Tetrahedron Letters 55 (2014) 1057-1061

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Simple and catalyst-free method for the synthesis of diaryl selenides by reactions of arylselenols and arenediazonium salts

Renata A. Balaguez, Vanessa Gentil Ricordi, Camilo S. Freitas, Gelson Perin, Ricardo F. Schumacher, Diego Alves *

Laboratório de Síntese Orgânica Limpa, LASOL, CCQFA, Universidade Federal de Pelotas, UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil

ARTICLE INFO

Article history: Received 22 November 2013 Revised 18 December 2013 Accepted 23 December 2013 Available online 3 January 2014

Keywords: Organoselenium compounds Selenol Arenediazonium salts Hypophosphorous acid Nucleophilic aromatic substitution

ABSTRACT

We describe here a simple and catalyst-free method to synthesize diaryl selenides by reaction of arenediazonium tetrafluoroborate salts with arylselenols, generated in situ by using diaryl diselenides and hypophosphorous acid (H_3PO_2) , using THF as solvent. This is a direct nucleophilic aromatic substitution (SNAr) reaction performed with diaryl diselenides and arenediazonium salts bearing electron-withdrawing and electron-donating groups affording the corresponding diaryl selenides in moderated to good yields.

Crown Copyright © 2014 Published by Elsevier Ltd. All rights reserved.

Organoselenium compounds are attractive molecules due their selective reactions¹ and the interest in the synthesis of these compounds has increased in the last years because of their applicability in materials² and biological areas.³ Diaryl selenides are certainly the organoselenium compounds most studied and a large number of methodologies have been reported to prepare these compounds.^{1a-d} Additionally, diaryl selenides have attracted considerable attention because of their biological activities (e.g. anticancer, antitumor, antiviral, antimicrobial, and antioxidant) and some biologically important molecules containing the diaryl selenide skeleton are shown in Figure 1.⁴

Usually, the methodologies describe that the C_{Ar} -Se bond formation requires long reaction times, harsh reaction conditions, stoichiometric, or great amount of metallic reagents and sometimes the products are only generated in moderate yields.^{1a-d} To overcome these limitations, much attention has recently been focused to develop catalytic systems in transition metal-catalyzed C_{Ar} -Se bond formation.⁵ Generally these catalytic systems involve particularly specific ligands, which may increase the cost and limit the scope of applications.⁵ Commonly, to avoid the foul smelling nature of selenium reagents, diaryl diselenides are used instead of arylselenols as coupling partners in the synthesis of diaryl selenides.⁵ However, sometimes these protocols suffer from long reaction times, the necessity for high temperatures and are suitable for a relatively narrow scope of substrates.⁵ Furthermore, there is still an attention in developing of simple, selective, and catalyst-free methodologies to produce diaryl selenides in high yields.

In this sense, the reactions of nucleophilic arylselenium species with arenediazonium salts are an interesting approach for the synthesis of diaryl selenides.⁶ Arenediazonium salts have been utilized as reactive aryl halide surrogates in transition metal-catalyzed cross-coupling reactions for C–C and C-Heteroatom bond formation.⁷ In the case of C–Se bond formation by using arenediazonium salts, recently Ranu and co-workers described a great procedure for the synthesis of diaryl selenides by the reaction of diazonium tetrafluoroborates and diaryl diselenides on alumina surface under ball-milling without any solvent or metal.^{6a} Reactions of arenediazonium salts with diaryl diselenides were also reported earlier by the same author and in a simple one-pot reaction in the presence of Zn dust in dimethyl carbonate under microwave irradiation. In this work are described a wide range of functionalized diaryl chalcogenides obtained in high purity and good yields.^{6b}

In view of the explained above and according to our interest in the development of protocols correlated to the synthesis of diaryl selenides,⁸ we report here our contribution to the application of arenediazonium salts in the synthesis of diaryl selenides. The present methodology describes the simple and catalyst-free aromatic nucleophilic substitution (SNAr) of arenediazonium salts with aryl-selenols, generated in situ by reaction of diaryl diselenides with hypophosphorous acid (H_3PO_2) (Scheme 1).

Initially, we choose diphenyl diselenide 1a (0.25 mmol) and 4methoxyphenyl diazonium tetrafluoroborate 2a (0.5 mmol) as model substrates to establish the best conditions for this reaction

^{*} Corresponding author. Tel./fax: +55 5332757533. E-mail address: diego.alves@ufpel.edu.br (D. Alves).

Figure 1. Diaryl selenides biologically important.

Scheme 1. General scheme of the reaction.

Table 1 Optimization of reaction conditions

hSeSePh	1) H ₃ PO ₂ / THF/ t. a., N ₂		
		MeO - SePh	
1a	MeO - N ₂ BF ₄	3a	
	2a		

Entry	H_3PO_2 (mL)	Solvent	Arenediazonium salt 2a (mmol)	Time ^a (h)	Yield of 3a ^b (%)
1	0.1	THF	0.5	5	54
2	0.1	DMF	0.5	24	41
3	0.1	EtOH	0.5	9	45
4	0.1	Glycerol ^c	0.5	24	36
5	0.1	Toluene	0.5	24	30
6	0.1	MeCN	0.5	24	_
7	0.1	CH_2Cl_2	0.5	24	_
8	0.1	H ₂ O	0.5	24	_
9	0.1	THF	0.5 ^d	5	65
10	0.05	THF	0.5 ^d	5	69
11	0.05	THF	0.75 ^d	5	76
12	0.05	THF	1.0 ^d	5	76
13	0.05	THF	1.5 ^d	5	78
14	0.025	THF	0.75 ^d	5	65

This time include preliminary 1 h of diphenyl diselenide cleavato in situ formation of benzeneselenol.

F

^b Yields are given for isolated product **3a**.

 $^{\rm c}\,$ The in situ formation of benzeneselenol was performed at 90 °C for 6 h.

^d Arenediazonium salt **2a** was added in 4 portions during an interval of 30-30 min.

and some experiments, including solvent tests and stoichiometry, were preformed to synthesize diaryl selenide 3a (Table 1). According to the literature, diorganyl diselenides are reduced to the corresponding organyl selenols by treatment with H₃PO₂ and this fact encouraged us to use this reducing agent to obtain in situ the nucleophilic selenium species of our reaction.^{8c,9} While the arylselenol is generated in situ under nitrogen atmosphere, the bad smell of this selenating agent does not become an inconvenience.

Thus, a mixture of diphenyl diselenide 1a and 0.1 mL of H₃PO₂ (50 wt % in H₂O) in THF (1.0 mL) was stirred at room temperature for 1 h under N₂ atmosphere to afford in situ the benzeneselenol. The diphenyl diselenide cleavage was accompanied by the change in the reaction solution color, from yellow to colorless. After this arenediazonium salt 2a (0.5 mmol) was added in the reaction vessel and the reaction remained at room temperature for additional 4 h. Under these reaction conditions, the product **3a** was obtained only in moderate yield (Table 1, entry 1). Regarding the influence of the solvent on the reaction, a range of polar and apolar solvents were tested on the same protocol described above and the desired product 3a was obtained in lower yields comparing reaction performed in THF (Table 1, entries 1 vs 2–5). When the reactions were performed using MeCN, CH₂Cl₂, and H₂O as solvents, the benzeneselenol formation was not observed (Table 1, entries 6-8). Interestingly, when we carried out the reaction in THF and after the formation of benzeneselenol we added the arenediazonium salt 2a in four portions during an interval of 30–30 min followed for additional 2 h, the yield of product 3a was increased to 65% (Table 1, entry 9). This good result prompted us to perform this reaction decreasing the quantity of H₃PO₂ and keeping the addition of the arenediazonium salt 2a in four portions. To our satisfaction, the use of 0.05 mL of H₃PO₂ furnished the desired product **3a** in

Table 2

Generality of the reaction of arenediazonium tetrafluoroborates with in situ generated arylselenols^a

(continued on next page)

1060

Table 2 (continued)

^a The reactions were performed using diselenide **1a-g** (0.25 mmol), H_3PO_2 (50 wt % in H_2O ; 0.05 mL), THF (1.0 mL), and arenediazonium tetrafluoroborate salt **2a-h** (0.75 mmol), at room temperature under N_2 atmosphere.

^b Yields are given for isolated products.

approximately the same yield after 5 h (Table 1, entry 10). Gratefully, when the reaction was performed using 0.05 mL of H_3PO_2 and using an excess of arenediazonium salt **2a**, the corresponding product **3a** was obtained in good yields (Table 1, entries 11–13). When we used 0.025 mL of H_3PO_2 a slight decrease in the yield of product **3a** was observed (Table 1, entry 14).

Analysis of the results showed in Table 1 indicated that the optimum condition were the previous reaction of diphenyl diselenide **1a** (0.25 mmol) with H₃PO₂ (0.05 mL) in THF (1.0 mL) at room temperature for 1 h under N₂ atmosphere to in situ formation of benzeneselenol. Following, arenediazonium salt **2a** (0.75 mmol) was added in 4 portions during an interval of 30–30 min and the stirring continued at room temperature for additional 2 h.¹⁰

In order to demonstrate the efficiency of this reaction, we explored the generality of our method extending the conditions to other diaryldiselenides **1a**–**g** differently substituted and different aromatic diazonium salts **2a**–**h**, and the results are summarized in Table 2.

The results disclosed in Table 2 reveal that the reaction worked well with a range of substituted aromatic diazonium salts **2**, affording moderated to good yields of the desired diarylselenides **3**. Our results reveal that the reactions are not sensitive to the electronic effect of the aromatic ring in the arenediazonium salt. Therefore, a comparison between the entries 1–3 versus 5–8, which used arenediazonium salts substituted with electron-donating groups (EDG) and electron-withdrawing group (EWG), displays similar yields for the obtained products.

In addition, the possibility of performing the reaction with other diaryl diselenides **1b–g** was also investigated. 4-Methoxyphenyl diazonium tetrafluorborate **2a** was efficiently reacted with a range of diaryl diselenides containing EDG and EWG groups at the aromatic ring, affording the respective diarylselenides **3i–n** in acceptable yields (Table 2, entries 9–14). We also observed that the reactions are not sensitive to the electronic effect of the aromatic ring in the arenediazonium salt (Table 2, entries 9–11 vs 12–13). We found little influence of steric effects on the course of the reaction, once that by using the diselenide **1g** containing a mesityl group, a lower yield of the desired product **3n** was achieved (Table 2, entry 14). These results demonstrated that several substituents/functional groups such as Me, OMe, Cl, F, and CF₃ are compatible with these reaction conditions.

In summary, we developed a simple and catalyst-free method to synthesize diaryl selenides by reactions using arenediazonium tetrafluoroborate salts. The aromatic nucleophilic substitution (SNAr) of arenediazonium salts with arylselenols, generated in situ by reaction of diaryl diselenides with hypophosphorous acid (H₃PO₂), was performed using THF as solvent at room temperature and establishing a new route to obtain diaryl selenides containing electron-withdrawing and electron-donating groups in moderate to good yields.

Acknowledgments

We are grateful to FINEP, CAPES, CNPq (Grant 473165/2012-0) and FAPERGS for the financial support.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.201 3.12.086.

References and notes

- (a) Alberto, E. E.; Braga, A. L. In Selenium and Tellurium Chemistry From Small Molecules to Biomolecules and Materials; Derek, W. J.; Risto, L., Eds.; Springer-Verlag: Berlin Heidelberg, 2011.; (b) Wirth, T. In Organoselenium Chemistry: Synthesis and Reactions; Wiley-VCH: Weinheim, 2011.; (c) Menezes, P. H.; Zeni, G. Vinyl Selenides. In Patai's Chemistry of Functional Groups; John Wiley & Sons: Oxford, 2011.; (d) Devillanova, F. A. In Handbook Of Chalcogen Chemistry: New Perspectives in S, Se and Te; Royal Society of Chemistry: Cambridge, 2006.; (e) Perin, G.; Lenardão, E. J.; Jacob, R. G.; Panatieri, R. B. Chem. Rev. 2009, 109, 1277; (f) Freudendahl, D. M.; Santoro, S.; Shahzad, S. A.; Santi, C.; Wirth, T. Angew, Chem., Int. Ed. 2009, 48, 8409; (g) Santi, C.; Santoro, S.; Battistelli, B. Curr. Org. Chem. 2010, 14, 2442; (h) Freudendahl, D. M.; Shahzad, S. A.; Wirth, T. Eur. J. Org. Chem. 2009, 1649; (i) Braga, A. L.; Lüdtke, D. S.; Vargas, F. Curr. Org. Chem. 2006, 10, 1921; (j) Godoi, M.; Paixão, M. W.; Braga, A. L. Dalton Trans. 2011, 40, 11347.
- (a) Rampon, D. S.; Rodembusch, F. S.; Schneider, J. M. F. M.; Bechtold, I. H.; Gonçalves, P. F. B.; Merlo, A.; Schneider, P. H. *J. Mater. Chem.* **2010**, *20*, 715; (b) Samb, I.; Bell, J.; Toullec, P. Y.; Michelet, V.; Leray, I. Org. Lett. **2011**, *13*, 1182; (c) Goswani, S.; Hazra, A.; Chakrabarty, R.; Fun, H.-K. Org. Lett. **2009**, *11*, 4350; (d) Tang, B.; Xing, Y.; Li, P.; Zhang, N.; Yu, F.; Yang, G. J. Am. Chem. Soc. **2007**, *129*, 11666.
- (a) Parnham, M. J.; Graf, E. Prog. Drug Res. 1991, 36, 9; (b) Mugesh, G.; du Mont, W. W.; Sies, H. Chem. Rev. 2001, 101, 2125; (c) Nogueira, C. W.; Zeni, G.; Rocha, J. B. T. Chem. Rev. 2004, 104, 6255; (d) Alberto, E. E.; Nascimento, V.; Braga, A. L. J. Braz. Chem. Soc. 2010, 21, 2032; (e) Nogueira, C. W.; Rocha, J. B. T. J. Braz. Chem. Soc. 2010, 21, 2055; (f) Nogueira, C. W.; Rocha, J. B. T. Arch. Toxicol. 2011, 85, 1313.
- (a) Santos, E. A.; Hamel, E.; Bai, R.; Burnett, J. C.; Tozatti, C. S. S.; Bogo, D.; Perdomo, R. T.; Antunes, A. M. M.; Marques, M. M.; Matos, M. F. C.; Lima, D. P. *Bioorg, Med. Chem. Lett.* **2013**, *23*, 4669; (b) Millois, C.; Diaz, P. Org. Lett. **2000**, *2*, 1705; (c) Back, T. G.; Moussa, Z. J. Am. Chem. Soc. **2003**, 125, 13455; (d) Anderson, C.-M.; Hallberg, A.; Haegberg, T. Adv. Drug. Res. **1996**, 28, 65; (e) Clark, L. C.; Combs, G. F.; Turnbull, B. W.; Slate, E. H.; Chalker, D. K.; Chow, J.; Davis, L. S.; Glover, R. A.; Graham, G. F.; Gross, E. G.; Krongrad, A.; Lesher, J. L.; Park, K.; Sanders, B. B.; Smith, C. L.; Taylor, R. J. Am. Med. Assoc. **1996**, 276, 1957; (f) Engman, L.; Cotgreave, I.; Angulo, M.; Taylor, C. W.; Paine-Murrieta, G. D.; Powis, G. Anticancer Res. **1997**, *17*, 4599; (g) Goudgaon, N. M.; Naguib, F. N.; el Kouni, M. H.; Schinazi, R. F. J. Med. Chem. **1993**, 36, 4250.

- For recent reviews see: (a) Beletskaya, I. P.; Ananikov, V. P. Chem. Rev. 2011, 111, 1596; (b) Ananikov, V. P.; Zalesskiy, S. S.; Beletskaya, I. P. Curr. Org. Synthesis 2011, 8, 2.
- (a) Mukherjee, N.; Chatterjee, T.; Ranu, B. C. J. Org. Chem. 2013, 78, 11110; (b) Kundu, D.; Ahammed, S.; Ranu, B. C. Green. Chem. 2012, 14, 2024; (c) Beletskaya, I. P.; Sigeev, A. S.; Peregudov, A. S.; Petrovskii, P. V. J. Organomet. Chem. 2000, 605, 96; (d) Evers, M. J.; Christiaens, L. E.; Renson, M. J. J. Org. Chem. 1986, 51, 5196.
- For recent examples see: (a) Mo, F.; Dong, G.; Zhanga, Y.; Wang, J. Org. Biomol. Chem. 2013, 11, 1582; (b) Bonin, H.; Fouquet, E.; Felpin, F.-X. Adv. Synth. Cat. 2011, 353, 3063; (c) Taylor, J. G.; Moro, A. V.; Correia, C. R. D. Eur. J. Org. Chem. 2011, 1403.
- (a) Ricordi, V. G.; Freitas, C. S.; Perin, G.; Lenardão, E. J.; Jacob, R. G.; Savegnago, L.; Alves, D. Green Chem. 2012, 14, 1030; (b) Freitas, C. S.; Barcellos, A. M.; Ricordi, V. G.; Pena, J. M.; Perin, G.; Jacob, R. G.; Lenardão, E. J.; Alves, D. Green Chem. 2011, 13, 2931; (c) Thurow, S.; Webber, R.; Perin, G.; Lenardão, E. J.; Alves, D. Tetrahedron Lett. 2013, 54, 3215; (d) Alves, D.; Santos, C. G.; Paixão, M. W.; Soares, L. C.; Souza, D.; Rodrigues, O. E. D.; Braga, A. L. Tetrahedron Lett. 2009, 50, 6635.
- (a) Günther, W. H. H. J. Org. Chem. **1966**, 31, 1202; (b) Salmond, W. G.; Barta, M. A.; Cain, A. M.; Sobala, M. C. Tetrahedron Lett. **1977**, 20, 1683; (c) Comasseto, J. V.; Petragnani, N. J. Organomet. Chem. **1978**, 152, 295.
- 10. General procedure for the reaction: To a 5 mL round-bottomed flask containing a solution of appropriate diorganyl diselenide **1a**–**g** (0.25 mmol) in THF (1.0 mL) under N₂ atmosphere, was added H₃PO₂ 50 wt % in H₂O (0.05 mL). The resulting solution was stirred for 1 h at room temperature, when its color changes from yellow to colorless. After this arenediazonium tetrafluoroborate salt **2a**–**h** (0.75 mmol) was added in 4 portions during an interval of 30–30 min, and the reaction remained at room temperature for additional 2 h. After that, the reaction mixture was received in water (20 mL), extracted with ethyl acetate (3×5 mL), dried over MgSO₄, and concentrated under vacuum. The residue was purified by column chromatography on silica gel using ethyl acetate/hexane as the eluent. Selected spectral and analytical data for 4–*Methoxyphenyl-phenyl-selenide* 3a.^{8a} ¹H NMR (CDCl₃, 400 MHz): δ 7.50 (d, J = 8.8 Hz, 2H); 7.33–7.31 (m, 2H); 7.21–7.16 (m, 3H); 6.84 (d, J = 8.4 Hz, 2H); 3.79 (s, 3H). ¹³C NMR (CDCl₃ 100 MHz); δ (ppm): 159.7, 136.5, 133.2, 130.9, 129.1, 126.4, 119.9, 115.1, 55.2. MS (relative intensity) *m/z*: 264 (65), 262 (34), 184 (100), 153 (32), 65 (14).