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Figure 1. Structure of five-membered iminosugars.
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a b s t r a c t

A highly efficient method for the synthesis of 1,4-dideoxy-1,4-imino-D- and L-arabinitol (D-AB1, 1 and
L-AB1, 3) and 1,4-dideoxy-1,4-imino-D- and L-xylitol (D-DIX, 2 and L-DIX, 4) starting from commercially
available chiral aziridines was developed. The general strategy employs a sequence involving two-carbon
homologation, dihydroxylation, and regioselective aziridine ring opening/intramolecular five-membered
iminosugar ring formation. The facile use of recrystallization to generate pure diastereomers makes the
routes more amenable to large-scale synthesis.

� 2013 Elsevier Ltd. All rights reserved.
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Iminosugars, which contain a ring-nitrogen atom instead of the
endocyclic oxygen present in monosaccharides, have received
great attention owing to their attractive biological activities.1 The
iminosugar, 1,4-dideoxy-1,4-imino-D-arabinitol (D-AB1, 1), was
first isolated from the fruits of Angylocalyx boutiqueanus in 19852

and its diastereomer, 1,4-dideoxy-1,4-imino-D-xylitol (D-DIX, 2),
was recently isolated from marine sponges.3 D-AB1 was found to
be a potent inhibitor of glycogen phosphorylase and a-glucosi-
dases.4–6 Glucosidase inhibitors have been utilized as therapeutic
agents for the treatment of several diseases including diabetics,
viral infections, cancer, and genetic disorders.7–9 Oncogene activa-
tion has been shown to trigger aberrant glycosylation owing to an
altered cascade for the expression of glycosyltransferases.10 More-
over, the level of glycosidases is also elevated in many types of can-
cer cells (Fig. 1).11

Because of its broad spectrum of biological activities and phar-
macological properties, especially anti-cancer activity7–9

D-AB1,12–16

as well as its three stereoisomers, 1,4-dideoxy-1,4-imino-L-ara-
binitol (L-AB1,13,17–19 3) and 1,4-dideoxy-1,4-imino-D and L-xylitol
(D-DIX,20–22 2 and L-DIX,14,15,23–28 4) became the targets of our
effort aimed at developing highly efficient synthetic strategies.
Recently reported synthetic routes for the preparation of the four
iminosugars follow a number of different approaches. For example,
D-DIX has been synthesized starting from D-xylose through a
pathway involving Vasella reductive amination followed by
halocyclization/carbonylation.22 A sequence culminating in the
preparation of L-AB1 began with Garner’s aldehyde and utilized
Sharpless asymmetric dihydroxylation as a key step.19 A reductive
cleavage reaction of the bis-benzylidene acetal of D-mannitol
was employed in an approach to the synthesis of L-DIX.27 Pseudo-
hemiketal lactams, derived from sucrose, were utilized as key
intermediates in sequences culminating in the preparation of
D-AB1 and L-DIX.15 Chemo-enzymatic synthesis strategy using
D-fructose-6-phosphate aldolase and L-rhamnulose-1-phosphate
aldolase was adopted for the synthesis of D-AB1 and L-AB1.29,30

SmI2-mediated benzyloxymethylation of dibenzyltartarimide
resulted in D-AB1 and L-AB1.31 Finally, a stereoselective palladium
catalyzed oxazine forming reaction of D-serine served as the key
component of the synthesis of D-AB1.16

Although a significant effort has been given to devising efficient
syntheses of the four iminosugars highlighted above, some of the
routes developed are lengthy owing to the need for tedious
protection/deprotection protocols. Herein, we describe the results
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of a recent study, which has led to highly efficient and conve-
niently performed syntheses of the iminosugar stereoisomers
D-AB1 (1), D-DIX (2), L-AB1 (3), and L-DIX (4). Each of the sequences
started from a commercially and readily available chiral aziridine,
and a facile recrystallization procedure was employed in each case
to generate pure product.

As shown in Scheme 1, the total syntheses of diastereomerically
pure D-AB1, 1 and L-AB1, 3 and D-DIX, 2 and L-DIX, 4 commenced
with the commercially available 2R- and 2S-enantiomers of 1-
methylbenzylaziridine-2-methanols, (2R)-5 and (2S)-5, respec-
tively. These substances were prepared from the corresponding
aziridine-2-carboxylates by using LiAlH4 reduction. In accord with
our previous report,32–34 independent Swern oxidations of (2R)-5
and (2S)-5 gave the corresponding 1-methylbenzylaziridine-2-
carboxaldehydes that were then transformed to trans-3-aziridin-
2-yl-acrylates (2S)-6 and (2R)-6 in 98:2 trans:cis ratios by using
Horner–Wadsworth–Emmons olefination with ethyl diethylphos-
phonoacetate. The desired trans-diastereomers of each enantiomer
were readily purified by using silica gel column chromatography.
Cis-Dihydroxylation reactions of (2S)-6 and (2R)-6 using OsO4 in
the presence of NMO afforded diastereomers (2S)-7 and (2R)-7 in
77% and 73% respective yields. Based on the analysis of crude 1H
NMR spectra, diastereomeric ratios of (2S)-7 and (2R)-7 were
1:1.7 and 1:1, respectively. Neither diastereomer of diastereomers
(2S)-7 or (2R)-7 were separable by employing silica gel chromatog-
raphy. The C-3 bonds present in the aziridine rings of (2S)-7 and
(2R)-7 were regioselectively cleaved by treatment with AcOH in
CH2Cl2 to produce the corresponding acyclic acetate ester prod-
ucts, which then underwent lactam ring forming cyclization in
the presence of AcOH at 50 �C to produce (2S)-8 and (2R)-8. The
diastereomeric ratios of (2S)-8 and (2R)-8 would be same as those
of (2S)-7 and (2R)-7.

The facile recrystallization of each product mixture containing
(2S)-8 and (2R)-8 from ethanol at 0 �C afforded the individual dia-
stereomers of (2S)-8B and (2R)-8A in a pure form as white crystal-
line substances (Scheme 2). This facile recrystallization could
render our synthetic route more amenable to large-scale prepara-
tion of the final compounds 1–4. The mother liquors from each
were subjected to flash column chromatography to furnish diaste-
reomerically pure (2S)-8A and (2R)-8B.
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Scheme 1. Synthesis of the pyrrolidinones, (2S)-8 and (2R)-8.
Reductions of the amide and acetate groups in (2S)-8A and (2R)-
8A were carried out using borane–dimethyl sulfide to generate the
corresponding pyrrolidines (2R)-9A and (2S)-9A (Scheme 3). The
(2R,3R,4R)-2-(hydroxymethyl)pyrrolidine-3,4-diol, (2R)-9A, gener-
ated in this manner, was subjected to silica gel chromatography
(DCM:7 N ammonia in MeOH solution = 10:1) to afford pure
(2R)-9A in 95% yield.

Although the crude (2S,3R,4R)-2-(hydroxymethyl)pyrrolidine-
3,4-diol, (2S)-9A arising from the reduction reaction was also
subjected to silica gel chromatography, pure (2S)-9A could not be
obtained presumably because of the presence of a tight boron-
(2S)-9A adduct. Therefore, the chromatographed substance was
used for the ensuing hydrogenolysis step (Pd(OH)2, methanol,
1 atm hydrogen in the absence of acid) to cleave the benzyl pro-
tecting group. Silica gel chromatography (DCM:MeOH:EtOH:30%
NH4OH = 5:2:2:1) of the resulting product mixture afforded pure
L-DIX, 4. It is interesting to note that the reduction conditions
transform the boron-(2S)-9A complex into L-DIX, 4 which is boron
free. This finding parallels the results of a previous study by
Couturier et al.,35 that showed that palladium catalyzes the
methanolysis of borane–amine adducts. (2R)-9A was also sub-
jected to the same hydrogenolysis and purification step as applied
to (2S)-9A to form pure D-AB1, 1 in 91% yield.

Utilizing the same general approach employed to synthesize
D-AB1, 1 and L-DIX, 4, we have also prepared L-AB1, 3 and D-DIX,
2 from pyrrolidinones (2S)-8B and (2R)-8B (Scheme 4). It should
be noted that (2R,3S,4S)-2-(hydroxymethyl)pyrrolidine-3,4-diol,
(2R)-9B did not form boron-adducts in contrast to the (2S)-9A. As
a result, both substances, (2S)-9B and (2R)-9B in scheme 4 were
generated in a pure form by using silica gel chromatography.

The study described above has led to the development of a gen-
eral strategy for the highly facile and efficient synthesis of imino-
sugar D-AB1 and three of its diastereomers. The six-step routes,
beginning with commercially and readily available chiral aziri-
dines, are comprised of steps involving a two-carbon homologation,
dihydroxylation, and regioselective aziridine ring opening/intra-
molecular five-membered iminosugar ring formation. Moreover,
the facile use of recrystallization to separate easily diastereomers
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Scheme 3. Synthesis of D-AB1, 1 and L-DIX, 4.
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makes the approach more amenable to large-scale preparation of
the target compounds.
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