratefully acknowledged. We thank Dr. Joe Ziller for X-ray analyses. NMR and mass spectra were obtained at UC Irvine using instrumentation acquired with the assistance of NSF and NIH Shared Instrumentation programs.

Supporting Information Available: Experimental procedures for the preparation of **12–21** and **27–37**; tabulated characterization data and copies of ¹H and ¹³C NMR spectra for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0482745

3856 Org. Lett., Vol. 6, No. 21, 2004

 $[\]left(12\right)A$ coupling of 4.2 Hz is observed between the corresponding hydrogens of 17.

⁽¹³⁾ The ratio of 35/36 in this case was 1:1.