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SUMMARY: In glycosylations utilizing SnCI4 activation or SN2 displacement of the (:t-chlorosugar, two closely 

related purines, namely 6-nitro-1,3-dideazJapurine 1 and 6-nitro-l-deazapurine 2, give different distributions of i~meric 

pr~xtucts. 

Glycosylation of 6-nitro-l-deazapurine 2 (Figure 1) with 1,2,3,5-tetra-O-acetyl-[LD-ritxffuranose (TAR) 3 and 

l-chloro-2-deoxy-3,5-di(p-toluyl)-D-erythro-pentofumnose 9 (Figure 2) are important because catalytic hydrogenation 

can directly yield 1-deazaadenosine and 2 '-deoxy-l-deazaadenosine, respectively. 1-4 The former has been shown to be 

an antitumor agent, I an adenosine receptor antagonist, 2 an inhibitor of adenosine deaminase 3 and blood platelet 

aggregation. 4 In out studies of unusual DNA and RNA structures, we became interested in 1,3-dideazaadenosine and 1- 

dea/aadenosine because they lack the nitrogens necessary to Ibm1 Watson-Crick hy'drogen bonds but can still participate 

in H~'~gsteen hydrogen bonding. 
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Table 1 summarizes the results of the glycosylations of 1 and 2 with TAR, using the traditional SnCI4 activation 

in acetonitrile (Figurc 1). 5 As expected, in I:x)th glycosylations, participation by the neighboring 2 '-acetyloxy group 

excluded the formation of ~x-anomers. In addition, we have argued 6 that, due to the steric and electron withdrawing 

effects of the 6-NO2 group and the existence of I in its intramolecularly hydrogen Ix~nded form, 7 the N-9 nitrogen will 

be more nucleophilic than the N-7. Thus, as predicted, glycosylation of 1 gave exclusively the N-9 [3-isomer 4. 6 

Purine 
Reaction 

Time 

16h 

2.5 h 

16h 

% yield 

9-~ 7-~ 3-~ 

86 0 

50.6 0 39.4 

60.1 0 26.9 

Table 1: Isomeric distribution in the SnCI4 catalyzed glycosylation reactions of I and 2 with TAR 

Contrary to a previous report, l however, glycosylation o1"2 gave a mixturc of two isomers. In addition, the 

product distribution ,,,,'as also found to depend on the reaction time (Table 1). While the IH-NMR data of the major 

isomer was identical to that reported l for the N-9 [3-anomer, for the reasons described below, we believe the minor 

product is the N-3 13-isomer 6 and not the N-713-isomer: (i) As with 1,6, 7 the steric and electron withdrawing effects of 

the 6-NO2 group and the existence of the intramolecularly hydrogen bonded lorm, should exclude the formation of the 

N-7 ~-isomer from 2. (ii) The H-1 ' and H-8 signals of the minor isomer were not shifted downfield as compared to the 

corresponding proton signals of the major N-9 [3-isomer. 8 In all examples reported to date, 9 this particular IH-NMR 

trend has been reliable in distinguishing between the N-7 and N-9 [3-isomers, including the N-7 and N-9 13-isomers 

obtained from 1. 6 (iii) Since the lone pair on N-3 is never involved in a,omatic resonance, it should be more 

nucleophilic than the N-9 nitrogen. Thus, the N-3 ["l-isomer 6 should be the kinctic product. However, it is less stable 

than the N-9 [:/-isomer 5, as glycosylation through N-3 disrupts aromaticity on both rings. Therefore, with time, 6 can 

equilibrate to the thermodynamically favored N-9 ~l-isomer $. A similar time dependent rearrangement has been reported 

for l-deazapurine, the purine that lacks the 6-NO2 group, when glycosylation was pcrlk~rmed under the same reactioq 

conditions. I0 

The purines 1 and 2 also behave diffcrently in the sodium salt glycosylations (Figure 2). Whereas 1 yielded a 

mixture of products (Table 2), glycosylation of 2 was essentially' rcgio- and stcrco-specific giving only the N-9 [3- 

isomer 11. II The pseudo triplet naturc of the H-I ' signals in IH-NMR allowed us to assign [3-configuration for 

compounds 10, 11, and 12. 9a Furthermore, the H- 1 ' proton of 13 had a doublet of doublet pattern expected for the a- 

anomer.9a, 12 In the reactions of purine 1, the regioisomers were assigned based on the downfield shifts of the H-1 ' 

and H-8 protons of 10 relative to 12. 9a Additional support was also obtained through NOE experiments. Whereas 

irradiation of the H- I ' and H-3 '  protons of the sugar gave an NOE of 3.5% and 2.0%, respectively, for the H-3 of 10, 

there was no detectable enhancement Ior H-3 upon irradiation of any of the sugar protons in 12. 
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The foregoing results on the sodium salt glycosylations may be rationalized as follows. When the negative 

charge is on the N-7 nitrogen, it can be effectively stabilized via the mesomenc effect of the 6-NO2 group. As a result, it 

will be less nucleophilic than the N-9 anion and, hence, the predominant formation of the N-9 [~-isomers (10 and 11) in 

both glycosylations. The competition from the N-7 [~-isomer 12 is presumably due to steric hindrance exerted by the H- 

3 hydrogen of 1, which sufficiently' slows down the reaction at N-9. This theory is supported by the fomation of a small 

amount of the N-9 c~-isomer 13; with slow reacting bases, the ot-chlorosugar is known to anomerize to the more 

reactive ~chloro derivative, thereby leading to the formation of some or-isomers. 9a The exclusive formation of the N-9 

[Lisomer 11, during the sodium salt glycosylation of 2, also provides further support for this rationale. 
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Figure 2: Sodium salt glycosylation of 1 and 2 with 1-chloro-2-deoxy'-3,5-di(p-toluyl)-D-ervthro-pentofuranose 

% yield 
Purine 

9-I~ 7-13 9-,~ 

1 62 10 trace 

2 86 0 0 

Table 2: Isomeric distribution in the sodium salt glycosylation reactions of 1 and 2 

A c k n o w l e d g m e n t :  This research was supported by the Northeastern University's start-up funds (to D.J.J) and 

Undergraduate Co-operative Education Progranl (to D.V). 



1604 

R E F E R E N C E S  A N D  N O T E S  
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The numbering scheme of adenosine, as outlined in Figure 1 and 2, has been used throughout this manuscript. 

Cristalli, G.; Franchetti, P.; Grifantini, M.; Vittori, S.; Bordoni, T.; Geroni, C. J. Med. Chem. 1987, 30, 

1686. 

Cristalli, G.; Grifantini, M.; V ittori, S.; Balduini, W.; Cattabeni, F. Nucleosides& Nttcleotides 1985, 4, 625. 

Lupidi, G.; Riva, F.; Cristalli, G.; Grifantini, M. ltal. J. Biochem. 1982, 31, 396. 

Antonini, I.; Cristalli, G.; Franchetti, P.; Grifantini, M.; Martelli, S.; Petrelli, F. J. Pharm Sci. 1984, 373, 

366. 

For example, see: Dempcy, R. O.; Skibo, E. B. J. Org. Chem. 1991, 56, 776. 

Devlin, T. A.; Jebaratnam, D. J. Synth. Commun. 1995, 25, 0000. 

Rabinowitz, J. L.; Wagner, E. C. J. Attt. Chem. Soc. 1951, 73, 3030. 

IH-NMR data Ibr 5 (300 MHz, CDCI3): 6 2.02, 2.05, 2.14 (CH3, s), 4.24 - 4.35 (H-5' and H-5", m), 4.39 - 

4.48 (H-4 ' ,  m), 5.67 (H-3 ' ,  pseudo t, J = 5.4 Hz), 6.08 (H-2 ' ,  pseudo t, J = 5.6 Hz), 6.46 (H-I ' ,  d, J = 

5.1 Hz), 8.08 (H-2, d, J = 5.3 Hz), 8.74 (H-l, d, J =5.4 Hz), 9.04 (H-8, s). IH-NMR data for 6 (300 MHz, 

CDCI3): 6 2.03, 2.07, 2.10 (CH3, s), 4.38 - 4.48 (H-5',  m), 4.88 -4.95 (H-4' ,  m), 5.48 (H-3 ' ,  pseudo t, J 

= 4.7), 5.78 (H-2 ' ,  pseudo t, J = 5.5), 6.92 (H-I ' ,  d, J = 5.4), 8.05 (H-2, d, J = 5.4), 8.70 (H-I, d, J = 

5.3), 8.99 (H-8, s). 

a) Hildebrand, C; Wright, G. E. J. Org. Chem. 1992, 57, 1808. b) Ramasamy, K.; hnamura, N.; Robins, R. 

K.; Revankar, G. R. J. Heterocycl. Chem. 1988, 25, 1893. c) Hanna, N. B.; Ramasamy, K.; Robins, R. K.; 

Revankar, G. R. J. Heterocycl. Chem. 1988, 25, 1899. 

Itoj, T.; Mizuno, Y. Heterocycl. 1976, 5, 285. 

All new compounds gave consistent spectral and analytical data. Selected NMR data for new compounds: 

10. IH-NMR (300 MHz, CDCI3): 6 2.39, 2.42 (CH3-, s), 2.84-3.04 (H-2' and H-2", m), 4.60-4.70 (H- 

5 ' and  H-5", m), 4.72-4.81 (H-4' ,  m), 5.75 -5.81 (H-3', m), 6.46 (H-1 ' ,  pseudo t, J = 5.69 Hz), 7.17 (H- 

2, pseudo t, J = 8.1 Hz), 7.20 (p-Tol, d, J = 8.07), 7.26 (p-Tol, d, J = 8.07 Hz), 7.82 (p-Tol, d, J = 8.3 l Hz), 

7.90 (H-3, d, J = 7.76 Hz), 7.96 (p-Tol, d, J = 8.31 Hz), 8.04 (H-l, d, J = 7.53 Hz), 8.35 (H-8, s). 13C- 

NMR (75.4 MHz, CDCI3): /5 21.44, 21.51, 37.95, 63.39, 74.17, 82.70, 85.61, 117.44, 119.55, 122.31, 

125.95, 126.13, 129.11, 129.24, 129.54, 135.04, 137.35, 139.03, 143.51, 144.15, 144.44, 165.75. 

11, IH-NMR (300 MHz, d6-DMSO): i5 2.37, 2.42 (CH3, s), 2.86 (H-2 ' ,  ddd, J = 14.1 Hz, J = 6.4 Hz, J = 

2.9 Hz), 3.42 (H-2", pseudo quintet, J = 6.8 Hz), 4.54 - 4.70 (H-4' ,  H-5', H-5", m), 5.85 - 5.87 (H-3 ' ,  

m), 6.75 (H-1 ' ,  pseudo t, J = 6.9 Hz), 7.28 (p-Tol, d, J = 7.9 Hz), 7.38 (p-Tol, d, J = 7.9 Hz), 7.82 (p-Tol, 

d, J = 8.3 Hz), 7.96 (p-Tol, d, J = 8.3 Hz), 8.03 (H-2, d, J=5.3 Hz), 8.63 (H-l, d, J=5.3 Hz), 9.03 (H-8, s). 

12. IH-NMR (300 MHz, CDCI3): ~5 2.38, 2.43 (CH3, s), 2.69 (H-2 ', pseudo quintet, J = 6.9 Hz), 3.00 (H- 

2", ddd, J = 14.08 Hz, J = 5.61 Hz, J = 3.15 Hz), 4.59-4.71 (H-4',  H-5 ' ,  H-5", m), 5.59-5.66 (H-3 ' ,  m), 

6.79 (H-I ' ,  pseudo t, J = 5.67 Hz), 7.17 (p-Tol, d, J = 7.97 Hz), 7.28 (p-Tol, d, J = 7.97 Hz), 7.35 (H-2, 

pseudo t, J = 8.07 Hz), 7.81 (p-Tol, d, J = 8.25 Hz), 7.96 (p-Tol, d, J = 8.25 Hz), 8.02 (H-3, d, J = 8.58 

Hz), 8.08 (H-l, d, J = 8.01 Hz), 8,52 (H-8, s). 13C-NMR (75.4 MHz, CDCI3): ~ 21.60, 21.67, 40.32, 63.69, 

74.10, 82.76, 88.24, 121.09, 121.75, 124.96, 126.16, 126.34, 127.35, 129.21, 129.48, 129.76, 136.16, 

142.92, 144.12, 144.47, 147.59, 165.96. 
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