### Accepted Manuscript

Synthesis, biological evaluation, and molecular docking study of sulfonate derivatives as nucleotide pyrophosphatase (NPPs) inhibitors

Mohammad H. Semreen, Mohammed I. El-Gamal, Saif Ullah, Saquib Jalil, Sumera Zaib, Hanan S. Anbar, Joanna Lecka, Jean Sévigny, Jamshed Iqbal

| PII:           | S0968-0896(19)30571-1                     |  |  |
|----------------|-------------------------------------------|--|--|
| DOI:           | https://doi.org/10.1016/j.bmc.2019.04.031 |  |  |
| Reference:     | BMC 14885                                 |  |  |
| To appear in:  | Bioorganic & Medicinal Chemistry          |  |  |
| Received Date: | 8 April 2019                              |  |  |
| Revised Date:  | 23 April 2019                             |  |  |
| Accepted Date: | 25 April 2019                             |  |  |



Please cite this article as: Semreen, M.H., El-Gamal, M.I., Ullah, S., Jalil, S., Zaib, S., Anbar, H.S., Lecka, J., Sévigny, J., Iqbal, J., Synthesis, biological evaluation, and molecular docking study of sulfonate derivatives as nucleotide pyrophosphatase (NPPs) inhibitors, *Bioorganic & Medicinal Chemistry* (2019), doi: https://doi.org/10.1016/j.bmc.2019.04.031

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

# Synthesis, biological evaluation, and molecular docking study of sulfonate derivatives as nucleotide pyrophosphatase (NPPs) inhibitors

Mohammad H. Semreen <sup>1,2</sup>, Mohammed I. El-Gamal <sup>1,2,3,\*</sup>, Saif Ullah<sup>4</sup>, Saquib Jalil <sup>4</sup>, Sumera

Zaib<sup>4</sup>, Hanan S. Anbar<sup>3</sup>, Joanna Lecka<sup>5,6</sup>, Jean Sévigny<sup>5,6</sup>, and Jamshed Iqbal<sup>4,\*</sup>

<sup>1</sup> Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.

<sup>2</sup> Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates.

<sup>3</sup> Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt.

<sup>4</sup> Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan.

<sup>5</sup> Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, GIV 0A6, Canada.

<sup>6</sup> Centre de Recherche du CHU de Québec – Université Laval, Québec, QC, G1V 4G2, Canada.

\***Corresponding authors:** e-mail address: <u>drmelgamal2002@gmail.com</u> ; address: Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates [M.I. El-Gamal] & e-mail address: <u>drjamshed@cuiatd.edu.pk</u>; address: Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan [J. Iqbal].

#### Abstract

A new series of sulfonate derivatives **1a-zk** were synthesized and evaluated as inhibitors of nucleotide pyrophosphatases. Most of the compounds exhibited good to moderate inhibition towards NPP1, NPP2, and NPP3 isozymes. Compound **1m** was a potent and selective inhibitor of NPP1 with an IC<sub>50</sub> value of  $0.387 \pm 0.007 \mu$ M. However, the most potent inhibitor of NPP3 was found as **1x** with an IC<sub>50</sub> value of  $0.214 \pm 0.012 \mu$ M. In addition, compound **1e** was the most active inhibitor of NPP2 with an IC<sub>50</sub> value of  $0.659 \pm 0.007 \mu$ M. Docking studies of the most potent compounds were carried out, and the computational results supported the *in vitro* results.

**Keywords:** Homology modeling; Immune modulation; Molecular docking; Nucleotide pyrophosphatase; Sulfonate.

#### 1. Introduction

Cells communicate via a route of purinergic signaling that is arbitrated by a number of extracellularly positioned nucleotides accompanying nucleosides. This purine nucleotide and nucleoside signaling play a role in the synaptic transmission, determination of cell fate, and immunologic response. Secreted nucleotides are capable of switching receptors on cell surface named P1, P2X and P2Y.<sup>4</sup> A number of extracellular nucleotide-hydrolyzing enzyme classes are engaged in terminating purinergic signaling. The classes of cell surface-located proteins include ecto-nucleoside triphosphate diphosphohydrolases (ENTPDases), alkaline phosphatases (APs), and the ectonucleotide pyrophosphatases/phosphodiesterases (ENPPs).<sup>2</sup> ENPPs deal with multiple nucleotide substrates, in particular nucleotide triphosphate, nucleotide diphosphates, nucleotide sugars, and dinucleotide polyphosphates to generate nucleotide monophosphate (NMP) as product. NMP is hydrolyzed by APs and ecto-5'-nucleotidases (eNs) and release nucleoside as a final product.<sup>1-3</sup>

In accordance with relation to substrate preference, seven members of human ENPPs can be grouped into two categories. ENPP1, 3, 4 occupy first category for nucleotide degrading potency, and second category may include ENPP2, 6, 7 which have affinity for phospholipid-

based substrates. ENPP1 early represented as PC1, is a homodimer (linked with disulfide bonds) glycoprotein.<sup>4</sup> Inorganic pyrophosphate generated as a result of nucleotide hydrolysis by ENPP1, selectively binds to hydroxyapatite crystals and inhibits the bone mineralization.<sup>5</sup> In contrast to PPi, produced by tissue non-specific alkaline phosphatase (TNAP), which facilitates the bone formation.<sup>6,7</sup> Reduced level of ENPP1 is associated with atherosclerosis,<sup>8</sup> hypophosphatemic rickets<sup>9</sup> and general arterial calcification of infancy (GACI).<sup>10</sup> On the other hand, over expression of ENPP1 leads to the release of calcium pyrophosphate dihydrate (CPPD) that accumulate in the joints resulting in disorder chondrocalcinosis.<sup>11</sup> Increased level of PPi causes chondrocytes apoptosis, facilitating the disorder osteoarthritis<sup>12</sup> and aortic valve calcification.<sup>13</sup>

ENPP2 is a distinctive among the other members, capable of producing lysophosphatidic acids (LPA), in particular from lysophosphatidylcholine (LPC),<sup>14</sup> by hydrolyzing the phosphodiester bonds of substrate. Non-nucleotide substrates for ENPP2 include lipid compounds and phosphate esters of choline, however, it has also affinity for nucleotide substrates to some extent. The crystallographic structure of ENPP2 is much related in sequence identity (about 45%) to ENPP1, in which catalytic domain phosphodiesterase (PDE) is surrounded at N-terminal by somatomedin B-like domain and nuclease like domain via Cterminal.<sup>15</sup> ENPP2 crystal structure<sup>16,17</sup> also revealed a rigid hydrophobic pocket capable for binding of acyl chain of lysophospholipid, whereas deep hydrophilic region coordinate the glycerol moiety of lysophospholipid and nucleotide substrate as well. The N-terminal of hydrophobic pocket acts like a signal peptide, explaining the statement that EPP2 is a secreted protein.<sup>18</sup> The somatomedin B (SMB)-like domains in contact with catalytic region contribute to the genesis of open tunnel for LPA product, transport it to its associated G protein coupled receptors<sup>19</sup> and binds the ENPP2 with the integrin's on cell surface as well.<sup>20,21</sup> Different signaling pathways are activated by ENPP2 (autotaxin) and formed LPA product that leads to invigoration of cell survival, proliferation and migration.<sup>22</sup> Pathophysiological contribution of LPA is reported in a number of illness including cancer,<sup>23</sup> fibrotic upset (pulmonary fibrosis),<sup>24</sup> neuropathic pain,<sup>25</sup> inflammatory affliction,<sup>26</sup> as well as cardiovascular<sup>27</sup> and cholestatic pruritus.<sup>28</sup>

ENPP3 (CD203c) is expressed in different body organs<sup>29</sup> on surfaces such as epithelial, mucosal,<sup>30</sup> especially on mast cells and basophils.<sup>31</sup> The crystal structure of ENPP3 revealed the

presence of parallel  $\beta$ -sheets based eight stranded catalytic phosphodiesterase (PDE) region holding five active N-glycosylation places and on each side, eight  $\alpha$ -helices, representing a characteristic feature of alkaline phosphatase superfamily.<sup>32,33</sup> This PDE domain is connected to nuclease-like (NUC) region via a linker L2, two somatomedin B like domains SMB1 and SMB2, attached to NUC with linker L1.34 Catalytic regions occupy two zinc ions (Zn1 and Zn2) surrounded by seven amino acids side chains. Zn1 is linked by Asp-325, His-483, and His-329, and facilitates the escape of leaving group, whereas Zn2 allows nucleophilic attacks coordinated by Asp-167, Asp 372, His-373, and nucleophilic residue Thr-205.<sup>35</sup> Upregulation of ENPP3 was reported on cell surface in addition to other inflammatory mediators as a result basophils activation with antigen bounded IgE.<sup>36</sup> As a response to this activation, ATP releases which is degraded by ENPP3, thus, ENPP3 act as a marker for recognizing allergen responsiveness on basophils of patients.<sup>37</sup> In rats, this enzyme was reported in intestine possibly facilitating the absorption and digestion of nucleotides in diet.<sup>38</sup> ENPP3 is actively engaged in fluid homeostasis, modulating bile formation and secretions of cerebral spinal fluid.<sup>39</sup> ENPP3 is incriminated in synchronizing the glycosylation of nucleotide sugars of brain specific proteins<sup>40</sup> and hydrolyzing the intracellular and extracellular dipolyphosphate.<sup>41,42</sup> Thus the involvement of these three isozymes in various biological and pathophysiological processes made them attractive target for development of therapeutic leads. Up to now, very few inhibitors of ENPP1, 3 have been identified (Fig. 1) with different potential nucleus. These compounds are nonselective, unstable and not easy to synthesize due to bulk structure. Whereas, in case of ENPP2, large number of lipid based compounds were reported, capable of targeting lysophospholipase D activity but a very small number of compounds were available against phosphodiesterase inhibition (Fig. 1). Here, we developed a new class of sulfonate derivatives and evaluated their phosphodiesterase inhibitory potential against all the three isozymes.



**Figure 1.** Structures of previously published NPP1 inhibitors. (a) Suramin,<sup>43</sup> (b) Reactive blue 2,<sup>43</sup> (c) Quinazoline-4-piperidine-4-ethylsulfamide derivative,<sup>44</sup> (d) Oxadiazole derivative. Non-lipid NPP2 inhibitors<sup>45-47</sup> (e) Hexachlorophene, (f) Damnacanthal (g) Vinpocetine.

### 2. Results and discussion

### 2.1. Chemistry

The target sulfonate compounds **1a-zk** were synthesized through the 2-step synthetic pathway illustrated in Scheme 1. Reaction of *p*-aminophenol (2) with the appropriate acid chloride **3a-f** to produce the corresponding phenolic intermediates **4a-f**. In order to keep the hydroxyl group free and avoid diacylation, the acid chloride was diluted in acetone and added dropwise slowly to a mixture of 4-aminophenol and potassium carbonate in acetone while stirring. The target sulfonate derivatives **1a-zk** were obtained through treatment of the phenolic intermediates **4a-f** with the appropriate sulfonyl chloride reagent in presence of

triethylamine. The target compounds were purified by column chromatography and their identity and purity were confirmed by spectral analysis.



Scheme 1. Reagents and conditions: (i) anhydrous potassium carbonate, acetone, 0 °C, rt, 4 h, 65-82%; (ii) appropriate sulfonyl chloride derivative,  $Et_3N$ , anhydrous THF, 0 °C, rt, 2 h, 43-91%.

### 2.2. Structure-activity relationship

The target compounds **1a-zk** were tested for inhibitory effects against NPP1, 2, and 3 isozymes. These compounds differed in substitution at linkers  $R^1$  and  $R^2$  (**Table 1**). Six series of compounds were synthesized with  $R^1$  equals cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, *p*-chlorophenyl, or 2-naphthyl moiety, diverging with reference to terminal  $R^2$  that was subjected to variable aliphatic or aromatic substituents keeping  $R^1$  with constant structural moiety. These derivatives were analyzed against three forms of NPPs by using colorimetric method with an artificial substrate *p*-Nph-5'-TMP.<sup>48,49</sup>

|            | $H_{N}$ R <sup>1</sup> |                                                       |                   |                   |                   |
|------------|------------------------|-------------------------------------------------------|-------------------|-------------------|-------------------|
|            |                        | 0,0<br>R <sup>2</sup> ·S 0                            | O O               |                   |                   |
| Codes      | R <sup>1</sup>         | $\mathbf{R}^2$                                        | NPP1              | NPP2              | NPP3              |
|            |                        | $IC_{50} \pm SEM \ (\mu M) / \%$ inhibition           |                   |                   |                   |
| 1a         | Cyclopentyl            | Ph                                                    | $46.67\pm0.026$   | 38%               | $1.724 \pm 0.002$ |
| 1b         | Cyclopentyl            | $4-Me(C_6H_4)$                                        | $8.137 \pm 0.003$ | $13.57\pm0.001$   | $0.856\pm0.003$   |
| 1c         | Cyclopentyl            | 4- <i>tert</i> -butyl(C <sub>6</sub> H <sub>4</sub> ) | $1.648\pm0.032$   | 42%               | $2.675\pm0.001$   |
| 1d         | Cyclopentyl            | $4 - F(C_6H_4)$                                       | $5.76\pm0.004$    | $1.473 \pm 0.003$ | $1.014\pm0.008$   |
| 1e         | Cyclopentyl            | $4-CF_3(C_6H_4)$                                      | $1.134\pm0.002$   | $0.659 \pm 0.007$ | $3.963 \pm 0.023$ |
| 1f         | Cyclohexyl             | Me                                                    | $1.918\pm0.004$   | 33%               | $1.354\pm0.005$   |
| 1g         | Cyclohexyl             | Et                                                    | $1.629 \pm 0.006$ | $1.824\pm0.008$   | $0.369 \pm 0.004$ |
| 1h         | Cyclohexyl             | <i>n</i> -Pr                                          | $3.461 \pm 0.030$ | $26.21\pm0.002$   | $2.409 \pm 0.011$ |
| 1i         | Cyclohexyl             | Ph                                                    | $11.85\pm0.011$   | $23.76\pm0.68$    | $1.079\pm0.002$   |
| 1j         | Cyclohexyl             | $4-\mathrm{Me}(\mathrm{C}_{6}\mathrm{H}_{4})$         | 43%               | 27%               | 39%               |
| 1k         | Cyclohexyl             | 4- <i>tert</i> -butyl(C <sub>6</sub> H <sub>4</sub> ) | $2.55\pm0.079$    | 39%               | $0.807 \pm 0.001$ |
| 11         | Cyclohexyl             | $4 - F(C_6H_4)$                                       | $0.564\pm0.008$   | 37%               | $0.254\pm0.004$   |
| 1m         | Cyclohexyl             | $4-CF_{3}(C_{6}H_{4})$                                | $0.387 \pm 0.007$ | $1.6\pm0.46$      | $1.79\pm0.005$    |
| 1n         | Cycloheptyl            | Ph                                                    | $13.84\pm0.005$   | 28%               | $6.602\pm0.001$   |
| 10         | Cycloheptyl            | $4-Me(C_6H_4)$                                        | $0.422\pm0.008$   | 24%               | $0.255\pm0.007$   |
| 1p         | Cycloheptyl            | 4- <i>tert</i> -butyl(C <sub>6</sub> H <sub>4</sub> ) | $1.493 \pm 0.003$ | $3.908 \pm 0.003$ | $47.01\pm0.15$    |
| 1q         | Cycloheptyl            | 2,4,6-<br>triisopropylphenyl                          | 29%               | 23%               | 37%               |
| 1r         | Cycloheptyl            | $4 - F(C_6H_4)$                                       | 39.3%             | $4.944\pm0.004$   | $2.267\pm0.001$   |
| <b>1</b> s | Cycloheptyl            | $4-CF_{3}(C_{6}H_{4})$                                | $0.431\pm0.007$   | 34%               | $2.578 \pm 0.006$ |
| 1t         | Cyclooctyl             | Ph                                                    | 45%               | $65.36 \pm 1.26$  | 47%               |
| 1u         | Cyclooctyl             | $4\text{-Me}(C_6H_4)$                                 | 43%               | $80.25\pm2.12$    | 35%               |
| 1v         | Cyclooctyl             | 4- <i>tert</i> -butyl(C <sub>6</sub> H <sub>4</sub> ) | 40%               | 49%               | 46%               |
| 1w         | Cyclooctyl             | 2,4,6-<br>triisopropylphenyl                          | 30%               | 46%               | 30%               |

**Table 1.** Structures of the target sulfonate derivatives  $1a \sim zk$  and their inhibitory activities (IC<sub>50</sub>,  $\mu$ M) or inhibition% at 100  $\mu$ M concentration against NPP1, NPP2, and NPP3.

| 1x                    | Cyclooctyl            | $4-CF_3(C_6H_4)$                                      | 29%               | $0.679\pm0.007$   | $0.214\pm0.012$   |
|-----------------------|-----------------------|-------------------------------------------------------|-------------------|-------------------|-------------------|
| <b>1y</b>             | $4-Cl(C_6H_4)$        | Ph                                                    | $9.614\pm0.003$   | > 100             | $2.772\pm0.005$   |
| 1z                    | $4-Cl(C_6H_4)$        | $4-Me(C_{6}H_{4})$                                    | $1.437\pm0.006$   | $7.693\pm0.635$   | $1.624\pm0.017$   |
| 1za                   | $4-Cl(C_6H_4)$        | 4- <i>tert</i> -butyl(C <sub>6</sub> H <sub>4</sub> ) | $1.799 \pm 0.001$ | 31%               | $1.525\pm0.006$   |
| 1zb                   | $4\text{-}Cl(C_6H_4)$ | 2,4,6-<br>triisopropylphenyl                          | $0.975\pm0.001$   | 24%               | $1.203 \pm 0.004$ |
| 1zc                   | $4-Cl(C_6H_4)$        | $4 - F(C_6H_4)$                                       | $2.897 \pm 0.007$ | $19.91 \pm 1.7$   | 46%               |
| 1zd                   | $4-Cl(C_6H_4)$        | $4-CF_{3}(C_{6}H_{4})$                                | $21.57\pm0.001$   | $1.07\pm0.28$     | $3.424\pm0.004$   |
| 1ze                   | 2-naphthyl            | Ph                                                    | $9.296\pm0.016$   | $27.97 \pm 0.935$ | $20.51\pm0.002$   |
| 1zf                   | 2-naphthyl            | $4-Me(C_{6}H_{4})$                                    | 24%               | $7.995\pm0.009$   | 23%               |
| 1zg                   | 2-naphthyl            | 4- <i>tert</i> -butyl(C <sub>6</sub> H <sub>4</sub> ) | $2.195 \pm 0.004$ | 38%               | 49%               |
| 1zh                   | 2-naphthyl            | 2,4,6-<br>triisopropylphenyl                          | 3.429 ± 0.002     | 42%               | $2.892\pm0.008$   |
| 1zi                   | 2-naphthyl            | $4 - F(C_6H_4)$                                       | $1.487\pm0.002$   | 33%               | $13.52\pm0.025$   |
| 1zj                   | 2-naphthyl            | $4-CF_3(C_6H_4)$                                      | $1.118\pm0.007$   | 22%               | $5.426\pm0.113$   |
| 1zk                   | 2-naphthyl            | 8-quinolinyl                                          | 37%               | $2.461\pm0.004$   | 42%               |
| Suramin <sup>48</sup> | -                     | -                                                     | $8.670 \pm 1.030$ | -                 | $1.270\pm0.080$   |
| LPA <sup>49</sup>     | -                     |                                                       | -                 | $0.06\ \pm 0.01$  | -                 |

### The cyclopentyl derivatives la-e

Introduction of cyclopentyl at  $\mathbb{R}^1$  and substitution of sulfonate with phenyl ring at position  $\mathbb{R}^2$  of compound **1a**, resulted in promising inhibitory effect on NPP3. Optimal substitution of phenyl at *para* position with electron-donating group, methyl for compound **1b**, enhanced the selectivity for both NPP3 and NPP1, in contrast to compound **1a**, with an IC<sub>50</sub> values of 0.856 ± 0.003 and 8.137 ± 0.003 µM, respectively, resulting in the most potent derivative against NPP3 among the cyclopentyl analogues. Compound **1b** also showed inhibition against NPP2, however not selective and less potent, with inhibitory potency of 13.57 ± 0.001 µM. It was suggested that replacement of methyl with bulky and kinetic-stabilizing group, *tert*-butyl, will enhance the activity of the compound **1c**, surprisingly, there was weaker potency against NPP3, with almost 5 times greater active against NPP1, demonstrating that a compound with bulky substituent has more affinity for NPP1 in contrast to NPP3. Replacement of *tert*-butyl with electron-Page **8** of **36** 

withdrawing moiety, fluorine atom, for compound **1d**, retrieved the potency towards NPP2 with an IC<sub>50</sub>  $\pm$  SEM = 1.473  $\pm$  0.003  $\mu$ M, however, declined the affinity for NPP1 by 3 folds with little effect on NPP3. Substitution of fluorine element with less electronegative group trifluoromethyl (–CF<sub>3</sub>) in compound **1e** exhibited 5 folds and 2.3 folds enhanced inhibition towards NPP1 and NPP2, respectively, in contrast to NPP3 showing 3.9 times decreased potency. This compound was the most potent against NPP2 with auspicious IC<sub>50</sub>  $\pm$  SEM values of 0.659  $\pm$  0.007  $\mu$ M. In case of compounds **1d** and **1e**, it can be assumed that substitution with electronegative atom increases the activity against NPP2.

#### The cyclohexyl derivatives 1f-m

Inhibitory potential of the sulfonate derivatives was further evaluated by modification of terminal R<sup>1</sup> with cyclohexyl cyclic ring instead of cyclopentyl. Insertion of methyl group at position  $R^2$  afforded compound **1f**, found favorable inhibitory potency with respect to NPP1 and NPP3 with an IC<sub>50</sub>  $\pm$  SEM values of 1.918  $\pm$  0.004 and 1.354  $\pm$  0.005  $\mu$ M, respectively. However, it showed only 33% inhibition against NPP2. Elongation of aliphatic side chain to ethyl moiety developed compound 1g, resulted in greater inhibitory potential in respect to NPP3 with an IC<sub>50</sub>  $\pm$  SEM values of 0.369  $\pm$  0.004  $\mu$ M. The compound **1g** recovered the potency against NPP2 exhibiting an IC<sub>50</sub>  $\pm$  SEM equals 1.824  $\pm$  0.008  $\mu$ M, however it retained the potency towards NPP1. Further elongation of the aliphatic side chain length to *n*-propyl (compound **1h**) exerted declined the activity towards all of three isoenzymes to greater extent. This chain was replaced with aromatic component, phenyl in compound **1i**, which showed less activity to NPP1, NPP2 only 11.85  $\pm$  0.011  $\mu$ M and 23.76  $\pm$  0.68  $\mu$ M, respectively but promising effect towards NPP3 representing an IC<sub>50</sub> values of  $1.079 \pm 0.002 \mu$ M. Further substitution of phenyl at position 4 with electropositive element, methyl for compound 1j, declined the activity against all the three isoenzymes with less than 50% inhibition, in contrast to compound 1b that was active against all of three isozymes. This difference might be due to the increase in carbon in the cyclic ring at R<sup>1</sup> which produced steric hindrance and decreased the affinity of compound towards the enzymes. However, replacement of methyl with 4-(tert-butyl) in 1k stabilized the compound and recovered the inhibitory activity against NPP1 and NPP3 with an  $IC_{50} \pm SEM$  of  $2.55 \pm 0.079$  and  $0.807 \pm 0.001 \mu$ M, respectively. Further replacement of *tert*-butyl with Page **9** of **36** 

electronegative atom fluorine, enhanced the inhibitory ability of compound **11** for NPP1 and NPP3 up to 4.5 folds. Introduction of slightly less electronegative group trifluoromethyl, in place of fluorine, in structure **1m**, resulted in stronger potency against NPP1 and NPP2 but weaker activity against NPP3. It is noteworthy that compounds **1b** and **1f-m** were previously tested against steroid sulfatase enzyme but showed no promising inhibitory effect.<sup>50</sup>

#### The cycloheptyl derivatives In-s

Substitution at place  $R^1$ , was moved to greater carbon atoms, cycloheptyl and  $R^2$  with aromatic ring phenyl, gave rise to compound **1n** that was evaluated against NPP1, NPP2 and NPP3, resulted in weaker potency against all three isozymes than compound 1i with similar side moiety, phenyl at  $R^2$ . It might be assumed that increase in the carbon atoms in cyclic ring at  $R^1$ did not contribute towards the affinity to greater extent. The substitution of phenyl at p-position with methyl in compound 10 gave the outstanding results for NPP1 with promising IC<sub>50</sub> value of  $0.422 \pm 0.008 \mu$ M. It could be proposed that *para* substitution of phenyl ring with some electropositive radical such as methyl, as in compounds 1b, 1j, and 1o, may produce considerable potential for NPPs 1, 2, 3 by balancing the inductive electron-withdrawing effect of the phenyl ring because of  $sp^2$  hybridization of carbon atoms and stabilizing the compounds. Replacement of methyl substituent with a bulky group, tert-butyl in compound 1p, revealed increased activity against NPP2 to the IC<sub>50</sub> values of  $3.908 \pm 0.003 \mu$ M, adding to the concept that more bulky substitution was also effective against NPP2 and not only against NPP1 and NPP3 in accordance with 1c and 1k. It was evaluated by replacing it with more spacious group 2, 4, 6-triisopropyl for a compound 1q. Unexpectedly, activity against all the isoenzymes was less than 50%. It may be suggested that the increase in proportion of electron-donating groups and/or the bulkiness was detrimental for the activity. Substitution of the phenyl ring with electronwithdrawing element in compound **1r**, supported the suggestion to boost the affinity same like 1d and 1l, with considerably potency against NPP2 and NPP3 yielding IC<sub>50</sub>  $\pm$  SEM value 4.944  $\pm$ 0.004 and 2.267  $\pm$  0.001 µM, respectively, with a much lower activity against NPP1 that was only 39.3%. Further changes in substitution at this position with less effective electronwithdrawing group  $(-CF_3)$  at *para* position of phenyl ring, yielded the compound 1s, which exhibited remarkable activity against NPP1 with IC<sub>50</sub> value of 0.431  $\pm$  0.007  $\mu$ M. However, no Page 10 of 36

change in activity against NPP3 in contrast to **1r** and revealed just 34% inhibition in case of NPP2.

#### The cyclooctyl derivatives 1t-x

The compounds **1t-x** of this series were synthesized with increasing carbon atoms in cyclic ring at position  $\mathbb{R}^1$  to 8 (cyclooctyl) and substituting the same groups at position  $\mathbb{R}^2$  as for earlier in particular phenyl, *p*-methylphenyl, *p*-(*tert*-butyl)phenyl, 2,4,6-triisopropylphenyl and *p*-(trifluoromethyl)phenyl. These compounds did not manifest describable potential for either of three isoenzymes except compound **1x**. Compound **1x** possessing *p*-(trifluoromethyl)phenyl was found the most potent and active against NPP2 and NPP3 among these synthesized sulfonate derivatives. For NPP2, it exhibited  $IC_{50} \pm SEM$  value of  $0.679 \pm 0.007 \mu M$ . It can be suggested that presence of 8-carbon saturated ring contributed to the hydrophobicity of the compound **1x**, maked it more selective for NPP2. The compound, **1x** was the most favorable for NPP3 showing an  $IC_{50} \pm SEM$  value of  $0.214 \pm 0.012 \mu M$  that was ~6 fold more effective as compared to reference inhibitor, suramin. It was assumed that substitution of electronegative electron-withdrawing group on *para* position of phenyl ring, make the unsaturated ring more accepted for  $\pi$ - $\pi$  interactions inside the active pocket of isozymes NPP3.

### The p-chlorophenyl derivatives 1y-zd

Compounds **1y-zd** were synthesized by substituting the *p*-chlorophenyl at position R<sup>1</sup> and different groups at place R<sup>2</sup> in particular phenyl, *p*-methylphenyl, *p*-(*tert*-butyl)phenyl, 2,4,6-triisopropylphenyl, *p*-fluorophenyl and *p*-(trifluoromethyl)phenyl, respectively. All these compounds demonstrated encouraging results suggesting that placement of electron-withdrawing substituent at *para* position of cyclic ring has greater influence towards the activity. The compounds **1z**, **1za**, **1zb** revealed favorable potential for NPP1 with an IC<sub>50</sub> ± SEM =  $1.437 \pm 0.006$ ,  $1.799 \pm 0.001$ , and  $0.975 \pm 0.001 \mu$ M, respectively and at the same time these compounds were active against NPP3 with an IC<sub>50</sub> ± SEM values of  $1.624 \pm 0.017$ ,  $1.525 \pm 0.006$ , and  $1.203 \pm 0.004 \mu$ M, respectively. Among these three only compound **1z** exhibited affinity for NPP2

with an IC<sub>50</sub> ± SEM values of 7.693 ± 0.635  $\mu$ M. Involvement of electronegative substitutes on both sides R<sup>1</sup>, R<sup>2</sup> as for compounds **1zc** and **1zd** resulted in selective potency. Differentiation of results among 4-chlorobenzene substituted sulfonate derivative **1zc** and cycloheptyl substituted compound **1r** with similar attachment at sulfonate group 4-fluorophenyl, delineated contrary effects against all the three isozymes. Compound **1zc** depicted considerable affinity for NPP1 facing the IC<sub>50</sub> ± SEM = 2.897 ± 0.007  $\mu$ M, while compound **1r** showed only 39% inhibition. On the other hand, compound **1r** represented potential against NPP2 and NPP3 with an IC<sub>50</sub> ± SEM = 4.944 ± 0.004 and 2.267 ± 0.001  $\mu$ M, respectively, while compound **1zc** was less active towards NPP2 and NPP3. This might be due to presence of 4-chloro attachment on phenyl ring, induced the negative inductive property in compound **1zc**, making it more stable and favorable for NPP1 as compared to NPP2. The compound **1zd** was found among the most potent structures against NPP2 with IC<sub>50</sub> ± SEM = 1.07 ± 0.28  $\mu$ M.

#### The 2-naphthyl derivatives 1ze-zk

A new combination of sulfonate derivatives were synthesized by adding bicyclic weak electron donating group, 2-naphthyl, at position  $R^1$  and different types of groups in place of  $R^2$ . 2-Naphthyl was considered as privileged unit for NPPs inhibition. Placement of phenyl linker at point  $R^2$  in compound **1ze**, manifested weak potency. Further substitution of phenyl with introduction of electropositive methyl group in compound 1zf, re-attained the inhibitory potential for NPP2 with an IC<sub>50</sub>  $\pm$  SEM values of 7.995  $\pm$  0.001 µM, however, there was further decrease in potency against NPP1 and NPP3. Surrogating the  $R^2$  with divergent groups as an illustration *p*-(*tert*-butyl)phenyl, 2,4,6-triisopropylphenyl, *p*-fluorophenyl, *p*-(trifluoromethyl)phenyl produced the compounds 1zg-1zj, respectively. These compounds were less than 50% inhibitor against NPP2, although endowed favorable results against NPP1 and NPP3. The compounds 1zi and 1zj substituted with electron withdrawing groups, were more potent against NPP1 in contrast to NPP3 with an IC<sub>50</sub>  $\pm$  SEM = 1.487  $\pm$  0.002 and 1.118  $\pm$  0.007  $\mu$ M, respectively. The most feasible inhibition against NPP2 of these naphthyl derivatives was attained when  $R^2$  was positioned with 8-quinolinyl group in compound 1zk. Its inhibitory potency was found among the most selective and potent compounds for NPP2 with an IC\_{50}  $\pm$  SEM value of 2.461  $\pm$  0.004 μΜ.

#### 2.3. Molecular docking studies

The experimental results suggested that few of the compounds were selective inhibitors of NPP1, 2 and 3, however, some of the compounds exhibited dual inhibition for NPP1 and NPP2, or NPP1 and NPP3 and some also were found active against NPP2 and NPP3. Therefore, docking studies were carried out for all these potent inhibitors having selectivity towards respective isozyme or showing dual inhibition. As the crystal structure of the human nucleotide pyrophosphatases (NPP1) is not available at protein data bank, the docking studies were performed in the homology model generated by our group using mouse ENPP1 with PDB ID: 4B56 as template.<sup>51-53</sup> However, the human crystal structures of NPP2 and NPP3 were downloaded from protein data bank with the PDB IDs 4ZG6<sup>54</sup> and 6C01.<sup>55</sup> In order to validate the docking studies, the reference compound suramin was docked inside the homology model of human NPP1 and crystal structure of human NPP3. However, the co-crystallized ligand 4NY (Figure 3a) was extracted and docked inside the crystal structure of NPP2 (4ZG6). The validation was carried out before performing the docking studies of selected compounds for each isozyme. After docking, the root mean square deviation of 0.71 Å was found for co-crystallized ligand, 4NY of NPP2. While for NPP1 (homology model) and NPP3 (6C01), the positive compound suramin was docked and the binding interactions were compared with selected compounds. After the validation process, the docking studies were carried out.

### 2.3.1. Docking studies of hNPP1 inhibitors

The docking studies of NPP1 were carried out for compounds **1e**, **1l**, **1m**, **1o**, **1zd** and **1zj** in addition to suramin. The 3D binding poses for all the selected compounds are shown in Figure 2. The interaction diagram of suramin showed that the amino acids involved in the hydrogen bonding were Lys295, Lys255, Trp307, Lys338, Tyr340, Lys291, Asn277, Lys528 and Thr256 with the oxygen atoms of suramin. However, the  $\pi$ - $\pi$  interactions were noticed between the phenyl group of suramin and His424, Pro323, Trp322, Ser325, and Asp218. In addition to these interactions, the metal interactions were noticed between two zinc atoms of the active site within the NPP1 and the oxygen atom of suramin. When the detailed investigation of the compound **1e** 

was carried out, the most noticeable interactions were hydrogen bonding and metal interactions within the active pocket of NPP1. The trifluoromethyl group was inclined more towards outer region of active pocket, however, the carboxamido group was found to involve in metal interactions with zinc atoms in addition to  $\pi$ - $\pi$  interaction with His380. The cyclopentyl moiety was found to make  $\pi$ - $\pi$  interactions with Tyr451 and Lys528. The carboxamido group was located in the middle of the active site of NPP1. When the interactions of the compound 11 (Figure 2c) were examined, it was found that phenyl ring was interacting with one zinc atom, whereas, oxygen atom of carboxamide part has showed metal interactions with second zinc atom. The fluorine atom at phenyl ring was showing hydrogen bonds with Lys255, Thr254, Gly536 and in addition to hydrogen bond,  $\pi$ - $\pi$  interactions were observed between His424 and fluorophenyl ring. Compound 1m (Figure 2d) showed metal interactions with both the zinc atoms present in the active site of NPP1. However, hydrogen bonding were noticed between Gly452, Tyr451, Phe534 and 4-(trifluoromethyl)benzenesulfonate moiety. Moreover, the Asn277 was also involved in hydrogen bonding with carboxamide part of the compound 1m. The  $\pi$ - $\pi$ interactions were observed between the cyclohexyl group and Lys278. Upon investigating the docking pose of compound 10 (Figure 2e), the important interactions found were the metal interactions of zinc ion with central phenyl moiety in addition to oxygen of carboxamide part. Methylbenzenesulfonate moiety showed hydrogen bonding with Lys255 along with  $\pi$ - $\pi$ interactions with Asn277. When the other compound 1zd (Figure 2f) was taken into account, the noticeable interactions were shown by important amino acids of the active site and 4-(trifluoromethyl)benzenesulfonate moiety of the compound. The hydrogen bonding were important with residues Tyr451 and Lys255. Moreover,  $\pi$ - $\pi$  interactions were found Lys255. His 380 and Tyr 451 were involved in  $\pi$ -phenyl interactions. In case of compound 1zj (Figure 2g), the 2-naphthamido part was oriented towards the Glu373 and Ser377, whereas, the 4-(trifluoromethyl)benzenesulfonate moiety was found deeper inside the active pocket near the amino acids, Tyr451, Lys255, Thr256 and Asn277. Moreover, the phenyl group in the middle of the compound exhibited arene-cation interaction with zinc present inside the active site of NPP1.





**Figure 2.** 3D interaction poses (with hydrogen bond surface) of the selective inhibitors of human NPP1 (inside the homology model) (a): **Suramin**; (b): **1e**; (c): **1l**; (d): **1m**; (e): **1o**; (f): **1zd** and (g): **1zj** 

#### 2.3.2. Docking studies of hNPP2 inhibitors

The docking studies of NPP2 were carried out for 1e, 1g, 1x and 1zk in addition to cocrystallized ligand 4NY. The 3D binding poses for all the selected compounds are illustrated in Figure 3. The cognate ligand 4NY (Figure 3a) of the crystal structure of NPP2 (4ZG6) showed that the important amino acid residues involved in the formation of interactions were Leu214, Phe211, Phe274, Tyr307, Leu217 and Ala218.54 Among them, Phe274 and Leu217 were showing hydrogen bonding with cognate ligand. However, the amino acid residues involved in the  $\pi$ - $\pi$  interactions were Trp276, Tyr307, Ala305, Leu217, Leu214, Phe211 and Phe274. When the compound **1e** was examined for the favorable interactions within the active site (Figure 3b), similar types of interactions were observed as found with the cognate ligand inside the active pocket. The 4-(trifluoromethyl)benzenesulfonate moiety was in  $\pi$ - $\pi$  interactions with the His316, His475, Asp474, and interactions with zinc atoms. The hydrogen bonding was noticed with His475 and 4-(trifluoromethyl)benzenesulfonate. Another hydrogen bond was noticed between the carboxamido moiety of the compound and His316. The compound 1g, after docking inside the active pocket, showed the interaction pose depicted in Figure 3c. The oxygen atoms of the compound was found in hydrogen bonding with Asn231. Whereas,  $\pi$ - $\pi$  interactions of compound were noticed by Leu244, His475, His316, Tyr307 and Val278. The ethanesulfonate group of the

compound **1g** was found towards the zinc atoms inside the active pocket. However, the 4cyclohexanecarboxamido moiety was oriented towards the Tyr307 and Val278. The compound **1x** (Figure 3d) showed hydrogen bonding with Phe211 and Lys249 by its trifluoromethyl moiety, while with the same phenyl group of **1x**, Phe275 and Phe250 were making the  $\pi$ - $\pi$  interactions. The cyclooctanecarboxamido moiety was only involved in the formation of  $\pi$ - $\pi$  interactions with Ala271. When the binding mode of compound **1zk** was examined (Figure 3e), the most noticeable interactions were hydrogen binding with Trp276, in addition to several  $\pi$ - $\pi$ interactions with Trp255, Phe274, Tyr307 and Phe275. The zinc atoms did not show any interactions in case of compound **1zk**.





Figure 3. 3D interaction poses (with hydrogen bond surface) of the selective inhibitors of human NPP2 (inside the PDB ID: 4ZG6) (a): 4NY and its structure; (b): 1e; (c): 1g; (d): 1x and (e): 1zk

#### 2.3.3. Docking studies of hNPP3 inhibitors

The docking studies of NPP3 were carried out for **1d**, **1g**, **1l**, **1r**, **1x**, **1zd**, and **1zh** in addition to suramin. The 3D binding poses for all the selected compounds are shown in Figure 4. The docking studies of suramin (Figure 4a) inside the active pocket of NPP3 (6C01) revealed that the most important amino acid residues involved in the interactions were His483, His329 and Asp325 coordinated to one of zinc atom, while, Asp372, His373, Thr205 and Asp167 were found in coordination to second zinc atom.<sup>55</sup> Due to the bulkier structure of suramin, the interactions are noticed in wide active site of the enzyme's pocket. Similarly, many interactions are noticed such as hydrogen bonding,  $\pi$ - $\pi$  interactions, metal interactions, and  $\pi$ -alkyl Page **18** of **36** 

interactions. Compound 1d (Figure 4b) showed hydrogen bonding with Asn477, Asn475, Glu400, Lys204, Gly401 and His483. However, the  $\pi$ - $\pi$  interactions were found between Glu400 and 4-fluorobenzenesulfonate group. When the interactions of compound 1g (Figure 4c) were taken into account, the 3D diagram suggested that the cyclohexanecarboxamide was found more towards the middle of active pocket towards the zinc atoms and showed metal interactions. Hydrogen bonding were observed by the ethanesulfonate group with Asn482, Asn477, Gly401 and Pro402. The 4-fluorobenzenesulfonate moiety of compound 11 (Figure 4d), more like the compound 1d, was found deep inside the active pocket exerting similar interactions with side residues including Asp167, Thr205 and Asn226 giving rise to important  $\pi$ - $\pi$  interactions and hydrogen bonding. Moreover, the cyclohexanecarboxamido group was found profoundly located near amino acids Leu468, Asn477 and Asn482. The phenyl ring located in the center of the compound and the enzyme pocket and was located parallel to the amino acid residues His483 and Asn482. Compound 1r (Figure 4e) possessing cyclohexanecarboxamide ring showed more or less similar pattern of binding inside the active pocket of NPP3 to that of compound 1d. However, the cyclopentane ring was replaced by cyclohexane ring and therefore, the 4fluorobenzenesulfonate was found deeper inside the active pocket towards the important amino acids and showing  $\pi$ - $\pi$  interactions with Gly401. Moreover, hydrogen bonds were noted by fluorine atom with Glu400 and Asn475. However, the oxygen was making metal interaction with one of the zinc atom inside the active pocket. The compound 1x (Figure 4f) was monitored, the notable interactions were hydrogen bonding of triflouromethyl group with Asn475, Glu400 and Pro402. However, the Gly401 was involved in  $\pi$ - $\pi$  interactions with the compound. Oxygen atom showed metal interactions with both the zinc atoms in addition to Thr205. Moreover, compound 1zd (Figure 4g) having 4-(trifluoromethyl)benzenesulfonate group was investigated after docking inside the active pocket of NPP3 and the noticeable interactions were hydrogen bonding with Asn477, Asn475, Glu400, Asn482 and Pro402. The 4-chlorobenzamido group of the compound showed  $\pi$ - $\pi$  interactions with Tyr320, Tyr289, Asp167 and hydrogen bond with Lys204 and Leu239. When compound **1zh** (Figure 4h) from the 2-naphthyl series was taken into account, the 2,4,6-triisopropylbenzenesulfonate moiety was inclined within the pocket of enzyme and showing several  $\pi$ - $\pi$  interactions with Asn477 and Asn482. However, the important part of the compound, 2-naphthamido moiety exhibited  $\pi$ - $\pi$  interactions with Thr205 and therefore both sides of this compound exhibited several interactions with the amino acids of active pocket.

The overall docking studies were in accordance with the results of *in vitro* studies and the binding affinities and interactions were following the experimental results. Therefore, both the results are well matched, and justification by docking studies have been provided for the *in vitro* experiments.





**Figure 4.** 3D interaction poses (with hydrogen bond surface) of the selective inhibitors of human NPP3 (inside the PDB ID: 6C01) (a): **Suramin**; (b): **1d**; (c): **1g**; (d): **1l**; (e): **1r**; (f): **1x**; (g): **1zd** and (h): **1zh** 

### HYDE assessment of selective and potent compounds against *h*-NPP1, *h*-NPP2 and *h*-NPP3

The HYDE affinity assessment was done by using LeadIT for the first 30 top ranking docked conformations within the active sites of the homology models of human NPP1, crystal structure of NPP2 and NPP3 and it helped in the selection of correct binding mode as well as the selectivity towards the most potent compound. The FlexX docking score for the selective Page **21** of **36** 

derivatives and their binding free energy  $\Delta G$  were given in Table 2. The FlexX docking score presented the lower energy scores. Moreover, the binding free energies  $\Delta G$  given in Table 2 showed that the potent inhibitors exhibited higher affinity towards their respective target.

| Code   | FlexX score of the top | Binding free energy      |  |  |  |  |
|--------|------------------------|--------------------------|--|--|--|--|
|        | ranking pose           | $\Delta G (kJ mol^{-1})$ |  |  |  |  |
|        | <i>h</i> -NPP1         |                          |  |  |  |  |
| 1e     | -18.28                 | -23                      |  |  |  |  |
| 11     | -20.79                 | -21                      |  |  |  |  |
| 1m     | -20.09                 | -30                      |  |  |  |  |
| 10     | -19.15                 | -30                      |  |  |  |  |
| 1zd    | -19.37                 | -26                      |  |  |  |  |
| 1zj    | -22.67                 | -10                      |  |  |  |  |
| h-NPP2 |                        |                          |  |  |  |  |
| 1e     | -20.65                 | -36                      |  |  |  |  |
| 1g     | -20.17                 | -35                      |  |  |  |  |
| 1x     | -20.48                 | -33                      |  |  |  |  |
| 1zk    | -34.97                 | -38                      |  |  |  |  |
| h-NPP3 |                        |                          |  |  |  |  |
| 1d     | -18.25                 | -12                      |  |  |  |  |
| 1g     | -16.88                 | -10                      |  |  |  |  |
| 11     | -19.23                 | -3                       |  |  |  |  |
| lr     | -20.04                 | -18                      |  |  |  |  |
| 1x     | -17.27                 | -17                      |  |  |  |  |
| 1zd    | -16.46                 | -39                      |  |  |  |  |
| 1zh    | -24.13                 | -19                      |  |  |  |  |

**Table 2.** Docking and Hyde scores and their corresponding ranks by Hyde affinity assessment

 (*h*-NPP1, *h*-NPP2 and *h*-NPP3)

### 3. Conclusion

The target sulfonate derivatives were screened for their inhibitory activity against NPP1~3. The results suggested some selective and potent inhibitors of NPP1, 2, and 3 isozymes. However, few compounds were found as dual inhibitors and exhibited significant inhibition against more than one isozyme. The docking investigation resulted in putative binding modes of compounds within each receptor, which further strengthen the *in vitro* results. The most promising compounds as well as other

derivatives that will be designed after lead optimization may further be tested in animal models to get insight of the pharmacological investigation.

#### 4. Experimental

#### 4.1. General

The chemicals and solvents were purchased from Sigma-Aldrich or Alfa Aesar. All the chemicals were used without purification. The target compounds were purified by column chromatography using silica gel (0.040-0.063 mm, 230-400 mesh) and technical grade solvents. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were recorded on a Bruker Avance 400 or 500 MHz spectrometers using tetramethylsilane as an internal standard. IR spectra (KBr disks) were recorded with a Bruker FT-IR instrument (Bruker Bioscience, Billerica, MA, USA). Mass spectra (MS) were taken in ESI mode on a Waters 3100 Mass Detecter (Waters, Milford, MA, USA).

### 4.2. Synthesis of phenolic intermediates 4a-f

To a solution of *p*-aminophenol (500 mg, 4.58 mmol) in acetone (60 mL), anhydrous potassium carbonate (760 mg, 5.5 mmol), was added. The reaction mixture was stirred at room temperature for 15 minutes, then cooled to 0 °C. A solution of the appropriate acid chloride (4.165 mmol) in acetone (30 mL) was added dropwise to the reaction mixture at 0 °C with continuous stirring. After complete addition, the reaction mixture was stirred at room temperature for 4 h. The reaction mixture was filtered and the filtered solid was washed with acetone (3 x 10 mL). The combined filtrate and wash were evaporated to dryness. The residue was dissolved in ethyl acetate (50 mL) and extracted with dilute HCl. The organic layer was then washed with saline (2 x 30 mL) and dried with anhydrous Na<sub>2</sub>SO<sub>4</sub>. The organic solvent was evaporated under reduced pressure to get the intermediate title compounds. They were used in the next steps as such without further purification.

#### 4.3. General procedure for synthesis of the target sulfonate compounds **1a-zk**

The appropriate phenolic intermediate **4a-f** (0.456 mmol) was dissolved in dry THF (10 mL), and the mixture was cooled to 0 °C. Triethylamine (0.25 mL, 2.47 mmol) was added thereto. A solution of appropriate sulfonyl chloride (0.912 mmol) in dry THF (2 mL) was added dropwise to the reaction mixture at 0 °C. The reaction mixture was stirred at room temperature for 2 h until reaction completion. The mixture was quenched with ethyl acetate (10 mL) and water (10 mL). The organic layer was separated and the aqueous layer was extracted with ethyl acetate (3 x 5 mL). The combined organic layer extract was washed with saline (3 x 10 mL) and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The organic solvent was evaporated under reduced pressure and the crude residue was purified by column chromatography (silica gel, appropriate ratio of hexane: ethyl acetate) to obtain the pure product. The spectral data of compounds **1b** and **1f-m** have been reported in our previous report<sup>50</sup> and those for the other target compounds are reported herein in details.

**Compound 1a:** Yield: 86%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.67-7.62 (m, 4H), 7.48 (d, 2H, J = 8.0 Hz), 7.32 (d, 2H, J = 8.0 Hz), 6.91 (d, 2H, J = 8.0 Hz), 2.72-2.64 (m, 1H), 2.46 (s, 3H), 1.94-1.75 (m, 6H), 1.62-1.59 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  175.1, 145.6, 145.3, 137.4, 132.2, 129.9, 128.6, 122.9, 120.6, 46.5, 30.6, 26.0; LC-MS: m/z: 346.1 [M<sup>+</sup> + 1].

**Compound 1c:** Yield: 90%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.67 (d, 2H, *J* = 12.0 Hz), 7.61 (brs, 1H), 7.45 (d, 2H, *J* = 8.0 Hz), 7.30 (d, 2H, *J* = 8.0 Hz), 6.87 (d, 2H, *J* = 8.0 Hz), 2.70-2.62 (m, 1H), 1.91-1.73 (m, 6H), 1.60-1.56 (m, 2H), 1.34 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  175.1, 145.4, 145.1, 137.2, 132.0, 129.7, 128.4, 122.7, 120.4, 46.4, 30.5, 29.6, 26.0, 25.6; LC-MS: m/z: 401.82 [M<sup>+</sup> + 1].

**Compound 1d:** Yield: 82%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.84-7.81 (m, 2H), 7.47 (d, 2H, J = 9.0 Hz), 7.22-7.18 (m, 3H), 6.93-6.90 (m, 2H), 2.67-2.64 (m, 1H), 1.94-1.75 (m, 6H), 1.64-1.42 (m, 2H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  174.8, 167.2, 165.1, 145.3, 137.4, 131.6, 123.0, 120.6, 116.7 (d, J = 22.6 Hz), 47.0, 30.6, 26.1; LC-MS: m/z: 363.66 [M<sup>+</sup> + 1].

**Compound 1e:** Yield: 85%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.84-7.81 (m, 2H), 7.46 (d, 2H, *J* = 9.0 Hz), 7.23-7.17 (m, 3H), 6.94-6.90 (m, 2H), 2.69-2.65 (m, 1H), 1.94-1.76 (m, 6H), 1.64-1.45

(m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 174.9, 167.3, 165.2, 145.4, 137.4, 131.8, 123.1, 120.7, 116.8, 47.0, 30.5, 26.1; LC-MS: m/z: 413.73 [M<sup>+</sup> + 1].

**Compound 1n:** Yield: 78%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.80 (d, 2H, J = 2.0Hz), 7.70-7.68 (m, 1H), 7.54-7.50 (m, 2H),7.45 (d, 2H, J = 9.0Hz), 7.38 (brs, 1H), 6.87 (d, 2H, J = 9.0Hz), 2.37-2.33 (m, 1H), 1.95-1.90 (m, 2H), 1.80-1.68 (m, 4H), 1.59-1.51 (m, 4H), 1.49-1.42 (m, 2H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  175.8, 137.4, 135.3, 134.7, 133.0, 129.4, 123.2, 122.9, 120.6, 48.4, 31.7, 29.8, 28.2; LC-MS: m/z: 374.13 [M<sup>+</sup> +1].

**Compound 1o:** Yield: 85%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.67 (d, 2H, J = 8.0 Hz), 7.44 (d, 2H, J = 9.0 Hz), 7.30-7.28 (m, 3H), 6.88 (d, 2H, J = 9.0 Hz), 2.43 (s, 3H), 2.37-2.33 (m, 1H), 1.95-1.90 (m, 2H), 1.80-1.68 (m, 4H), 1.60-1.50 (m, 48), 1.49-1.42 (m, 2H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  175.8, 145.6, 145.4, 137.3, 132.3, 130.0, 129.8, 123.0 120.6, 48.4, 31.7, 28.3, 26.6; LC-MS: m/z: 388.18 [M<sup>+</sup> + 1].

**Compound 1p:** Yield: 76%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.71 (brs, 1H), 7.65 (d, 2H, J = 8.5 Hz), 7.45-7.39 (m, 4H), 6.81 (d, 2H, J = 9.0 Hz), 2.32-2.27 (m, 1H), 1.86-1.80 (m, 2H), 1.69-1.59 (m, 4H), 1.49-1.31 (m, 6H), 1.25 (s, 9H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  176.1, 158.5, 145.2, 137.4, 132.1, 128.3, 126.2, 122.8, 120.6, 48.1, 35.4, 31.5, 31.0, 28.1, 26.5; LC-MS: m/z: 430.35 [M<sup>+</sup> +1].

**Compound 1q:** Yield: 72%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.61 (s, 1H), 7.40 (d, 2H, J = 9.0 Hz), 6.82 (d, 2H, J = 8.5 Hz), 4.01-3.95 (m, 2H), 2.88-2.82 (m, 1H), 2.31-2.27 (m, 1H), 1.85-1.81 (m, 2H), 1.69-1.64 (m, 4H), 1.44-1.38 (m, 7H), 1.23-1.07 (m, 19H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  175.9, 154.4, 151.2, 145.1, 173.3, 129.6, 124.0, 122.8, 120.6, 48.1, 34.3, 31.5, 29.8, 28.1, 26.5, 24.6, 23.5; LC-MS: m/z: 430.35 [M<sup>+</sup> + 1].

**Compound 1r:** Yield: 76%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.83-7.79 (m, 2H), 7.50 (brs, 1H), 7.46 (d, 2H, J = 9.0 Hz), 7.21-7.16 (m, 2H), 6.88 (d, 2H, J = 5.0), 2.38-2.34 (m, 1H), 1.95-1.90 (m, 2H), 1.79-1.68 (m, 4H), 1.59-1.50 (m, 4H), 1.49-1.38 (m, 2H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  175.9, 145.1, 137.5, 131.5, 131.5, 122.9, 120.7, 116.8, 116.6, 48.3, 31.6, 28.2, 26.6; LC-MS: m/z: 392.31 [M<sup>+</sup> + 1].

**Compound 1s:** Yield: 83%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.98 (d, 2H, J = 8.0 Hz), 7.82 (d, 2H, J = 8.0 Hz), 7.50 (d, 2H, J = 9.0 Hz), 7.28 (brs, 1H), 6.94 (d, 2H, J = 8.5 Hz), 2.41-2.36 (m, 1H), 1.99-1.94 (m, 2H), 1.84-1.49 (m, 10H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  175.6, 144.9, 138.8, 137.5, 136.0, 129.1, 126.3, 126.3, 124.0, 121.9; LC-MS: m/z: 442.11 [M<sup>+</sup> +1].

**Compound 1t:** Yield: 68%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.82 (d, 2H, J = 7.0 Hz), 7.65 (t, 1H, J = 7.5 Hz), 7.51 (t, 2H, J = 8.0 Hz), 7.44 (d, 2H, J = 9.0 Hz), 7.39 (brs, 1H), 6.88 (d, 2H, J = 9.0 Hz), 2.41-2.38 (m, 1H), 1.90-1.87 (m, 2H), 1.86-1.75 (m, 4H), 1.61-1.53 (m, 8H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  176.1, 145.3, 137.4, 135.3, 134.4, 129.3, 128.6, 123.0, 120.7, 46.8, 29.8, 26.7, 26.3, 22.8; LC-MS: m/z: 388.0 [M<sup>+</sup> +1].

**Compound 1u:** Yield: 78%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.68 (d, 2H, J = 8.5 Hz), 7.44 (d, 2H, J = 9.0 Hz), 7.29 (d, 2H, J = 8.0 Hz), 7.24 (brs, 1H), 6.90 (d, 2H, J = 7.5 Hz), 2.44 (s, 3H), 2.41-2.38 (m, 1H), 1.92-1.87 (m, 2H), 1.81-1.78 (m, 4H), 1.64-1.57 (m, 8H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  175.0, 144.5, 144.4, 136.3, 131.3, 128.9, 127.7, 122.1, 119.6, 45.9, 28.8, 25.8, 25.3, 24.6, 20.9; LC-MS: m/z: 402.0 [M<sup>+</sup> +1].

**Compound 1v:** Yield: 64%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.73 (d, 2H, J = 9.0 Hz), 7.52 (d, 2H, J = 7.0 Hz), 7.45 (d, 2H, J = 9.0 Hz), 7.16 (brs, 1H), 6.93 (d, 2H, J = 8.5 Hz), 2.42-2.37 (m, 1H), 1.91-1.88 (m, 2H), 1.82-1.75 (m, 4H), 1.63-1.53 (m, 8H), 1.35 (s, 9H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  176.0, 158.5, 145.5, 137.2, 132.4, 128.5, 126.3, 123.1, 120.6, 120.5, 46.9, 35.5, 31.1, 29.8, 26.7, 26.3, 25.5; LC-MS: m/z: 444.23 [M<sup>+</sup> +1].

**Compound 1w:** Yield: 70%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.38 (d, 2H, J = 9.0 Hz), 7.12 (s, 2H), 7.03 (brs, 1H), 6.86 (d, 2H, J = 9.0 Hz), 2.36-2.29 (m, 1H), 1.84-1.81 (m, 2H), 1.74-1.68 (m, 4H), 1.55-1.47 (m, 8H), 1.21-1.18 (m, 9H), 1.12 (d, 12H, J = 7.0 Hz); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  175.9, 154.4, 151.4, 145.5, 137.1, 129.8, 124.0, 123.1, 120.6, 47.0, 34.4, 29.9, 29.8, 26.8, 26.3, 25.6, 24.7, 23.7; LC-MS: m/z: 514.2 [M<sup>+</sup> +1].

**Compound 1x:** Yield: 74%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.96 (d, 2H, J = 8.0 Hz), 7.80 (d, 2H, J = 8.5 Hz), 7.48 (d, 2H, J = 9.0 Hz), 7.10 (brs, 1H), 6.93 (d, 2H, J = 8.5 Hz), 2.41-2.34 (m, 1H), 1.80-1.78 (m, 6H), 1.71-1.53 (m, 8H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  175.1, 144.6, 144.3, 133.4, 129.3, 126.5, 122.9, 120.8, 45.9, 29.8, 26.8, 25.5, 22.8, 14.3; LC-MS: m/z: 456.0 [M<sup>+</sup> +1].

**Compound 1y:** Yield: 81%; <sup>1</sup>H NMR (500 MHz, DMSO- $d_6$ )  $\delta$  10.42 (brs, 1H), 7.95 (d, 2H, J = 8.5 Hz), 7.87-7.86 (m, 3H), 7.74 (d, 2H, J = 9.0 Hz), 7.68 (t, 2H, J = 8.0 Hz), 7.61 (d, 2H, J = 7.0 Hz), 7.02 (d, 2H, J = 7.0 Hz); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  164.6, 144.6, 138.1, 136.6, 135.0, 134.2, 133.3, 129.8, 129.7, 128.5, 128.3, 122.4, 121.5; LC-MS: m/z: 388.0 [M<sup>+</sup> +1].

**Compound 1z:** Yield: 78%; <sup>1</sup>H NMR (500 MHz, DMSO- $d_6$ )  $\delta$  10.42 (brs, 1H), 7.96 (d, 2H, J = 8.5 Hz), 7.74 (m, 4H), 7.61 (d, 2H, J = 9.0 Hz), 7.48 (d, 2H, J = 8.0 Hz), 7.01 (d, 2H, J = 9.0 Hz), 2.43 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  164.5, 145.8, 144.6, 138.0, 136.6, 133.3, 131.4, 130.2, 129.6, 128.5, 128.3, 122.4, 121.5, 21.2; LC-MS: m/z: 402.0 [M<sup>+</sup> +1].

**Compound 1za:** Yield: 76%; <sup>1</sup>H NMR (500 MHz, DMSO- $d_6$ )  $\delta$  10.42 (brs, 1H), 7.98-7.95 (m, 2H), 7.81-7.79 (m, 4H), 7.76 (d, 2H, J = 5.0 Hz), 7.61 (d, 2H, J = 9.0 Hz), 7.04 (d, 2H, J = 10.0 Hz), 1.34 (s, 9H); <sup>13</sup>C NMR (125 MHz, DMSO- $d_6$ )  $\delta$  164.5, 158.2, 144.6, 138.0, 136.6, 133.3, 131.5, 129.6, 128.5, 128.1, 126.7, 122.3, 121.4, 35.2, 30.7; LC-MS: m/z: 444.1 [M<sup>+</sup>+1].

**Compound 1zb:** Yield: 85%; <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  10.43 (brs, 1H), 7.96 (d, 2H, *J* = 8.5 Hz), 7.77 (d, 2H, *J* = 9.0 Hz), 7.60 (d, 2H, *J* = 8.5 Hz), 7.36 (s, 2H), 6.99 (d, 2H, *J* = 9.0 Hz), 3.96-3.90 (m, 2H), 3.01-2.96 (m, 1H), 1.23 (d, 6H, *J* = 7.0 Hz), 1.15 (d, 12H, *J* = 7.0 Hz); <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  164.5, 154.6, 150.7, 144.4, 138.0, 136.6, 133.3, 129.7, 128.8, 128.5, 124.1, 122.4, 121.6, 33.5, 29.4, 24.2, 23.3; LC-MS: m/z: 514.15 [M<sup>+</sup>+1].

**Compound 1zc:** Yield: 88%; <sup>1</sup>H NMR (500 MHz, DMSO- $d_6$ )  $\delta$  10.44 (brs, 1H), 8.09 (q, 4H, J = 8.5 Hz), 7.96 (d, 2H, J = 9.0 Hz), 7.77 (d, 2H, J = 9.0 Hz), 7.61 (d, 2H, J = 9.0 Hz), 7.07 (d, 2H, J = 9.0 Hz); <sup>13</sup>C NMR (125 MHz, DMSO- $d_6$ )  $\delta$  164.6, 144.3, 138.4, 138.2, 136.6, 134.5, 133.3, 129.7, 128.5, 127.1, 124.3, 122.4, 121.6; LC-MS: m/z: 406.0 [M<sup>+</sup> +1].

**Compound 1zd:** Yield: 90%; <sup>1</sup>H NMR (500 MHz, DMSO- $d_6$ )  $\delta$  10.43 (brs, 1H), 7.97-7.93 (m, 4H), 7.77 (d, 2H, J = 7.0 Hz), 7.61 (d, 2H, J = 5.0 Hz), 7.53 (t, 2H, J = 8.5 Hz), 7.04 (d, 2H, J = 7.0 Hz); <sup>13</sup>C NMR (125 MHz, DMSO- $d_6$ )  $\delta$  166.6, 164.5, 144.4, 138.2, 136.6, 133.3, 131.7, 130.5, 129.6, 128.5, 122.4, 121.5, 117.3, 117.1; LC-MS: m/z: 456.0 [M<sup>+</sup> +1].

**Compound 1ze:** Yield: 74%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.38 (brs, 1H), 8.11 (s, 1H), 7.95-7.88 (m, 4H), 7.78 (dd, 2H, J = 4.5 Hz, J = 6.5 Hz), 7.65-7.50 (m, 7H), 7.03 (dd, 2H, J = 2.0 Hz, J = 7.0 Hz); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  165.9, 158.5, 145.9, 137.1, 135.1, 132.7, 132.3,

131.9, 129.1, 129.0, 128.5, 128.2, 128.0, 127.8, 127.2, 126.3, 123.6, 123.2, 121.2; LC-MS: m/z: 404.97 [M<sup>+</sup>+1].

**Compound 1zf:** Yield: 81%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.39 (brs, 1H), 8.11 (s, 1H), 7.94-7.87 (m, 4H), 7.78 (dd, 2H, J = 4.5 Hz, J = 6.5 Hz), 7.67-7.51 (m, 6H), 7.04 (dd, 2H, J = 2.0 Hz, J = 7.0 Hz), 2.43 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  165.9, 158.5, 145.9, 137.1, 135.1, 132.7, 132.3, 131.9, 129.1, 129.0, 128.5, 128.2, 128.0, 127.8, 127.2, 126.3, 123.6, 123.2, 121.2, 21.2; LC-MS: m/z: 418.08 [M<sup>+</sup> +1].

**Compound 1zg:** Yield: 85%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.35 (brs, 1H), 8.10 (s, 1H), 7.93-7.87 (m, 4H), 7.76 (dd, 2H, J = 4.5 Hz, J = 6.5 Hz), 7.65-7.51 (m, 6H), 7.01 (dd, 2H, J = 2.0 Hz, J = 7.0 Hz), 1.35 (s, 9H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  165.9, 158.5, 145.9, 137.1, 135.1, 132.7, 132.3, 131.9, 129.1, 129.0, 128.5, 128.2, 128.0, 127.8, 127.2, 126.3, 123.6, 123.2, 121.2, 35.5, 31.2; LC-MS: m/z: 460.19 [M<sup>+</sup> +1].

**Compound 1zh:** Yield: 78%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.35 (brs, 1H), 8.00 (s, 1H), 7.94 (dd, 2H, J = 5.5 Hz, J = 7.0 Hz), 7.93-7.88 (m, 2H), 7.65 (d, 2H, J = 10.5 Hz), 7.63-7.55 (m, 2H), 7.21 (s, 2H), 7.04-7.01 (m, 2H), 4.12-4.07 (m, 2H), 2.97-2.92 (m, 1H), 1.28 (d, 6H, J = 7.0 Hz), 1.21 (d, 12H, J = 7.0 Hz); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  165.8, 154.5, 151.4, 145.9, 136.9, 135.1, 132.7, 131.9, 129.8, 129.1, 129.0, 128.2, 128.0, 127.7, 127.2, 124.1, 123.5, 123.3, 121.2, 34.4, 30.0, 24.8, 23.7; LC-MS: m/z: 530.19 [M<sup>+</sup> +1].

**Compound 1zi:** Yield: 87%; <sup>T</sup>H NMR (500 MHz, DMSO- $d_6$ )  $\delta$  10.60 (brs, 1H), 8.56 (s, 1H), 8.12-8.02 (m, 8H), 7.84 (d, 2H, J = 9.0 Hz), 7.67-7.63 (m, 2H), 7.13 (d, 2H, J = 9.0 Hz); <sup>13</sup>C NMR (125 MHz, DMSO- $d_6$ )  $\delta$  165.8, 144.3, 138.5, 138.1, 134.3, 134.2, 134.1, 132.0, 131.8, 129.2, 129.0, 128.0, 127.7, 127.5, 127.0, 126.6, 124.3; LC-MS: m/z: 422.03 [M<sup>+</sup> +1].

**Compound 1zj:** Yield: 91%; <sup>1</sup>H NMR (500 MHz, DMSO- $d_6$ )  $\delta$  10.58 (brs, 1H), 8.57 (s, 1H), 8.13-8.00 (m, 8H), 7.86 (d, 2H, J = 9.0 Hz), 7.65-7.62 (m, 2H), 7.11 (d, 2H, J = 9.0 Hz); <sup>13</sup>C NMR (125 MHz, DMSO- $d_6$ )  $\delta$  165.7, 144.2, 138.6, 138.2, 134.4, 134.3, 134.2, 132.0, 131.9, 129.4, 129.0, 128.1, 127.9, 127.7, 127.1, 127.0, 126.9, 124.4; LC-MS: m/z: 472.14 [M<sup>+</sup> +1].

**Compound 1zk:** Yield: 43%; <sup>1</sup>H NMR (500 MHz, DMSO- $d_6$ )  $\delta$  8.41 (brs, 1H), 8.14 (s, 1H), 7.98-7.89 (m, 7H), 7.82 (dd, 2H, J = 4.5 Hz, J = 6.5 Hz), 7.68-7.53 (m, 7H), 7.06 (dd, 2H, J =

2.0 Hz, *J* = 7.0 Hz); <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>) δ 166.0, 158.5, 145.9, 137.1, 135.1, 133.6, 134.4, 132.7, 132.4, 131.9, 129.2, 129.0, 128.8, 128.5, 128.2, 128.0, 127.9, 127.3, 126.4, 123.7, 123.3, 121.3; LC-MS: m/z: 455.24 [M<sup>+</sup> +1].

#### 4.4. Nucleotide pyrophosphatase/ phosphodiesterase inhibition assays

The inhibition potential of all the sulfonate derivatives against NPP1, 2, and 3 was determined by considering already reported colorimetric method<sup>54,55</sup> with minor modifications. The reaction buffer was comprised of 50 mM Tris-hydrochloric acid, 5 mM magnesium chloride (MgCl<sub>2</sub>) and 0.1 mM zinc chloride (ZnCl<sub>2</sub>) with final pH 9.5. For initial screening of compounds, enzyme and substrate parameters (concentration, temperature, time) were first optimized. The reaction assay was performed at 100 µL well volume containing assay buffer, 10 µL of 1 mM test compound prepared in 10% DMSO, enzymes NPP1 (35 ng), NPP2 (338 ng), or NPP3 (37 ng) and assay buffer. The reaction mixture was incubated at 37 °C, 10 minutes for NPP1 and 3 and 5 minutes for NPP2. Absorbance was measured at wavelength of 405 nm as preread by using microplate reader (BioTek FLx800, Instruments, Inc. USA). After pre-read artificial substrate p-nitrophenyl 5'-thymidine monophosphate (pNP-TMP), 400 µM for NPP1, 500 µM for NPP2, or 600 µM in case of NPP3, was added followed by second incubation at 37 °C, 15 minutes for NPP1, 3 and 35 minutes for NPP2. Absorbance was measured as after read. All the experiments were performed in triplicates. Compounds exhibiting more than 50% inhibition against either of NPP1, NPP2, and NPP3 were further subjected to serial dilutions for the determination of IC<sub>50</sub> values, using non-linear curve fitting program PRISM 5.0 (Graph Pad, San Diego, California, USA).

#### . Molecular docking studies

### 4.5.1. Selection of protein structure

Due to the unavailability of crystal structure of the human nucleotide pyrophosphatases (NPP1), the docking studies were performed in the homology model generated by our group using mouse ENPP1 with PDB ID: 4B56 as template.<sup>48,50</sup> However, the human crystal structures of NPP2 and NPP3 were downloaded from protein data bank with the PDB IDs 4ZG6<sup>51</sup> and

6C01.<sup>52</sup> The crystal structures of human NPP2 and NPP3 were present in the form of homodimer chain, therefore chain A was selected for docking analysis. MOE site finder parameter was applied to find out the binding pocket inside respective enzyme, keeping in mind the importance of catalytic zinc ions and calcium ions inside the active site pocket of enzyme.<sup>56</sup> The structure of these proteins were protonated by AMBER99 force field, and minimization was done at root mean square deviation gradient of 0.05 kcal/mol.<sup>57</sup>

#### 4.5.2. Preparation of the ligands

The 3D structures of the selected compounds were prepared with the help of builder tool of MOE.<sup>56</sup> After addition of hydrogen atoms to the compounds, the energy was minimized for the prepared structures of ligands and MMFF94x force field at the root mean square deviation of 0.01 kcal/mol Å was used for minimization.<sup>57</sup>

#### 4.5.3. Docking Analysis

The docking studies of the selected inhibitors and the standard compounds were performed with the help of LeadIT (BioSolveIT GmbH, Germany)<sup>58</sup> by setting the default parameters. The top 50 resulted poses were selected and visualization was done for each inhibitor individually. The top 30 poses were selected for HYDE assessment to further investigate the favorable binding interactions.<sup>59</sup> The poses having low binding energy with favorable affinity were selected, and analysis was performed using Discovery Studio Visualizer DS.<sup>60</sup>

### Acknowledgements

The authors are grateful to University of Sharjah (Drug Design & Discovery Research Group Operational Fund), United Arab Emirates, Boehringer-Ingelheim pharmaceutical company, United Arab Emirates, and Korea Institute of Science and Technology (KIST, Seoul, Republic of Korea), KIST Project (E26900) for financial support. J.I. is thankful to the Organization for the Prohibition of Chemical Weapons (OPCW), The Hague, The Netherlands and Higher Education Commission of Pakistan for the financial support through Project No. 20-3733/NRPU/R&D/14/520. J.S. was supported by grants from the Canadian Institutes of Health

Research. J.S. is also a recipient of a "Chercheur National" Scholarship award from the "Fonds de recherche du Québec-Santé" (FRQS).

#### **References:**

[1] Zimmermann, H.; Zebisch, M.; Strater, N. Purinergic Signalling 2012;8:437.

[2] Ausekle, E.; Ejaz, S.A.; Khan, S.U.; Ehlers, P.; Villinger, A.; Lecka, J.; Sevigny, J.; Iqbal, J.; Langer, P. *Organic & Biomolecular Chemistry* 2016;14:11402.

[3] Hunsucker, S.A.; Mitchell, B.S.; Spychala, J. Pharmacology & Therapeutics 2005;107:1.

[4] Johnson, K.; Moffa, A.; Chen, Y.; Pritzker, K.; Goding, J.; Terkeltaub, R. Journal of Bone and Mineral Research 1999;14:883.

[5] Stefan, C.; Jansen, S.; Bollen, M. Purinergic Signalling 2006;2:361.

[6] Ciancaglini, P.; Yadav, M.C.; Simao, A.M.; Narisawa, S.; Pizauro, J.M.; Farquharson, C.; Hoylaerts, M.F.; Millan, J.L. *Journal of Bone and Mineral Research* 2010;25:716.

[7] Harmey, D.; Hessle, L.; Narisawa, S.; Johnson, K.A.; Terkeltaub, R.; Millan, J.L. *The American Journal of Pathology* 2004;164:1199.

[8] Nitschke, Y.; Hartmann, S.; Torsello, G.; Horstmann, R.; Seifarth, H.; Weissen-Plenz, G.; Rutsch, F. *Journal of Cellular and Molecular Medicine* 2011;15:220.

[9] Levy-Litan, V.; Hershkovitz, E.; Avizov, L.; Leventhal, N.; Bercovich, D.; Chalifa-Caspi, V.; Manor, E.; Buriakovsky, S.; Hadad, Y.; Goding, J.; Parvari, R. *The American Journal of Human Genetics* 2010;86:273.

[10] Ruf, N.; Uhlenberg, B.; Terkeltaub, R.; Nurnberg, P.; Rutsch, F. Human Mutation 2005;25:98.

[11] Terkeltaub, R. Purinergic Signalling 2006;2:371.

[12] Sun, Y.; Mauerhan, D.R.; Honeycutt, P.R.; Kneisl, J.S.; Norton, H.J.; Zinchenko, N.; Hanley, E.N.; Gruber, H.E. *Arthritis Research & Therapy* 2010;12:R56.

[13] Cote, N.; El Husseini, D.; Pepin, A.; Guauque-Olarte, S.; Ducharme, V. Journal of *Molecular and Cellular Cardiology* 2012;52:1191.

[14] Umezu-Goto, M.; Kishi, Y.; Taira, A.; Hama, K.; Dohmae, N.; Takio, K.; Yamori, T.; Mills,

G.B.; Inoue, K.; Aoki, J.; Arai, H. Journal of Cell Biology 2012;158:227.

[15] Mangodt, E.A.; Van Gasse, A.L.; Bastiaensen, A.; Decuyper, I.I.; Uyttebroek, A.; Faber,

M.; Sabato, V.; Bridts, C.H.; Hagendorens, M.M.; De Clerck, L.S.; Ebo, D.G. Acta Clinica Belgica 2016;71:19.

[16] Bollen, M.; Gijsbers, R.; Ceulemans, H.; Stalmans, W.; Stefan, C. Critical Reviews in Biochemistry and Molecular Biology 2000;35:393.

[17] Scott, L.J.; Delautier, D.; Meerson, N.R.; Trugnan, G.; Goding, J.W.; Maurice, M. *Hepatology* 1997;25:995.

[18] Koike, S.; Keino-Masu, K.; Ohto, T.; Masu, M. Genes to Cells 2006;11:133.

[19] Nishimasu, H.; Okudaira, S.; Hama, K.; Mihara, E.; Dohmae, N.; Inoue, A.; Ishitani, R.; Takagi, J.; Aoki, J.; Nureki, O. *Nature Structural & Molecular Biology* 2011;2:205.

[20] Fulkerson, Z.; Wu, T.; Sunakura, M.; Vander Kooi, C.; Morris, A.J.; Smyth, S.S. *Journal of Biological Chemistry* 2011;286:34654.

[21] Moolenaar, W.H.; Perrakis, A. Nature Reviews Molecular Cell Biology 2011;12:674.

[22] Yung, Y.C.; Stoddard, N.C.; Chun, J. Journal of Lipid Research 2014;55:1192.

[23] Mills, G.B.; Moolenaar, W.H. Nature Reviews Cancer 2003;3:582.

[24] Bain, G.; Shannon, K.E.; Huang, F.; Darlington, J.; Goulet, L.; Prodanovich, P.; Ma, G.L.;

Santini, A.M.; Stein, A.J.; Lonergan, D.; King, C.D.; Calderon, I.; Lai, A.; Hutchinson, J.H.; Evans, J.F. *Journal of Pharmacology and Experimental Therapeutics* 2017;360:1.

[25] Inoue, M.; Rashid, M.H.; Fujita, R.; Contos, J.J.A.; Chun, J.; Ueda, H. *Nature Medicine* 2004;10:712.

[26] Bourgion, S.G.; Zhao, C. Current Opinion in Investigational Drugs 2010;11:515.

[27] Hui, D.Y. Current Opinion in Lipidology 2016;27:507.

[28] [a] Kremer, A.E.; van Dijk, R.; Leckie, P.; Schaap, F.G.; Kuiper, E.M.; Mettang, T.; Reiners, E.S.; Raap, U.; van Buuren, H.R.; van Erpecum, K.J.; Davies, N.A.; Rust, C.; Engert, A.; Jalan, R.; Oude Elferink, R.P.; Beuers, U. *Hepatology* 2012;56:1391; [b] Castelino, F.V.; Bain, G.; Pace, V.A.; Black, K.E.; George, L.; Probst, C.K.; Goulet, L.; Lafyatis, R.; Tager, A.M. *Arthritis & Rheumatology* 2016;68:2964.

[29] Hausmann, J.; Kamtekar, S.; Christodoulou, E.; Day, J.E.; Wu, T.; Fulkerson, Z.; Albers, H.M.; van Meeteren, L.A.; Houben, A.J.; van Zeijl, L.; Jansen, S. *Nature Structural & Molecular Biology* 2011;18:198.

[30] Addison, W.N.; Azari, F.; Sorensen, E.S.; Kaartinen, M.T.; McKee, M.D. Journal of Biological Chemistry 2007;282:15872.

[31] Buhring, H.J.; Streble, A.; Valent, P. International Archives of Allergy and Immunology 2004;133:317.

[32] Gijsbers, R.; Ceulemans, H.; Stalmans, W.; Bollen, M. Journal of Biological Chemistry 2001;276:1361.

[33] Zalatan, J.G.; Fenn, T.D.; Brunger, A.T.; Herschlag, D. Biochemistry 2006;45:9788.

[34] Scott, L.J.; Delautier, D.; Meerson, N.R.; Trugnan, G.; Goding, J.W.; Maurice, M. *Hepatology* 1997;25:995.

[35] Stefan, C.; Jansen, S.; Bollen, M. Purinergic Signalling 2006;2:361.

[36] Korekane, H.; Park, J.Y.; Matsumoto, A.; Nakajima, K.; Takamatsu, S.; Ohtsubo, K.; Miyamoto, Y.; Hanashima, S.; Kanekiyo, K.; Kitazume, S.; Yamaguchi, Y. *Journal of Biological Chemistry* 2013;288:27912.

[37] Johnson, K.; Vaingankar, S.; Chen, Y.; Moffa, A.; Goldring, M.B.; Sano, K.; Jin-Hua, P.; Sali, A.; Goding, J.; Terkeltaub, R. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology 1999;42:1986.

[38] Villa-Bellosta, R.; Wang, X.; Millan, J.L.; Dubyak, G.R.; O'Neill, W.C. American Journal of Physiology-Heart and Circulatory Physiology 2011;301:H61.

[39] Hausmann, J.; Keune, W.J.; Hipgrave Ederveen, A.L.; van Zeijl, L.; Joosten, R.P.; Perrakis, A. *Journal of Structural Biology* 2016;195:199.

[40] Nishimasu, H.; Okudaira, S.; Hama, K.; Mihara, E.; Dohmae, N.; Inoue, A.; Ishitani, R.; Takagi, J.; Aoki, J.; Nureki, O. *Nature Structural & Molecular Biology* 2011;18:205.

[41] Jansen, S.; Perrakis, A.; Ulens, C.; Winkler, C.; Andries, M.; Joosten, R.P.; Van Acker, M.; Luyten, F.P.; Moolenaar, W.H.; Bollen, M. *Structure* 2012;20:1948.

[42] Gorelik, A.; Randriamihaja, A.; Illes, K.; Nagar, B. The FEBS Journal 2018;285:2481.

[43] Iqbal, J.; Lévesque, S.A.; Sévigny, J.; Müller, C.E. *Electrophoresis* 2008; 29:3685.

[44] Shayhidin, E.; Forcellini, E.; Boulanger, M.C.; Mahmut, A.; Dautrey, S.; Barbeau, X.; Lagüe, P.; Sévigny, J.; Paquin, J.F.; Mathieu, P. *British Journal of Pharmacology* 2015;172:4189.

[45] Moulharat, N.; Fould, B.; Giganti, A.; Boutin, J.A.; Ferry, G. *Chemico-Biological Interactions* 2008;172:115.

[46] Parrill, A.L.; Echols, U.; Nguyen, T.; Pham, T.C.T.; Hoeglund, A.; Baker, D.L. *Bioorganic* & *Medicinal Chemistry* 2008;16:1784.

[47] Saunders, L.P.; Ouellette, A.; Bandle, R.; Chang, W.C.; Zhou, H.; Misra, R.N.; Enrique, M.; Braddock, D.T. *Molecular Cancer Therapeutics* 2008;7:3352.

[48] Akhtar, T.; Hameed, S.; Al-Masoudi, N.; Loddo, R.; Colla, P. Acta Pharmaceutica 2008;2:135.

[49] Albers, H.M.; Van Meeteren, L.A.; Egan, D.A.; van Tilburg, E.W.; Moolenaar, W.H.; Ovaa,H. *Journal of Medicinal Chemistry* 2010;53:4958.

[50] El-Gamal, M.I.; Semreen, M.H.; Foster, P.A.; Potter, B.V.L. *Bioorganic & Medicinal Chemistry* 2016;24:2762.

[51] Ausekle, E.; Ejaz, S.A.; Khan, S.U.; Ehlers, P.; Villinger, A.; Lecka, J.; Sevigny, J.; Iqbal, J.; Langer, P. Organic & Biomolecular Chemistry 2016;14:11402.

[52] Moulharat, N.; Fould, B.; Giganti, A.; Boutin, J.A.; Ferry, G. *Chemico-Biological Interactions* 2008;172:115.

[53] Jafari, B.; Yelibayeva, N.; Ospanov, M.; Ejaz, S.A.; Afzal, S.; Khan, S.U.; Abilov, Z.A.;
Turmukhanova, M.Z.; Kalugin, S.N.; Safarov, S.; Lecka, J.; Sévigny, J.; Rahman, J.Q.; Ehlers, P.;
Iqbal, J.; Langer, P. *RSC Advances* 2016;6:107556.

[54] Stein, A.J.; Bain, G.; Prodanovich, P.; Santini, A.M.; Darlington, J.; Stelzer, N.M.; Sidhu, R.S.; Schaub; Goulet, L.; Lonergan, D.; Calderon, I.; Evans, J.F.; Hutchinson, J.H. *Molecular Pharmacology* 2015;88:982.

[55] Gorelik, A.; Randriamihaja, A.; Illes, K.; Nagar, B. FEBS J 2018;285:2481.

[56] MOE (Molecular Operating Environment) Version 2014.0901. Chemical Computing Group, (CCG). <u>http://www.chemcomp.com/MOE</u> Molecular\_Operating\_Environment.htm.

[57] Labute, P. Protonate 3D: Assignment of Macromolecular Protonation State and Geometry, Chemical Computing Group, 2007. <u>http://www.chemcomp.com/journal/proton.htm</u>.

[58] LeadIT version 2.3.2; BioSolveIT GmbH, Sankt Augustin, Germany, 2017, www.biosolveit.de/LeadIT

[59] Schneider, N.; Lange, G.; Hindle, S.; Klein, R.; Rarey, M. *Journal of Computer-Aided Drug Design* 2013;27:15.

[60] Accelrys Software Inc. Discovery Studio Modeling Environment, Release 4.0; Accelrys Acctinition Software: San Diego, CA, 2013.

### **Graphical Abstract**



Docking pose of compound 1x into the crystal structure of NPP3