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Abstract 

 Three novel hole-transporting materials, 3,3'-(dibenzo[b,d]furan-2,8-diyl)bis(N,N-

diphenylaniline) (BF-m-TPA), 4,4'-(dibenzo[b,d]furan-2,8-diyl)bis(N,N-diphenylaniline) 

(BF-p-TPA) and 4,4'-(dibenzo[b,d]furan-2,6-diyl)bis(N,N-diphenylaniline)  (BF-2,6-TPA), 

were designed and synthesized. Owing to the rigid dibenzofuran core, these BF-TPA 

derivatives exhibited high thermal decomposition temperatures of over 395 °C and very high 

LUMO energy levels. Electroluminescent (EL) devices were fabricated using these three 

hole-transporting materials. The best device performance was obtained for BF-m-TPA, with 

the maximum luminance (L) of 15,230 cd/m2, luminance efficiency (LE) of 56.5 cd/A, power 

efficiency (PE) of 13.3 lm/W, and external quantum efficiency (EQE) of 16.3%. 
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1. Introduction 

 

In this decade, organic light-emitting diodes (OLEDs) have attracted considerable interest 

due to their potential applications in flat panel displays and solid-state lighting.[1-4] 

Phosphorescent OLEDs (PhOLEDs) using iridium complexes as dopants have attracted 

extensive attention in recent years owing to their potential advantages of harvesting excitons 

from both the singlet and triplet energy states.[5-9] It is well demonstrated that carrier-

transporting materials are crucial for enabling a balanced carrier transport for the electrodes. 

[10-12] Among carrier-transporting materials, the hole-transporting layer (HTL) is one of the 

key functional layers because it reduces the energy barrier between the anode and the 

emitting layer (EML), facilitating the injection of holes and their transport in devices.[13-16] 

There has been extensive research for the development of remarkable hole-transport 

materials (HTMs) with the following properties. First, good hole mobility to enable the 

transfer of positive charge carriers from the anode to the emitting layer;[15] second, high 

electrochemical and thermal stability for high-temperature operations;[17,18] third, a suitable 

HOMO energy level to easy hole injection from anode to EML; fourth, a suitable LUMO 

energy level to block electron transfer from EML to HTL.[19-21] Dibenzofuran based on 

electron-rich moiety have been widely used for designing HTMs and host materials because 

of its high triplet energy and thermal stability, which make substituted dibenzofurans ideal 

materials for use in organic optoelectronic devices, including OLEDs, field-effect transistors, 

and photovoltaic cells. Triphenylamine (TPA) is a well-known hole-transporting functional 

group and matches well with the work function of anodes.[24,25] The lone pair electrons of 

N-atom of TPA is delocalized over the aromatic rings, leading to multiple resonance 

structures, making these structures strong electron donors and excellent HTMs.[26] 

Dibenzofuran is also a good electron donor; therefore, compounds containing both 

dibenzofuran and TPA are not only thermally stable but also have relatively high HOMO 

energy levels, which can lower the energy barriers for hole-transport, thereby enhancing hole 

mobility. 

Hence, we synthesized three HTMs based on dibenzofuran as the core and TPA as the side 

group, and the thermal, optical, and electrochemical properties of these BF-TPA derivatives 

were compared according to the substitution position. Finally, the electroluminescent devices 

were fabricated using these BF-TPA derivatives as a hole-transporting material.  

 



2. Experimental  

 

2.1. Materials 

Dibenzofuran, N-bromosuccinimide (NBS), 3-bromoiodobenzene, diphenylamine, 4-

(diphenylamino)phenylboronic acid pinacol ester, 4-bromodibenzofuran,  

bis(pinacolato)diboron, tetrakis(triphenylphosphine)palladium(0), sodium tert-butoxide, tri-

tert-butylphosphine, tris(dibenzylideneacetone)dipalladium(0) and phenyliodine diacetate 

were purchased from Aldrich Chemical Co. and SEJINCI CO. Before use, all the solvents 

were purified and freshly distilled according to literature procedures.  

  

2.2. Synthesis of 2,8-dibromodibenzofuran (1) 

Dibenzofuran (5 g, 29.7 mmol) in DMF (20 mL) was poured dropwise solution of NBS 

(11.6 g, 68.3 mmol) in DMF (25 mL). This mixture was stirred at room temperature to 

precipitate the white compound (1), which was separated by filtration (3.8 g, 40 %). 1H NMR 

(300 MHz, CDCl3) δ8.05 (s, 2H), 7.61 (d, 2H, J = 9.0 Hz), 7.47 (d, 2H, J = 9.0 Hz). 13C NMR 

(75 MHz, CDCl3) δ 156.03, 129.21, 124.32, 124.18, 118.87, 111.81. HRMS (ESI, m/z): [M + 

H]+ calcd for C12H6Br2O, 325.88; found 325.00. Elemental analysis; found: C, 44.14; H, 

1.77 %; molecular formula C12H6Br2O requires C, 44.21; H, 1.86; Br, 49.02; O, 4.91%. 

 

2.3. Synthesis of 2-iodo-6-bromodibenzofuran (2)  

In a 250 mL round-bottom three-neck flask under a nitrogen atmosphere, 4-

bromodibenzofuran (5 g, 20 mmol), iodine (2.57 g, 10 mmol), phenyliodine diacetate (3.259 

g, 10 mmol), sulfuric acid (0.01 mL), acetic acid (15 mL) and acetic anhydride (15 mL) were 

placed, and stirred at room temperature for 10 h. The reaction mixture was washed with water, 

extracted with dichloromethane, and concentrated to give compound (2) (3.6 g, 47.7 %). 1H 

NMR (300 MHz, CDCl3) δ8.27 (s, 1H), 7.85 (d, 1H, J = 6.0 Hz), 7.78 (d, 1H, J = 6.0 Hz), 

7.66 (d, 1H, J = 9.0 Hz), 7.44 (d, 1H, J = 6.0 Hz), 7.25 (t, 1H, J = 7.5 Hz). 13C NMR (75 

MHz, CDCl3) δ 155.41, 153.41, 136.38, 130.79, 130.01, 126.80, 124.37, 124.33, 119.80, 

114.14, 104.59, 86.35. HRMS (ESI, m/z): [M + H]+ calcd for C12H6BrIO, 371.86; found 

372.00. Elemental analysis; found: C, 38.38; H, 1.48 %; molecular formula C12H6BrIO 

requires C, 38.64; H, 1.62; Br, 21.42; I, 34.02; O, 2.44%. 

 

2.4. Synthesis of 2,8-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)dibenzo[b,d]furan (3) 



The compound (1) (2.5 g, 7.7 mmol), bis(pinacolato)diboron (4.5 g, 17.7 mmol) and 

tetrakis(triphenylphosphine)palladium(0) (0.45 g, 0.13 mmol) and potassium acetate (2.3 g, 

23 mmol) were dissolved in 1,4-dioxane (50 mL) and stirred for 12 h at 110 °C. The reaction 

mixture was cooled to room temperature, extracted with dichloromethane (50 mL × 3), and 

dried over anhydrous MgSO4. The crude product was subjected to flash column 

chromatography (dichloromethane : n-hexane = 1 : 2) to give compound (3) (1.1 g, 61 %). 1H 

NMR (300 MHz, CDCl3) δ8.51 (s, 2H), 7.93 (d, 2H, J = 9.0 Hz), 7.58 (d, 2H, J = 9.0 Hz), 

1.40 (s, 24H). 13C NMR (75 MHz, CDCl3) δ 158.41, 133.72, 128.03, 123.83, 122.92, 111.07, 

83.86, 24.94. HRMS (ESI, m/z): [M + H]+ calcd for C24H30B2O5, 420.23; found 420.30.  

Elemental analysis; found: C, 68.92; H, 7.04 %; molecular formula C24H30B2O5 requires C, 

68.61; H, 7.20; B, 5.15; O, 19.04%. 

 

2.5. Synthesis of 2,8-bis(3-bromophenyl)dibenzo[b,d]furan (4) 

2,8-bis(3-bromophenyl)dibenzo[b,d]furan (4) was prepared by following a modified method 

of Suzuki coupling.[27] The compound (3) (1.6 g, 3.8 mmol), 3-bromoiodobenzene (2.38 g, 

8.4 mmol), and tetrakis(triphenylphosphine)palladium(0) (0.35 g, 0.3 mmol) were stirred in 

tetrahydrofuran (25 mL). Potassium carbonate solution (4M, 7 mL) and ethanol (8 mL) was 

added to the mixture, followed by vigorously stirring for 12 h at 80 °C. The reaction mixture 

was cooled to room temperature, extracted with dichloromethane (50 mL × 3), and dried over 

anhydrous MgSO4. The crude product was subjected to flash column chromatography (ethyl 

acetate : n-hexane = 1 : 4) to give compound (4) (1.1 g, 61 %). 1H NMR (300 MHz, CDCl3)  

δ8.19 (s, 2H), 7.86 (s, 2H), 7.72-7.62 (m, 6H), 7.54 (d, 2H, J = 9.0 Hz), 7.38 (t, 2H, J = 6.0 

Hz). 13C NMR (75 MHz, CDCl3) δ 156.24, 141.12, 136.68, 133.21, 131.47, 129.96, 126.78, 

123.84, 122.97, 122.82, 119.20, 111.77. HRMS (ESI, m/z): [M + H]+ calcd for C24H14Br2O, 

478.18; found 478.94. Elemental analysis; found: C, 44.14; H, 1.77; O, %molecular formula 

C24H14Br2O requires C, 44.21; H, 1.86; Br, 49.02; O, 4.91%. Elemental analysis; found: C, 

60.32; H, 2.89 %; molecular formula C24H14Br2O requires C, 60.28; H, 2.95; Br, 33.42; O, 

3.35%. 

 

2.6. Synthesis of 3,3'-(dibenzo[b,d]furan-2,8-diyl)bis(N,N-diphenylaniline) (BF-m-TPA) 

Compound (4) (1 g, 2.1 mmol), P(t-Bu)3 (0.021 g, 0.11 mmol), Pd2(dba)3 (0.058 g, 0.063 

mmol), diphenylamine (0.9 g, 5.3 mmol), and sodium tert-butoxide (0.51 g, 5.3 mmol) were 

dissolved in toluene (20 mL). After the reaction mixture was stirred in a nitrogen atmosphere 



for 20 h at 100 °C, it was cooled to room temperature. And then the reaction mixture 

extracted with dichloromethane (80 mL × 3) and dried over anhydrous MgSO4. The crude 

product was subjected to flash column chromatography (ethyl acetate : n-hexane = 1 : 4) to 

give BF-m-TPA (1.2 g, 87 %). 1H NMR (300 MHz, CDCl3) δ8.10 (s, 2H), 7.60 (t, 4H, J = 9.0 

Hz), 7.45 (s, 2H), 7.38-7.28 (m, 12H), 7.20 (d, 8H, J = 9.0 Hz), 7.12-7.03 (m, 6H). 13C NMR 

(75 MHz, CDCl3) δ 156.24, 148.39, 147.85, 142.42, 136.18, 129.69, 129.30, 126.78, 124.62, 

124.24, 123.08, 122.96, 122.82, 121.89, 119.20, 111.77. HRMS (ESI, m/z): [M + H]+ calcd 

for C48H34N2O, 654.27; found 654.35. Elemental analysis; found: C, 87.79; H, 5.34; N, 4.29; 

O, 2.58%; molecular formula C48H34N2O requires C, 88.04; H, 5.23; N, 4.28; O, 2.44%. 

 

2.7. Synthesis of 4,4'-(dibenzo[b,d]furan-2,8-diyl)bis(N,N-diphenylaniline) (BF-p-TPA)[28] 

A procedure identical to that for compound (4) was followed, using compound (1) (2 g, 6.1 

mmol) and 4-(Diphenylamino)phenylboronic acid pinacol ester (5 g, 13.5 mmol). The 

obtained crude compound was purified by silica gel chromatography (ethyl acetate : n-hexane 

= 1 : 4) to give BF-p-TPA (2.67 g, 67 %). 1H NMR (300 MHz, CDCl3) δ8.19 (s, 2H), 7.72-

7.57 (m, 8H), 7.35-7.16 (m, 20H), 7.07 (t, 4H, J = 7.5 Hz). 13C NMR (75 MHz, CDCl3) δ 

156.03, 147.73, 147.04, 135.99, 135.31, 129.31, 128.05, 126.35, 124.82, 124.38, 124.16, 

122.92, 118.68, 111.85. HRMS (ESI, m/z): [M + H]+ calcd for C48H34N2O, 654.27; found 

654.04. Elemental analysis; found: C, 87.71; H, 5.27; N, 4.32; O, 2.61%; molecular formula 

C48H34N2O requires C, 88.04; H, 5.23; N, 4.28; O, 2.44%. 

 

2.8. Synthesis of 4,4'-(dibenzo[b,d]furan-2,6-diyl)bis(N,N-diphenylaniline) (BF-2,6-TPA) 

A procedure identical to that for compound (4) was followed, using compound (2) (1.7 g, 

4.6 mmol) and 4-(diphenylamino)phenylboronic acid pinacol ester (3.9 g, 10.5 mmol). The 

obtained crude compound was purified by silica gel chromatography (ethyl acetate : n-hexane 

= 1 : 4) to give compound (6) (1.8 g, 60 %). 1H NMR (300 MHz, CDCl3) δ8.17 (s, 1H), 7.95 

(d, 1H, J = 6 Hz), 7.87 (d, 2H, J = 9 Hz), 7.72-7.58 (m, 5H), 7.45 (t, 1H, J = 9 Hz), 7.33-7.29 

(m, 9H), 7.25-7.20 (m, 11H), 7.14-7.04 (m, 4H). 13C NMR (75 MHz, CDCl3) δ 155.50, 

153.78, 147.74, 147.64, 147.02, 135.97, 135.39, 130.03, 129.34, 128.07, 125.54, 124.78, 

124.36, 124.18, 123.36, 122.67, 119.15, 118.66, 111.92. HRMS (ESI, m/z): [M + H]+ calcd 

for C48H34N2O, 654.27; found 654.45. Elemental analysis; found: C, 88.04; H, 5.47; N, 4.25; 

O, 2.50%; molecular formula C48H34N2O requires C, 88.03; H, 5.23; N, 4.28; O, 2.44%. 

 



2.9. Instruments  
1H and 13C NMR spectra were recorded on Bruker-Spectrospin 300 MHz spectrometer, 

using CDCl3 as the solvent. Chemical shifts are reported in parts per million (ppm) relative to 

residual CDCl3 at 7.26 ppm (for 1H NMR) and 77.0 ppm (for 13C NMR). UV-visible spectra 

were recorded on a Shimadzu UV/Vis spectrophotometer, while the photoluminescence 

spectra were measured using a PerkinElmer spectrofluoromater. Film thickness was measured 

using a TENCOR surface profiler. Thermogravimetric analyzer was performed on 

PerkinElmer Pyris 1 TGA with a heating scan rate of 10 °C /min from 40 to 800 °C under 

nitrogen. Cyclic voltammetry (CV, AMETEK VersaSTAT 3) was carried out at a potential 

scan rate of 50-100 mV s-1 in a 0.1 M solution of tetrabutylammonium hexafluorophosphate 

in acetonitrile under a N2 atmosphere at room temperature. The potential was reported 

relative to a ferrocene/ferrocenium (Cp2Fe/Cp2Fe+) redox couple used as an internal reference. 

High resolution mass spectra were measured using a JEOL JMS-700 and elemental analyses 

using a Thermo Fisher Scientific Flash2000.  Current density (I), voltage (V) and luminance 

(L) data were collected using a Keithley 236 source measurement unit. The CIE coordination 

was recorded using a PR-670 Spectra Scan Spectrophotomater. 

  

2.10. Device fabrication 

 OLEDs were fabricated using BF-m-TPA, BF-p-TPA and BF-2,6-TPA as hole-transport 

materials. ITO glasses were ultrasonically cleaned sequentially with deionized water, acetone, 

and isopropanol, each for 15 min, and UV-ozone treated for 15 min. All of the organic layers 

were deposited on the pre-cleaned ITO glass. LiF and Al were evaporated on the ETL layer at 

a pressure of 5 × 10-7 Torr. Finally, all the devices were encapsulated using a glass cover and 

all deposition processes were conducted inside a nitrogen-filled glove box.   

 

3. Results and discussion 

 

3.1. Synthesis and structural characterization 

 

The synthetic route used to prepare the BF-TPA derivatives is presented in Scheme 1. The 

BF-m-TPA was synthesized in one step through a Buchwald-Hartwig coupling reaction 

between compound (4) and diphenylamine and BF-p-TPA and BF-2,6-TPA were synthesized 

using the palladium-catalyzed Suzuki coupling reaction of the 2,8-dibromodibenzofuran and 



2-iodo-6-bromodibenzofuran with 4-(diphenylamino)phenylboronic acid pinacol ester. The 

BF-TPA derivatives were purified by silica gel chromatography and obtained with over 60 % 

yield. The BF-TPA derivatives were characterized by 1H NMR analysis, elemental analysis, 

and mass spectrometry analysis.  

The thermal stability of hole-transport materials is very important for device fabrication and 

operation. The thermal characterization of BF-m-TPA, BF-p-TPA, and BF-2,6-TPA were 

studied using thermogravimetric analysis (TGA) in a nitrogen atmosphere. The five percent 

weight loss temperatures of BF-m-TPA, BF-p-TPA, and BF-2,6-TPA were 425, 441, and 

396 ℃, respectively, indicating that the thermal stabilities were appropriate for 

electroluminescent devices.  

To gain information about the three-dimensional conformations and electronic structures of 

BF-TPA derivatives, theoretical calculations were applied using density functional theory 

(DFT) through Gaussian software at B3LYP/6-31G(d) basis set. The molecular structure and 

electronic density distribution of BF-m-TPA, BF-p-TPA and BF-2,6-TPA are shown in Figure 

1. In the materials synthesized, the triphenylamine units are linked at the 2,8- and 2,6-

positions to the dibenzofuran core. The HOMO level of BF-m-TPA is populated on the TPA 

moieties, while the HOMO of BF-p-TPA and BF-2,6-TPA are distributed on the entire 

molecule and localized primarily on the peripheral TPA moieties. The LUMO levels of BF-

m-TPA, BF-p-TPA, and BF-2,6-TPA are localized on dibenzofuran cores. No orbital overlap 

between the HOMO and LUMO is found in BF-m-TPA and the separation of HOMO and 

LUMO levels reveal their strong bipolar features.[29] 

 

3.2. Optical and electrochemical properties 

 

Figure 3 shows the UV-Vis and photoluminescence (PL) spectra of BF-m-TPA, BF-p-TPA 

and BF-2,6-TPA in dichloromethane solution and film state at room temperature, and the 

results are summarized in Table 1. The absorption maxima of BF-m-TPA, BF-p-TPA, and 

BF-2,6-TPA were observed at 300, 325, and 340 nm, respectively. The BF-TPA derivatives 

were showed the π-π* transition of around 250 nm and n-π* transition range of 300-350 nm. 

The introduction in the para position of the diphenylamine group led to a conspicuous red 

shift in BF-p-TPA and BF-2,6-TPA in comparison with BF-m-TPA. This result shows that 

introduction diphenylamine group of the meta position could cause a blue shift due to the 

short conjugation properties. The BF-TPA derivatives showed emission from UV to deep 



blue at 403-425 nm in solution and 394-430 nm in film. The PL emission of BF-2,6-TPA was 

red-shifted compared to BF-m-TPA and BF-p-TPA. The solid state of BF-m-TPA exhibited 

emission ranging from 394 nm, which was significantly more blue-shifted than the solution 

state. This result is probably due to the change from the crystalline to amorphous state.[30] 

Phosphorescent emission peak from low temperature (at 77 K) PL measurement provided a 

high triplet energy of 2.67, 2.55, and 2.47 eV in BF-m-TPA, BF-p-TPA, and BF-2,6-TPA, 

respectively. The BF-TPA derivatives has a higher triplet energy than the 2.40 eV of 

Ir(mppy)3. Thus, compounds can be used as an HTL material for green phosphorescent 

OLEDs.  

The optical band gaps (∆Eg) of BF-m-TPA, BF-p-TPA and BF-2,6-TPA deduced from the 

absorption edge of the absorption spectra were 3.70, 3.40, and 3.30 eV, respectively. In order 

to evaluate the redox behaviour of BF-TPA derivatives and access the HOMO energy levels, 

we performed cyclic voltammetry (CV) with respect to ferrocene as a standard. The BF-TPA 

derivatives revealed irreversible oxidation potentials at 0.83-0.91 V. The HOMO energy 

levels of BF-m-TPA, BF-p-TPA, and BF-2,6-TPA were 5.31, 5.30, and 5.23 eV, respectively. 

The LUMO levels were estimated from the HOMO levels and the values of optical band gaps 

by ELUMO = EHOMO + ∆Eg. The resulting data are summarized in Table 1. The BF-m-TPA was 

exhibited a very high LUMO energy of 1.61 eV. This result suggested that it effectively 

blocked the electron transfer from EML to HTL. 

Charge-carrier mobilities of BF-TPA derivatives were measured by the space-charge limited 

current (SCLC) method. Hole-only devices were fabricated with the following structure to 

hole transporting properties of BF-m-TPA, BF-p-TPA and BF-2,6-TPA; ITO/PEDOT:PSS 

(30 nm)/ BF-TPA derivatives (100 nm)/ MoO3 (10 nm)/ Au (100 nm). Hole mobilities of BF-

m-TPA, BF-p-TPA and BF-2,6-TPA were 2.48 × 10-4 cm2 V-1 s-1, 2.53 × 10-6 cm2 V-1 s-1 and 

1.40 × 10-5 cm2 V-1 s-1, respectively. According to the this result, it can be concluded that BF-

m-TPA will fabricate more efficient device, because of fast hole mobility properties 

compared BF-p-TPA and BF-2,6-TPA. 

 

3.3. Electroluminescent properties 

 

To evaluate the performance of the BF-TPA derivatives as hole-transport layer, green 

phosphorescent OLEDs were fabricated using green emitter Ir(mppy)3 as the dopant. The 

device configuration was ITO/NPB (20 nm)/HTL (30 nm)/CzTP + Ir(mppy)3 (10 %, 40 



nm)/TPBi (30 nm)/LiF (0.5 nm)/Al (500 nm) (HTL = BF-m-TPA: device 1, BF-p-TPA: 

device 2 and BF-2,6-TPA: device 3) and Figure 4 shows a device construction and 

HOMO/LUMO energy diagrams of the materials used. The performance of all devices are 

also shown in Figure 5. The corresponding device data are presented in Table 2. The EL 

spectra of devices based on BF-m-TPA, BF-p-TPA, and BF-2,6-TPA exhibit emission 

exclusively from 512 nm of Ir(mppy)3. The three devices exhibit turn-on voltages of 6.3-8.0 

V, maximum brightness of 10,244-15,230 cd/m2, luminance efficiencies (LE) of 28.6-56.5 

cd/A, and power efficiencies (PE) of 8.6-13.7 lm/W. Device 3, which used BF-2,6-TPA as the 

HTL, showed the lowest turn-on voltage among the three devices, which might be 

attributable to the suitable HOMO energy level of BF-2,6-TPA. 

Device 1 using BF-m-TPA had the best result with a maximum luminance of 15,230 cd/m2, 

PE of 13.3 lm/W, LE of 56.5 cd/A, and EQE of 16.3 %. Such high efficiency could be 

attributed to blocking electrons from EML to HTL, as a result of the high LUMO energy of 

BF-m-TPA. Another reason is that the triplet energy of BF-m-TPA was over 0.25 eV higher 

than of Ir(mppy)3 (2.4 eV).[31] Device 1 presented pure Ir(mppy)3 emission, while device 2 

and device 3 exhibited an additional peak at 405 nm and 424 nm, respectively, which were 

recognized as the BF-p-TPA and BF-2,6TPA emissions, respectively. This phenomenon 

perhaps indicates that the BF-p-TPA and BF-2,6-TPA do not suite the energy level with the 

EML layer, causing the hole to not transfer well to EML, and thereby generating excitons in 

the HTL. Therefore, in future research, we will design a device in which the energy level is 

suited to BF-p-TPA and BF-2,6-TPA to fabricate a more efficient device and to observe its 

characteristics. Since the device configuration has not been optimized and the manufacturing 

environment is not good in the present work, it is expected that further performance can be 

improved by fine tuning the device structure and improving the manufacturing environment. 

Future studies will further investigate the life characteristics of the devices through fine 

tuning of the device. 

 

4. Conclusions 

 

We have successfully synthesized BF-m-TPA, BF-p-TPA, and BF-2,6-TPA as hole-

transporting materials containing dibenzofuran and triphenylamine. Their thermal, 

photophysical, electrochemical, and electroluminescent properties have been investigated. 

The BF-TPA derivatives have a high thermal stability of over 395 ℃. They also have high 



LUMO energy levels of over 1.93 eV. The BF-TPA derivatives were fabricated as hole-

transporting materials in green phosphorescent OLEDs. The fabricated OLEDs of the BF-m-

TPA showed the best performance with a current efficiency of 56.6 cd/A, luminance of 

15,230 cd/m2, power efficiency of 13.3 lm/A, and EQE of 16.3 % compared to compounds 

with introduction at the para position. This indicated that BF-m-TPA had a higher triplet 

energy and a more suitable band diagram with EML compared to BF-p-TPA and BF-2,6-TPA.  
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Scheme 1.  Synthetic procedure of the BF-TPA derivatives  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure Captions 

 

Figure 1. Calculated HOMO and LUMO distributions of (a) BF-m-TPA, (b) BF-p-TPA and 

(c) BF-2,6-TPA. 

Figure 2. TGA curves of a) BF-m-TPA, (b) BF-p-TPA and (c) BF-2,6-TPA. 

Figure 3. (a) Absorption and (b) photoluminescence spectras of BF-TPA derivatives in 

dichloromethane and film.  

Figure 4. Device structure and HOMO/LUMO energy levels of the materials used for 

OLEDs. 

Figure 5. (a) Electroluminescence spectra, (b) voltage-current density-luminance, (c) current 

density-luminance efficiency-power efficiency  and (d) luminance-EQE of three devices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 1. 

 

 

 

 

 



 

Fig. 2 

 

 

 

 

 

 

 

 



 

Fig. 3  

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 4  

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 



 

Fig. 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1. Photophysical and electrochemical properties for BF-TPA derivatives.  

a All data were measured in CH2Cl2 solution 
b T is the temperature at 5 % weight loss 
cEstimated from the onset of the phosphorescence spectrum. 
dLUMO levels were derived via eq. Eg=HOMO - LUMO 
e 
∆Eg collected by UV-Vis spectrophotometer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Absorption 

λmax (nm) 

Emission 

λmax (nm) ∆λ 

(nm) 

QY 

(%)a 

Td 

(℃)b 

Et 

(eV)c 

Eox 

(V)  

HOMO  

(eV) 

LUMO 

(eV)d 

Eg 

(eV)e 
solutiona film 

BF-m-TPA 300 403 394 103 38 425 2.67 0.91 5.31 1.61 3.70 

BF-p-TPA 325 403 410 78 43 441 2.55 0.90 5.30 1.90 3.40 

BF-2,6-TPA 340 425 430 80 81 396 2.47 0.83 5.23 1.93 3.30 



Table 2. Device performances based on BF-TPA derivatives  

aValues indicate maximum efficiency.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Turn-on 

voltage(V) 

LEmax 

(cd/A)a 

PEmax 

(lm/W)a 

Lmax 

(cd/m2)a 

EQE 

(%)a 

EL 

(nm)a 

CIE 

(x,y)a 

Device 1 8 56.5 13.3 15230 16.3 512 0.31, 0.61 

Device 2 7.2 28.6 8.6 10738 8.4 512 0.28, 0.62 

Device 3 6.3 46.5 13.7 10244 13.5 512 0.31, 0.61 
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Highlights 
 

- Three hole-transporting materials based on dibenzofuran and triphenylamine were 
developed. 

- The BF-TPA derivatives were showed highly LUMO energy. 
- Green phosphorescent OLEDs using the hole transporting materials were fabricated. 
- Green PhOLED with BF-m-TPA had the best result with a maximum LE of 56.5 cd/A. 
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