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Abstract: The reaction of N,N-dimethylsulfamoyl aziridines with
primary amines gives direct access to substituted 1,2,5-thiadiazol-
idines in a regioselective manner. Furthermore, the product from
reaction with 4-methoxybenzyl amine can be subsequently mani-
pulated to give the alternative nitrogen substitution pattern in a
controlled fashion.
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As part of a progamme to develop potent and selective in-
hibitors of g-secretase for the treatment of Alzheimer’s
disease, we identified a series of cyclic sulfamides1 with
the general structure shown in Figure 1. We herein report
an improved synthesis of substituted 1,2,5-thiadiazol-
idines, which facilitates rapid exploration of structure–
activity relationships for this class of compounds.

Figure 1

Our initial approach introduced the nitrogen substituent,
R, by alkylation of the parent heterocycle, which in turn
was prepared by reaction of the appropriate diamine with
sulfamide (Scheme 1).2

However, in some cases bis-alkylation led to a significant
reduction in yield of the required product, despite the use
of stoichiometric amounts of electrophile. This led us to
examine aziridine opening with primary amines as an al-
ternative method to create and control the desired substi-
tution pattern of the final heterocycle. Ellman and others3

have demonstrated the utility of the tert-butylsulfinyl
group in amine synthesis. An attractive feature is that it
can be removed under mild conditions, but opening of a
tert-butylsulfinyl aziridine4 with an amine requires some-
what elevated temperatures.5 Therefore, we first targeted
the tert-butylsulfonyl analogue. In accordance with litera-
ture precedent,6 the reaction of 6 with an amine proceeds
smoothly and with complete regiocontrol, but removal of

a tert-butylsulfonyl group requires strongly acidic condi-
tions that are often incompatible with many functional
groups.

We speculated that it may be possible to activate aziridine
opening with a sulfonyl group in which the tert-butyl
group is replaced with a moiety that could function as a
leaving group, thus facilitating in situ cyclisation to give
the cyclic sulfamide in one step (Scheme 2). This would
give the desired heterocycle directly, with the required
substitution pattern, and negate the need for harsh condi-
tions in either the opening of the aziridine or removal of
the activating group.

Scheme 2
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Scheme 1 Reagents and conditions: a) NH4OH, NaCN, NH3,
MeOH, 0 °C, 70%; b) LiAlH4, THF, r.t., 77%; c) SO2(NH2)2, pyri-
dine, reflux, 85%; d) NaH, RBr, DMF, r.t.; e) (±)-t-BuS(O)NH2,
Ti(OEt)4, THF, reflux, 72%; f) Me3S(O)I, NaH, DMSO, 81%; g) t-
BuSO2NH2, TiCl4, Et3N, (ClCH2)2, reflux, 83%; h) Me3S(O)I, NaH,
DMSO, 48%; i) RNH2, DMSO, 100 °C, 55–90%; j) CF3SO3H, ani-
sole, CH2Cl2, 0 °C to r.t.; k) SO2(NH2)2, pyridine, reflux, 36–67%, 2
steps.
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To test this possibility we chose to examine the reactivity
of N,N-dimethylsulfamoyl aziridines (X = NMe2). These
may be accessed from the tert-butylsulfinyl aziridine by
deprotection with HCl in methanol followed by reaction
with dimethylsulfamoyl chloride (Scheme 3). Alterna-
tively, they can be constructed from an amino alcohol in a
straightforward manner as shown in Scheme 4. The di-
methylsulfamoyl group can be introduced either follow-
ing Mitsunobu reaction7 or prior to conversion of the
alcohol to a leaving group. Both options serve as effective
routes to the desired heterocycle.

Scheme 3 Reagents and conditions: a) HCl, dioxane, MeOH, 0 °C,
76%; b) Me2NSO2Cl, Et3N, CH2Cl2, r.t., 63%.

Scheme 4 Reagents and conditions: a) Me2NSO2Cl, Et3N, CH2Cl2,
r.t., 91%; b) MsCl, Et3N, CH2Cl2, r.t., 86%; c) NaH, THF, 0 °C, 83%;
d) DIAD, PPh3, PhMe, reflux, 62%; e) Me2NSO2Cl, Et3N, CH2Cl2,
r.t., 78%.

A more concise synthesis of N,N-dimethylsulfamoyl azir-
idines,8 starting from a carbonyl group, was developed
through adaptation of the sulfinyl imine chemistry de-
scribed in Scheme 1. Substituting dimethylsulfamide for
tert-butylsulfinamide affords the N,N-dimethylsulfamoyl
imine in modest yield9 (Scheme 5); subsequent reaction
with trimethylsulfoxonium ylide10 proceeds well to give
the activated aziridine in comparable overall yield to the
other routes described.

We found that simply heating 10 in DMSO at 100 °C with
five equivalents of a primary amine affords the desired cy-
clic sulfamide directly and in good yield (Scheme 6).

Aziridines 12 and 15 were then employed to test a range
of amines in this transformation (Table 1). Good yields
and regioselectivity were observed with allylic, benzylic
and sterically demanding aliphatic amines. Aliphatic
amines with heteroatoms, and heteroaromatic benzylic
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Scheme 5 Reagents and conditions: a) Me2NSO2NH2, Ti(OEt)4,
THF, reflux, 50%; b) Me3S(O)I, NaH, DMSO, 87%.
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Scheme 6 Reagents and conditions: a) RNH2, DMSO, 100 °C (16:
80%; 17: 90%).
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Table 1 Reaction of Aziridines 12 and 15 with Amines11

Entry RNH2

1 18a, 87% 19a, 87%12

2 18b, 78% 19b, 66%

3 18c, 72% 19c, 67%

4 18d, 66% 19d, 77%

5 18e, 79% 19e, 81%

6 18f, 76% 19f, 64%

7 18g, 60% 19g, 66%
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amines also performed well. Interestingly, the reaction of
12 with aniline, under the standard conditions, failed to
give the desired cyclic sulfamide. Instead, the product of
simple aziridine opening (Figure 2) was isolated in good
yield (90%).

The product from reaction with 4-methoxybenzylamine
can be further manipulated to access alternatively substi-
tuted analogues (Scheme 7). The sulfamide reacts
smoothly with simple alkyl halides after deprotonation
with sodium hydride,13 and the 4-methoxybenzyl group
can then be removed by treatment with trifluoroacetic acid
at room temperature.14

Scheme 7 Reagents and conditions: a) RNH2, DMSO, 100 °C (19a:
87%; 19f: 64%); b) NaH, THF, n-PrBr, 96%; c) TFA, 99%.

In conclusion, we have developed a novel reaction of N,N-
dimethylsulfamoyl aziridines with primary amines to fur-
nish substituted 1,2,5-thiadiazolidines in a regioselective
manner. Furthermore, we have shown that the product
from reaction with 4-methoxybenzyl amine can be subse-
quently manipulated to give access to any desired nitrogen
substitution pattern in a controlled fashion.
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22 –35 (c 1, MeOH). The ee was  determined 
to be >99% by chiral HPLC (CHIRALPAK AD-H, 15% 
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then dried (MgSO4), filtered and evaporated. The residue 
was purified by chromatography (silica, 10% EtOAc–
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colourless oil. 1H NMR (400 MHz, CDCl3): d = 0.95 (3 H, t, 
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