Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Discovery of ONO-8590580: A novel, potent and selective GABA_A α_5 negative allosteric modulator for the treatment of cognitive disorders

A. Lewis^a, A. Beresford^a, M.S. Chambers^a, G. Clark^a, D.C. Hartley^a, K.L. Hirst^a, M. Higashino^b, S. Kawahadara^b, M. Nakanishi^b, T. Saito^b, A. Imagawa^b, H. Habashita^b, S. Maidment^a, A.M. Macleod^a, A.P. Owens^a, A. Rae^{a,*}, C. Rouse^a, G. Wishart^a

^a Charles River Discovery Research Services, Chesterford Research Park, Little Chesterford, Essex CB10 1XL, United Kingdom ^b Ono Pharmaceutical Co. Ltd., Minase Research Institute, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan

ARTICLE INFO

Keywords: GABAA a5 Negative allosteric modulator Cognition enhancement ONO-8590580

ABSTRACT

The identification and SAR development of a series of negative allosteric modulators of the GABAA a5 receptor is described. This novel series of compounds was optimised to provide analogues with high GABAA a5 binding affinity, high α 5 negative allosteric modulatory activity, good functional subtype selectivity and low microsomal turnover, culminating in identification of ONO-8590580.

GABA_A receptors are pentameric membrane proteins that gate chloride ions in response to the binding of γ -aminobutyric acid (GABA). GABA_A ion channels containing the α 5-subunit (GABA_A α 5) are highly expressed in the hippocampus, a key area of the brain associated with cognitive processing,¹ and it has previously been shown that $GABA_A \alpha 5$ negative allosteric modulators (NAMs) are efficacious in models thought to reflect pro-cognitive properties in rodents.^{2,3,4} Furthermore, mice with a disrupted $\alpha 5$ gene ($\alpha 5 - / -$ mice) show improved performance in the spatial learning water maze test compared with wildtype mice.⁵ Taken together, these data support the hypothesis that $GABA_A \alpha 5$ NAMs may offer the apeutic potential for the treatment of cognitive disorders, such as Down's syndrome and Alzheimer's disease. However, in adopting this therapeutic approach it is essential that the $GABA_A \alpha 5$ NAM should demonstrate binding or functional selectivity for the GABA_A $\alpha 5\text{-subunit},$ as negative modulation of other GABA_A subunits expressed in the CNS can lead to unwanted pro-convulsant (GABA_A α 1) or anxiogenic (GABA_A α 2 or GABA_A α 3) effects.^{6,7}

This approach to cognition enhancement has attracted considerable attention in recent years, with several GABA_A $\alpha 5$ NAMs, including α 5IA, MRK-016 and basmisanil reaching clinical evaluation (Fig. 1).^{2,3,4,8,9} In Down's Syndrome subjects, basmisanil did not demonstrate efficacy in the cognition primary end-points¹⁰ and has subsequently been withdrawn from Roche's pipeline. Merck's a5IA was evaluated for cognitive performance in ethanol-impaired volunteers. and those subjects on drug demonstrated a significant improvement in a list recall experiment compared to those on placebo.¹¹ However,

progression of α 5IA was terminated due to renal toxicity in pre-clinical species.¹² MRK-016 entered Phase I clinical evaluation but was subsequently terminated due to poor tolerability in elderly patients and variable pharmacokinetics.²

In order to identify starting points for a GABA_A α 5 NAM drug discovery program, approximately 124,000 compounds were screened from the Charles River Laboratories screening collection, at a concentration of 10 µM, in both receptor binding and FLIPR functional assays against human GABA_A $\alpha 5\beta 3\gamma 2$ expressed in HEK293 cells. In the high throughput screen (HTS), receptor binding was assessed by measuring the inhibition of binding of commercially available [³H]-Ro15-1788 ([³H]-flumazenil), and in the FLIPR assays an EC₂₀ concentration of GABA was co-applied with the test compound, in order to determine the functional response.¹³ Following the HTS, 525 compounds showed > 40% inhibition at 10 μ M in both the binding and FLIPR assays, which were progressed to determination of binding Ki and concentration-response functional activity against GABA_A $\alpha 5\beta 3\gamma 2$. In the FLIPR assay, 26 of the 525 compounds demonstrated an IC₅₀ value against GABAA $\alpha 5$ of < 1 $\mu M,$ which were progressed to evaluation of functional selectivity against the $GABA_A$ $\alpha 1,~\alpha 2$ and $\alpha 3$ subtypes. A promising hit from this screening exercise was imidazopyridine 1, which demonstrated moderate binding affinity, significant negative modulation of the GABA response at the GABAA a5 receptor, and minimal effect on the GABA response at the $\alpha 1$, $\alpha 2$ and $\alpha 3$ subtypes (Table 1). However, 1 was rapidly metabolised in both rat and human liver microsomes. Consequently, a program of work was initiated

* Corresponding author.

E-mail address: alastair.rae@crl.com (A. Rae).

https://doi.org/10.1016/j.bmcl.2020.127536

Received 11 May 2020; Received in revised form 28 August 2020; Accepted 31 August 2020 Available online 06 September 2020

0960-894X/ © 2020 Elsevier Ltd. All rights reserved.

Fig. 1. a5IA, MRK-016 and Basmisanil.

$\text{GABA}_{A}\alpha 5$	Efficac	y ¹ (%)			Half-life in liver microsomes (min)			
Ki (nM) ²	α5	α1	α2	α3	Rat	Human		
76	-42	-1	-7	-6	< 5	14		

¹Effect of 1 μ M compound on the current induced by the EC₂₀ concentration of GABA on human recombinant GABA_A α 5, α 1, α 2, or α 3 subunits expressed in HEK293 cells. Current recordings were performed using PatchXpress (Molecular Devices, LLC). A detailed protocol for the efficacy assays is described in the Supplementary Information.

 2 *In vitro* binding affinity at the human GABA_A α 5 β 3 γ 2 receptor, measured using a scintillation proximity assay (radioligand [³H]-Ro15-1788). A detailed protocol for this binding assay is described in the Supplementary Information.

around 1, targeting increased GABA_A α 5 receptor affinity and improved microsomal stability, with retention of GABA_A α 5 functional selectivity. Importantly, analogues from the imidazopyridine series exemplified by 1 did not show any binding selectivity for α 5 versus the other main GABA_A subtypes, and consequently the program strategy was to invoke subtype selectivity in a functional manner.

The electron-rich dimethoxyphenyl substituent in 1 was surmised to be a potential metabolic liability, with susceptibility to O-demethylation and oxidation of the aryl ring. Therefore, the SAR around the aryl group was investigated as a priority, with emphasis on reduction of electron density in the ring and/or lowering of the molecule's lipophilicity, targeting analogues with retained or improved binding affinity and improved microsomal stability. Some specific examples synthesised for the dimethoxy replacement program are shown in Table 2. Removal of one or both of the methoxy substituents to lower electron density on the ring (compounds 2 and 3) resulted in a significant loss of binding affinity. Aliphatic substituents such as cyclopropylmethyl (compound 4) were not tolerated. An alternative electron-donating substituent that afforded a reduction in lipophilicity was the morpholine of analogue 5, which had similar binding affinity to 1 and somewhat improved metabolic stability, although this benefit came with a cost of reduced GABAA a5 negative allosteric modulation. Introducing the more polar carboxamide group (6) retained the acceptable GABAA α 5 inverse agonism of 1 but had 4-fold weaker GABA_A α 5 affinity. However, by incorporating the hydrogen-bond acceptor group in a fused bicycle to afford the benzoxazole 7 or benzoxazinone 8 provided analogues with very encouraging in vitro profiles. Most notable was the benzoxazinone 8, which had a reasonable functional selectivity profile and, importantly, 4-fold higher GABA_A α 5 binding affinity and significantly improved rat and human microsomal stability compared to 1. Consequently, **8** became the focus of further optimisation.

A variety of structural modifications to the benzoxazinone substituent were investigated and key analogues are shown in Table 3. The first set of compounds 9-14 were designed to probe the structure--activity relationship around the oxazinone ring. The secondary amide 9 retained high stability following incubation with human liver microsomes, and also provided improved rat microsomal stability, possibly as a result of eliminating N-de-methylation as a route of metabolism. However, this change also resulted in an undesirable elevation of the levels of negative modulation at $\alpha 1$ and $\alpha 2$. The isomeric benzoxazinone 10 maintained a similar profile to 8, albeit with 4-fold reduced binding affinity, whereas the ring contraction analogue - benzoxazolone 11 - suffered from an unacceptable functional selectivity profile, and inferior metabolic stability compared to 8 or 9. Lactam 12 retained good binding affinity but was a positive modulator at α 1. Introduction of a methyl group adjacent to the carbonyl group of the oxazinone ring to afford compound 13 was well tolerated for GABAA $\alpha 5$ affinity and enhanced rat microsomal stability compared to the parent compound 8. The difluorinated benzoxazinone 14 afforded an excellent functional selectivity profile with good affinity against GABAA α 5, although microsomal stability was sub-optimal. To assist with identification of the main routes of metabolism in this series and inform the design of more stable analogues, benzoxazinone 14 was subjected to a metabolite ID study in human liver microsomes. This study indicated de-methylation of the amide and oxidation of either the aryl ring or imidazopyridine scaffold as primary metabolic pathways. A key strategy towards investigating the potential for oxidative aryl metabolism of the benzoxazinone group was to reduce the electron density of the phenyl ring by replacing phenyl with pyridyl to afford the azabenzoxazinones 15-17. This approach proved to be successful, with all three isomers retaining high stability in the presence of human liver microsomes, and enhanced stability in rat liver microsomes compared to their phenyl counterpart 8. Of these three isomers it was azabenzoxazinone 17 that showed the best overall profile, with high stability in both human and rat liver microsomes, high GABAA a5 negative allosteric modulation and no significant functional response against the other key GABAA subtypes. Consequently, this optimised substituent was retained in a further program of work around the imidazopyridine scaffold, with the objective of increasing binding affinity to maximise the likelihood of achieving high receptor occupancy in vivo.

Earlier investigation of SAR in the 1*H*-imidazo[4,5-*c*]pyridine series had shown that modifications to the imidazole ring such as nitrogen deletion or substitution at *C*2 were not tolerated, and that alternative substituents to cyclopropyl at *N*1 did not confer improvements to the overall profile. Hence, subsequent analogue synthesis was aimed towards retaining the attractive microsomal stability and GABA_A α 5 functional selectivity profile of compound **17** and improving the α 5 affinity by evaluating modifications to the six-membered ring of the imidazopyridine scaffold (Table 4).

Methylation (18) at the C4 position of the scaffold maintained

In vitro data for selected C6-substituted imidazopyridines.

R	ID	cLogP	GABA _A a5 Ki (nM)	Efficacy (%) $\alpha 5$ $\alpha 1$ $\alpha 2$ $\alpha 3$ -42 -1 -7 -6 -43 -20 -20 3 -26 $ -26$ $ -26$ $ -26$ $ -26$ $ -44$ -11 -11 -11			Half-life in liver microsomes (min)		
				α5	α1	α2	α3	Rat	Human
	1	4.0	76	- 42	-1	-7	-6	< 5	14
	2	3.8	459	-43	-20	-20	3	-	-
*	3	3.5	972	-26	-	-	-	-	-
*	4	3.1	> 15,000	-	-	-	-	-	-
	5	3.1	119	- 26	-	-	-	36	23
	6	2.9	319	- 44	-11	-11	-11	-	-
	7	3.2	85	- 42	-16	-10	-6	10	38
	8	2.8	17	- 46	-8	-2	-17	19	> 100

binding affinity relative to **17**, but the functional selectivity profile for this 4-alkylated 1*H*-imidazo[4,5-*c*]pyridines was inferior. The isomeric 3*H*-imidazo[4,5-*b*]pyridine core exemplified in analogues **19–21** also provided enhanced GABA_A α 5 binding affinity (Ki 2–19 nM) compared to **17**, but their functional or microsomal stability profiles were less attractive.

Introducing further polarity into the central core to afford the 9*H*purine scaffolds provided compounds **22** and **23** which had favourable α 5 affinity compared to **17**, but sub-optimal microsomal stability and GABA_A α 5 functional selectivity profiles.

To complete SAR development around the scaffold, an array of benzimidazoles was also synthesised. Within this sub-series, the 5-tri-fluoromethoxy- (24) 5-fluoro- (25) and 4-methyl-5-fluoro analogues demonstrated improved GABA_A α 5 binding affinity compared to 17, the most notable of which was 24, which exhibited sub-nanomolar GABA_A α 5 affinity (Ki 0.5 nM). Unfortunately, compound 24 demonstrated significant negative modulation against the GABA_A α 2 (-16%) and GABA_A α 3 (-31%) subtype, thus rendering it liable to the undesired side-effects demonstrated by non-selective GABA_A NAMS.^{6,7} In contrast,

25 had high GABA_A α 5 inverse agonism and essentially negligible functional activity at either α 1, α 2 or α 3. However, compound **25** exhibited a relatively poor microsomal stability profile. As had been observed when comparing the purines **22** and **23**, *C4*-methylation also enhanced metabolic stability in the benzimidazole series, with compound **26** demonstrating improved rat microsomal stability compared to **25**. Indeed, **26** had an encouraging *in vitro* profile, with a GABA_A α 5 Ki of 7 nM, high α 5 inverse agonism (–49%) and good functional selectivity over the other GABA_A subtypes.

As the results in Table 4 demonstrate, the substituted benzimidazoles (24–26) exhibited high GABA_A α 5 binding affinity and GABA_A α 5 NAM activity, and in the case of **25** and **26**, a good functional selectivity profile. Consequently, in an effort to understand the major routes of metabolism in this class, the 5-fluorobenzimidazole **25** was subjected to a metabolite ID study. As previously observed for the 1*H*-imidazo[4,5-*c*] pyridine **14**, the major *in vitro* metabolites for benzimidazole **25** were derived from *N*-dealkylation or oxidation of the azabenzoxazinone unit. Hence, further efforts were instigated to find replacements for the C6 substituent, focussing on the 4-methyl-5-fluorobenzimidazolyl (**26**),

In vitro data for selected analogues incorporating modifications to the C6 benzoxazinone substituent.

R	ID	GABA _A α5 Ki (nM)	Efficacy (%))			Half-life in liver micros	omes (min)
			α5	α1	α2	α3	Rat	Human
	8	17	- 46	-8	-2	-17	19	> 100
	9	42	- 48	-18	-32	-18	59	> 100
	10	65	-41	0	-10	-13	25	77
	11	62	- 50	- 31	-	-21	8	73
	12	16	- 38	+32	-	+13	25	70
	13	17	- 40	+19	+ 54	+60	55	> 100
	14	11	- 55	+1	-1	+12	22	52
	15	45	- 46	-22	- 39	- 27	39	93
	16	11	- 45	- 45	- 27	-26	45	> 100
	17	38	-52	0	-8	-8	> 100	> 100
~ <u>_</u> *								

and 4-methyl 3*H*-imidazo[4,5-*b*]pyridyl (**20**) cores, both of which had previously demonstrated high α 5 binding affinity, and strong negative modulation against α 5.

As bicyclic systems to replace the benzoxazinone had been investigated earlier in the campaign, an alternative approach to *C*6 substituent design was taken in which this substituent was replaced with a

variety of pendent heterocycles, in a manner that allowed retention of a hydrogen-bond acceptor atom in a similar region of space to that of the oxazinone carbonyl. As shown in Table 5, this strategy provided multiple analogues that retained high GABA_A α 5 binding affinity and high GABA_A α 5 NAM activity. Within this series of compounds, it was **ONO-8590580** that emerged as the compound with the best overall *in vitro*

-

_

In vitro data for different scaffolds.

 \cap N N H Ζ J

X-YN	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	GABA _A α5 Ki (nM)	Efficacy (%)			Half-life in liver microsomes (min)		
* Z N,			α5	α1	α2	α3	Rat	Human
	17	38	- 52	0	-8	-8	> 100	> 100
N N N N	18	58	-50	-16	-15	+5	> 100	> 100
* N * N *	19	19	- 33	+17	-2	nd	7	14
* N N	20	4	- 57	+21	+2	+2	22	29
F F F	21	2	-43	+36	+5	+24	67	63
	22	17	- 33	+9	+7	+3	18	55
	23	14	- 43	+ 15	- 9	+ 20	55	> 100
	20		10		,	1 20		- 100
	24	0.5	- 55	-8	- 16	-31	33	10
	25	12	- 47	1	-7	0	17	32
	26	7	- 49	+3	-10	-7	55	39
N								

Data for selected analogues incorporating pendent heterocycles. $X \rightarrow N$

R R'		ID	α5 Ki (nM)	Efficac	y (%)			Half-life in liv	er microsomes (min)
	* Z N R'			α5	α1	α2	α3	Rat	Human
		27	7	- 55	-5	-11	-11	24	46
	F F F N N	28	4	- 42	-6	-19	-18	74	> 100
		29	2	-52	-21	-8	-10	> 100	> 100
		30	1	-50	-11	-10	-5	28	41
		31	15	-50	-8	-4	-3	20	40
		32	2	-42	-10	-1	6	27	> 99
	F F *	33	2	- 54	-24	-10	-24	44	> 100
	F N * N	34	9	-50	-11	-17	-15	18	> 100
		ONO-8590580	8	-50	-2	+5	-6	> 100	60

In vitro and in vivo data for ONO-8590580.

ID	α5 Ki (nM)	α5 efficacy (%)	MDCK-MDR1 P_{app} (x 10 ⁻⁶ cms ⁻¹)/efflux ratio	Plasma protein binding, rat (% bound)	Brain homogenate binding, rat (% bound)	In vivo receptor occupancy of $GABA_A$ $\alpha 5$ receptors in rat brain $(\%)^1$
ONO-8590580	8	-50	47 / 0.9	93	96	71

¹Occupancy of the binding site of rat brain GABA_A α 5 was measured using an *in vivo* [³H]-Ro15-4513 binding assay (n = 3–4 in each group). [³H]-Ro15-4513 is a GABA_A α 5-specific binding radioligand. **ONO-8590580** was orally administered at 10 mg/kg 1 h before sacrifice. [³H]-Ro15-4513 was intravenously administered 10 min before sacrificing the rats. The amount by which **ONO-8590580** reduced the specific binding of [³H]-Ro15-4513 relative to the binding in non-treated rats was defined as the occupancy.¹⁴

Table 7

In vivo rat PK parameters for ONO-8590580.

Route ¹	Dose (mg/kg)	V _{ss} (L/kg)	C _{max} (ng/mL)	t _{1/2} (min)	AUC _{inf} (µg/mL.min)	Cl (mL/min/kg)	%F ²
i.v.	0.44	1.7	278	72	24	18	-
p.o.	3	-	520	131	107	-	65

 1 Vehicle for *i.v.*: DMSO:Cremophor:water (10:10:80). Vehicle for po: 0.5% w/v methylcellulose in water. 2 Bioavailability.

Scheme 1. Synthetic route to ONO-8590580. (i) Benzyltrimethylammonium tribromide, CH₂Cl₂/MeOH (97%); (ii) Trimethylorthoformate, p-TsOH, reflux; (iii) cyclopropylmethylamine, CuI, DBU, DMSO, 120 °C (62% for 2 steps); (iv) Pd(PPh₃)₄, Na₂CO₃, DMF/water, 100 °C (55%); (v) **7**, Pd₂dba₃, xantphos, Cs₂CO₃, dioxane, 90 °C (27%).

profile. **ONO-8590580** has very high negative allosteric modulatory activity against GABA_A α 5 and high α 5 binding affinity. Moreover, it demonstrates an excellent functionally selectivity profile, with essentially no functional activity against the other subtypes, high rat microsomal stability and good human microsomal stability. Consequently, **ONO-8590580** was taken forward for further ADME evaluation and *in vivo* profiling.

As shown in Table 6, ONO-8590580 exhibited good cell permeability and only a modest efflux ratio in the MDCK-MDR1 cell line, consistent with potential for brain penetration. Rat plasma protein binding and rat brain homogenate binding were 93% and 96%, respectively, providing confidence that good oral exposure would achieve a satisfactory level of target engagement in the brain.

As shown in Table 7, in rats **ONO-8590580** had modest plasma clearance (18 mL/min/kg) and 65% oral bioavailability, following *i.v.* and oral dosing at 0.44 mg/kg and 3 mg/kg, respectively. Moreover, after dosing at 10 mg/kg *p.o.* **ONO-8590580** afforded 71% occupancy of GABA_A α 5 receptors in the rat hippocampus (Table 6).¹⁴ **ONO-8590580** was also assessed for functional response against the hERG ion channel, for which it demonstrated an IC₅₀ of 11 μ M.

As reported previously by Kawaharada et al.,¹⁴ **ONO-8590580** dose-dependently reversed MK-801-induced cognitive deficit in the rat passive avoidance and 8-arm radial maze tests, and did not elicit anxiogenic or pro-convulsant side-effects when administered at doses that provide high GABA_A receptor occupancy in the brain.

The synthesis of **ONO-8590580** is shown in Scheme 1, and was accomplished using a convergent strategy, *via* a Buchwald-Hartwig coupling of the 6-bromobenzimidazole 4 and the substituted 2-amino-pyridine 7. A key step was the copper-mediated formation of the

benzimidazole ring $(3 \rightarrow 4)$.¹⁵

In summary, optimisation of the hit imidazopyridine **1** focussing on modification of physicochemical properties and utilising metabolite ID studies to drive improvements in metabolic stability has led to identification of the benzimidazole **ONO-8590580**. This compound displayed good binding affinity, high negative modulation of the GABA_A α 5 receptor subtype, an excellent functional selectivity profile and, as previously reported,¹⁴ is efficacious in two *in vivo* models of cognition enhancement. Consequently, it is our belief that **ONO-8590580** is a valuable tool compound to pre-clinically evaluate the pharmacological effects of selectively negatively modulating the functional response of the GABA_A α 5 receptor subtype.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bmcl.2020.127536.

References

- 1. Quirk K, Blurton P, Fletcher S, et al. Neuropharmacology. 1996;35:1331-1335.
- 2. Atack JR, Maubach KA, Wafford KA, et al. J Pharmacol Exp Ther. 2009;331(2):470-484.
- 3. Dawson GR, Maubach KA, Collinson N, et al. J Pharmacol Exp Ther. 2006;316:1335-1345.
- 4. Ballard TM, Knoflach F, Prinssen E, et al. Psychopharmacology. 2009;202:207–223.

- 5. Collinson N, Kuenzi FM, Jarolimek W, et al. J Neurosci. 2002;22(13):5572–5580.

- Commson N, Ruehzi FM, Jaronmek W, et al. J Neurosci. 2002;22(13):5572–5580
 Vergnes M, Boehrer A, He X, et al. Epilepsy Res. 2001;47:43–53.
 Horowski R, Dorrow R. Psychopharmacology. 2002;162:223–224.
 Sternfeld F, Carling RW, Jelley RA, et al. J Med Chem. 2004;47(9):2176–2179.
 https://clinicaltrials.gov/ct2/show/NCT02024789, Accessed 26 Nov 2019.
 http://www.edsa.eu/roche-clematis-trial-discontinued/, Accessed 25 Aug 2020.
 Netron M, Martin M, Martin C, Martin M, Andre M, Standard M, Accessed A, Standard M, Andre M, Standard M, Accessed B, Aug 2020.
- 11. Nutt DJ, Besson M, Wilson SJ, Dawson GR, Lingford-Hughes AR. Neuropharmacology.

2007;53(7):810-820.

- Atack JR. Pharmacol Ther. 2010;125(1):11–26.
 Protocols for the α5 SPA binding and FLIPR assay used in the high throughput screen are described in the Supplementary Information.
 Kawaharada S, Nakanishi M, Nakanishi N, et al. J Pharmacol Exp Ther. 2018;366:58–65.
 Hirano K, Biju AT, Glorius F. J Org Chem. 2009;74:9570–9572.