

Tetrahedron Letters 44 (2003) 1583-1586

TETRAHEDRON LETTERS

A new entry to carbocycles: synthesis of cyclopentene and cyclohexene derivatives through *endo*-mode ring closure of allenyl sulfones

Chisato Mukai,* Rie Ukon and Norikazu Kuroda

Faculty of Pharmaceutical Sciences, Kanazawa University, Takara-machi, Kanazawa 920-0934, Japan

Received 8 December 2002; revised 27 December 2002; accepted 27 December 2002

Abstract—Treatment of dimethyl 4-(phenylsulfonyl)-4,5-hexadiene-1,1-dicarboxylate with potassium *tert*-butoxide in *tert*-butanol at room temperature effected successive *endo*-mode ring closure at the *sp*-hybridized carbon center and demethoxycarbonylation of the resulting malonate derivative leading to the exclusive formation of methyl 2-methyl-3-(phenylsulfonyl)-1-cyclopentenecarboxylate. An additional seven allenyl sulfones having a 1,3-dicarbonyl functionality gave the corresponding cyclopentene or cyclohexene derivatives in high yields. © 2003 Elsevier Science Ltd. All rights reserved.

The construction of five- and six-membered carbocycles is a fundamental process in synthesis, and enormous procedures have been developed for preparing them. The classical intramolecular Michael-type conjugate addition¹ of carbanionic organometallic species to activated alkenes and alkynes with an electron-withdrawing group (i.e. Michael acceptors) is still one of the most frequently used methods, although recent progress in the field of organotransition metal chemistry has enabled the efficient metal-catalyzed intramolecular addition of enolates, derived from active methine derivatives, to unactivated alkynes² and allenes³ as well. In contrast to the many examples of intramolecular conjugate addition of carbanion species to alkenes and alkynes¹ having an electron-withdrawing group, relatively few examples of the corresponding allene

Scheme 1.

derivatives⁴ have been reported. During our own studies⁵ toward the development of a convenient and efficient procedure for the preparation of oxacycles, we were able to show that the endo-mode intramolecular ring closure of allenes⁶ having a phenylsulfonyl functionality with a terminal hydroxyl group proceeded very efficiently. This letter describes our preliminary results on the novel intramolecular ring closure reaction of the allenyl sulfones 1 with suitable internal carbon nucleophiles⁷ in an *endo*-mode manner⁸ leading to the intriguing direct formation of the 1,2,3-trisubstitutedcyclopentene and cyclohexene derivatives 2 (Scheme 1). Thus, to the best of our knowledge, this would be the first example dealing with the endo-mode intramolecular Michael-type reaction of allenes with the active methine moiety.

The required starting allenes 7 and 8 for the ring closure reaction were prepared by conventional means in a straightforward manner as depicted in Scheme 2. Condensation of the iodo derivatives 3^9 and 4^{10} with the active methine species under basic conditions was followed by acid hydrolysis to give the condensed products 5 and 6 with a propargyl alcohol moiety. Exposure of the methine derivatives 5 and 6 to benzenesulfenyl chloride¹¹ in THF in the presence of triethylamine effected successive sulfenic ester formation and the [2,3]-sigmatropic rearrangement to afford the corresponding sulfoxides, which were subsequently oxidized with *m*CPBA to furnish the sulfone derivatives 7 and 8.

0040-4039/03/\$ - see front matter @ 2003 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(03)00067-4

Keywords: carbocycle; *endo*-mode ring closure; allenyl sulfone; carbon nucleophile; Michael-type reaction.

^{*} Corresponding author. E-mail: cmukai@kenroku.kanazawa-u.ac.jp

a : $R^1 = R^2 = CO_2Me$, **b** : $R^1 = R^2 = CO_2Et$, **c** : $R^1 = CO_2Et$, $R_2 = COPh$, **d** : $R^1 = SO_2Ph$, $R^2 = CO_2Me$

Scheme 2. *Reagents and conditions*: (a) NaH, DMF, 0°C-rt; (b) *p*-TsOH, MeOH, rt, **5a** (86%), **5b** (86%), **5c** (34%), **5d** (90%), **6a** (88%), **6b** (83%), **6c** (41%), **6d** (98%); (c) PhSCl, Et₃N, THF, -78°C; (d) *m*CPBA, CH₂Cl₂, 0°C, **7a** (85%), **7b** (81%), **7c** (77%), **7d** (50%), **8a** (91%), **8b** (74%), **8c** (66%), **8d** (88%).

At the beginning of this study, we investigated the transformation of 7a to the corresponding ring-closed products. Treatment of the allenyl sulfone 7a with sodium methoxide in MeOH at room temperature immediately led to complete consumption of the starting material as well as production of three new spots on TLC, which needed a prolonged reaction time (26 h) to converge into one product. The isolated product from the reaction mixture was the cyclopentenecarboxylate derivative $9a^{12}$ (96%) instead of the expected cyclopentene-1,1-dicarboxylate derivatives 10a and/or 11a (Table 1, entry 1). A similar result was observed when 7a was exposed to potassium methoxide in MeOH for a shorter reaction time (2 h) (entry 2). In contrast to these two cases, rapid conversion of 7a into 9a (84%) was realized within 5 min upon treatment with potassium tert-butoxide in 'BuOH at room temperature (entry 3). The ring closure of 7a with potassium hydroxide in THF also furnished 9a in 67% yield (entry 4).¹⁴ These results are summarized in Table 1.

The fascinating formation of 9a from 7a can tentatively be rationalized in terms of the intermediacy of the products 10a and/or 11a, which would collapse to 9a through demethoxycarbonylation.¹⁵ In order to obtain more information on the mechanism of this transformation, several experiments were carried out (Scheme 3). Treatment of 7a with triethylamine in CH₂Cl₂ at room temperature for 2 h provided 10a and 11a in 69% and 24% yield, respectively. Compound 10a was isomerized to 11a in 15% yield when it exposed to triethylamine at room temperature for 48 h along with starting 10a (68%). However, 11a was found to be stable under the same conditions and no isomerization to 10a could be detected. It turned out that these malonate derivatives 10a and **11a** easily underwent demethoxycarbonylation with alkoxides to provide 9a. Thus, independent treatment of 10a and 11a with potassium tert-butoxide in ^tBuOH at room temperature for 5 min furnished 9a in 79% and 63% yield, respectively. On the basis of these experiments, it could be concluded that the Michael-type ring closure of 7a under the basic conditions first occurred at the sp-hybridized carbon center of the allenyl moiety in an endo-mode manner, as anticipated, resulting in the formation of 10a, which might be in part susceptible to the base-catalyzed isomerization to 11a. The final step of this transformation must be the demethoxycarbonylation of 10a and/or **11a** with the alkoxide species leading to the production of 9a, although the exact mechanism of the demethoxycarbonylation is so far unclear.¹⁶

The next phase of this program involved the application of this newly developed procedure to the con-

Table 1. Ring closure reaction of 7a^a

entry	base	equiv.	solvent	time	yield (%)
1	MeONa	4.5 ^b	MeOH	26 h ^c	96
2	MeOK	4.5 ^b	MeOh	2 h ^c	95
3	'BuOK	1.5	^t BuOH	5 min ^d	84
4	aq. KOH	1.5	THF	6 h ^c	67

>>67

^a Reaction was monitored by TLC. Complete consumption of 7a was observed within 5 min in each case.

^b It took more prolonged reaction time when 1.5 equiv. of base was used.

^c Three new spots gradually converged to **9a**.

^d No other products could be detected on TLC.

struction of other carbocycles. We chose potassium tert-butoxide in 'BuOH (Table 1, entry 3) for further investigation, since rapid conversion involving dealkoxycarbonylation would be anticipated. The results obtained from the reactions of 7b-d and 8a-d under standard conditions, in combination with the result of 7a, are summarized in Table 2. There are several features that should be pointed out. (i) All reactions, except for entries 3 and 7, afforded the corresponding cyclized-products accompanied with dealkoxycarbonylation in high yields. (ii) Contrary to our prediction, 7c and 8c produced 9b and 12b, respectively, via debenzoylation instead of deethoxycarbonylation (entries 3 and 7). This observation might provide additional information concerning the mechanism.^{16,17} (iii) In the case of 7d and 8d, longer time as well as higher temperature (60°C) were required to complete the reaction, although rapid consumption of the starting materials was observed within 5 min (entries 4 and 8).

In summary, we have developed a simple and convenient procedure for the preparation of the cyclopentene and cyclohexene frameworks having three distinguishable functionalities via the *endo*-mode ring closure of the allenyl sulfone derivatives. Application of this interesting method to the construction of other carbocycles, like cycloheptene and cyclooctene skeletons, as well as further investigation on the mechanism of the decarbonylation process is now in progress.

Acknowledgements

This work was supported in part by Nagase Science and Technology Foundation and by a Grant-in Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan, to which the authors' thanks are due.

^a Allenes **7**, **8** were treated with ^{*i*}BuOK (1.5 equiv.) in ^{*t*}BuOH at rt. ^b Reaction was carried out in a combined solvent of ^{*t*}BuOH and THF (1:1) at 60°C. ^c When **7d** was treated with aq.KOH in THF at rt for 5 min, methyl 1,3-bis(phenylsulfonyl)-2-methylenecyclopentanecarboxylate was obtained in 83% yield. ^d When **8d** was treated with aq.KOH in THF at rt for 5 min, methyl 1,3-bis(phenylsulfonyl)-2methylenecyclohexanecarboxylate was obtained in 98% yield.

References

- For leading reviews, see: (a) Winterfeldt, E. Kontakte (Darmstadt) 1987, 37; Chem. Abstr. 1988, 109, 22316d;
 (b) Perlmutter, P. Conjugate Addition Reactions in Organic Synthesis; Tetrahedron Organic Chemistry Series Vol, 9; Pergamon: Oxford, 1992; (c) Little, R. D.; Masjedizadeh, M. R.; Wallquist, O.; McLoughlin, J. I. Org. React. 1995, 47, 315.
- For alkyne, see: (a) Fournet, G.; Balme, G.; Gore, J. *Tetrahedron* 1991, 47, 6293; (b) Monteiro, N.; Gore, J.; Balme, G. *Tetrahedron* 1992, 48, 10103; (c) Arcadi, A.; Cacchi, S.; Fabrizi, G.; Marinelli, F. *Synlett* 1993, 65; (d)

Cruciani, P.; Aubert, C.; Malacria, M. Tetrahedron Lett. 1994, 35, 6677; (e) McDonald, F. E.; Olson, T. C. Tetrahedron Lett. 1997, 38, 7691; (f) Tsukada, N.; Yamamoto, Y. Angew. Chem., Int. Ed. Engl. 1997, 36, 2477. (g) Kitagawa, O.; Suzuki, T.; Inoue, T.; Taguchi, T. Tetrahedron Lett. 1998, 39, 7357; (h) Kadota, I.; Shibuya, A.; Gyoung, Y.; Yamamoto, Y. J. Am. Chem. Soc. 1998, 120, 10262; (i) Kitagawa, O.; Suzuki, T.; Inoue, T.; Watanabe, Y.; Taguchi, T. J. Org. Chem. 1998, 63, 9470; (j) Bouyssi, D.; Monteiro, N.; Balme, G. Tetrahedron Lett. 1999, 40, 1297; (k) Kitagawa, O.; Suzuki, T.; Fujiwara, H.; Fujita, M.; Taguchi, T. Tetrahedron Lett. 1999, 40, 4585; (l) Kitagawa, O.; Fujiwara, H.; Suzuki, T.; Taguchi, T.; Shiro, M. J. Org. Chem. 2000, 65, 6819, and references cited therein.

- For allene, see: (a) Besson, L.; Bazin, J.; Gore, J.; Cazes, B. *Tetrahedron Lett.* **1994**, *35*, 2881; (b) Yamamoto, Y.; Al-Masum, M.; Asano, N. J. Am. Chem. Soc. **1994**, *116*, 6019; (c) Trost, B. M.; Gerusz, V. J. J. Am. Chem. Soc. **1995**, *117*, 5156; (d) Meguro, M.; Kamijo, S.; Yamamoto, Y. *Tetrahedron Lett.* **1996**, *37*, 7453, and references cited therein.
- 4. Parsons and co-workers reported the ring closure reaction of dimethyl 4-methyl-6-(phenylsulfinyl)-4,5-hexadiene-1,1-dicarboxylate resulting in the formation of the seven-membered oxacycle presumably due to the *exo*-mode ring closure by the oxygen atom of the methoxy-carbonyl moiety at the *sp*-hybridized carbon center. The cyclopentane derivative, which would be expected by the attack of the carbanion species in an *exo*-mode manner, could not be detected. Pairaudeau, G.; Parsons, P. J.; Underwood, J. M. *Chem. Commun.* 1987, 1718.
- (a) Mukai, C.; Sugimoto, Y.; Ikeda, Y.; Hanaoka, M. Tetrahedron Lett. 1994, 35, 2179; (b) Mukai, C.; Ikeda, Y.; Sugimoto, Y.; Hanaoka, M. Tetrahedron Lett. 1994, 35, 2183; (c) Mukai, C.; Sugimoto, Y.; Ikeda, Y.; Hanaoka, M. Chem. Commun. 1994, 1161; (d) Mukai, C.; Sugimoto, Y.; Ikeda, Y.; Hanaoka, M. Tetrahedron 1998, 54, 823; (e) Mukai, C.; Yamashita, H.; Ichiryu, T.; Hanaoka, M. Tetrahedron 2000, 56, 2203; (f) Mukai, C.; Yamaguchi, S.; Sugimoto, Y.; Miyakoshi, N.; Kasamatsu, E.; Hanaoka, M. J. Org. Chem. 2000, 65, 6761.
- Mukai, C.; Yamashita, H.; Hanaoka, M. Org. Lett. 2001, 3, 3385.
- 7. The intermolecular Michael-type reaction between the 1,2-allenyl ketones with the active methine derivatives

was very recently reported. Ma, S.; Yin, S.; Li, L.; Tao, F. Org. Lett. 2002, 4, 505.

- The *endo*-mode intramolecular Michael-type reaction of a vinyl-sulfone with the active methine moiety under basic conditions afforded the corresponding five-membered carbocycle. Auvray, P.; Knochel, P.; Normant, J. F. *Tetrahedron Lett.* 1985, 26, 4455.
- (a) Corey, E. J.; Niwa, H.; Knolle, J. J. Am. Chem. Soc. 1978, 100, 1942; (b) Mukai, C.; Nomura, I.; Yamanishi, K.; Hanaoka, M. Org. Lett. 2002, 4, 1755.
- 10. The iodo derivative **4** was prepared according to the procedure described in Ref. 9.
- 11. Horner, L.; Binder, V. Ann. Chem. 1972, 757, 33.
- 12. The structure of **9a** was unambiguously established on the basis of its spectral evidence. In particular, the IR spectrum of **9a** showed a carbonyl absorption band at 1712 cm^{-1} , which is in good accordance with that of ethyl 1-cyclopentenecarboxylate (1710 cm⁻¹) rather than that of its regioisomer, ethyl 2-cyclopentenecarboxylate (1730 cm⁻¹).¹³
- 13. Scharf, H.-D.; Korte, F. Chem. Ber. 1964, 97, 2425.
- 14. Other bases such as 'BuOLi, MeOLi and aq. NaOH were also examined, but were found to be inferior to the ones listed in Table 1.
- 15. Similar demethoxycarbonylation was reported by Balme and co-workers^{2b} during their investigation on the palladium-catalyzed *exo*-mode cyclization of dimethyl 5hexyne-1,1-dicarboxylate and its analogues in the presence of 'BuOK.
- 16. The simple explanation for demethoxycarbonylation of **10a** and **11a** might involve nucleophilic attack of the alkoxide on the cationic carbonyl center. However, the fact that a more sterically hindered *tert*-butoxide reacted much faster than methoxide and hydroxide can not be rationalized by the above assumption.
- 17. Debenzoylation preferentially occurred over deethoxycarbonylation (entries 3 and 7). Therefore, the other plausible mechanism for decarbonylation of the 1,3-dicarbonyl functionality, which would involve the attack of the alkoxide on the alkyl group of the ester functionality with liberation of carbon monoxide, can be ruled out. In addition, preferential deacetylation over demethoxycarbonylation was also reported under the palladium-catalyzed *exo*-mode cyclization of alkyne derivatives in the presence of 'BuOK.^{2b}