
ORIGINAL RESEARCH

Synthesis, anticancer, anti-HIV-1, and antimicrobial activity
of some tricyclic triazino and triazolo[4,3-e]purine derivatives

Fawzia A. Ashour • Samia M. Rida •

Soad A. M. El-Hawash • Mona M. ElSemary •

Mona H. Badr

Received: 5 May 2010 / Accepted: 21 February 2011 / Published online: 27 March 2011

� Springer Science+Business Media, LLC 2011

Abstract In an effort to etablish new candidates with

improved antineoplastic, anti-HIV-1 and antimicrobial

activities, the synthesis of some new triazino and triazol-

o[4,3-e]purine derivatives is described: 6,8-dimethyl-1,

4-dihydro-1,2,4-triazino[4,3-e]purine-7,9(6H, 8H)-diones

3–6; 5,7,9-trimethyl-1,2,4-triazolo[4,3-e]purine-6,8(5H, 7H,

9H)-diones 11–13, together with the synthesis of the

8-substituted purine derivative: 8-(3,5-diamino-1H-pyrazol-

4-yl)diazenyl-1,3-dimethyl-1H-purine-2,6(3H, 7H)-dione 7.

The prepared compounds were tested for their in vitro

anticancer, anti-HIV and antimicrobial activities. The

results of the in vitro anticancer screening revealed that

compound 3 exhibited considerable activity against mela-

noma MALME-3 M, non-small lung cancer HOP-92 and

breast cancer T-47D (GI50 values of 25.2, 31.8, and

32.9 lM, respectively). The anti-HIV-1 results indicated

that compounds 7 and 13c displayed moderate activity

(maximum % cell protection 30.52 and 35.54 at 2 9 10-4

M, respectively). The in vitro antimicrobial data showed

that compound 12 was the most active against P. aerugin-

osa, it was equipotent to ampicillin (MIC \ 100 lg/ml).

While compound 11d was the most active against P. vul-

garis, it was as active as ampicillin (MIC \ 50 lg/ml). In

addition, compounds 12 and 13c were the most active

against S. aureus (MIC \50 and \25 lg/ml, respectively).

On the other hand, the tested compounds devoid of

antifungal activity except 6b and 11c which showed weak

activity against A. niger.

Keywords Purines � Anticancer � Anti-HIV �
Antimicrobial activity

Introduction

Purines and condensed purines have received much atten-

tion over the years for their interesting pharmacological

properties as antineoplastic (Peifer et al., 2009; Ito et al.,

2007; Lech-Maranda et al., 2006), antileukemic (Ramas-

amy et al., 1990; Avery et al., 1990; Woo et al., 1992;

Steurer et al., 2006; Jeha and Kantarjian, 2007), anti-HIV-1

(McLaren et al., 1991; Johnson et al., 1991; Valiaeva et al.,

2006), antiviral (Lee et al., 1999; Li et al., 2005; Kmo-

nickova et al., 2006; ElAshry et al., 2006; Chen et al.,

2007) and animicrobial (Zinchenko et al., 1987; Kascatan-

Nebioglu et al., 2006) agents.

This study is a continuation to previous efforts (Rida

et al., 2005, 2007) aiming to locate novel synthetic lead

compounds for future development as anticancer, antiviral

and/or antimicrobial agents. In our earlier study (Rida

et al., 2007), we reported the synthesis and evaluation of in

vitro anticancer, anti-HIV-1 and antimicrobial activities of

a number of new 8-substituted methylxanthines. The

compounds were designed to comprise the purine nucleus

linked at C-8 with various heterocyclic ring systems either

directly or through a two-nitrogen atom spacer. Among

these derivatives, 8-[(3-benzyl-4-oxo-thiazolidin-2-ylidene)

hydrazino]-1,3,7-trimethyl-3,7-dihydropurine-2,6-dione (I,

Fig. 1) exhibited a supersensitivity profile toward leukemia

K-562 with a GI50 value \ 0.01 lM, 8-{[3-butyl-4-(4-

chlorophenyl)-2,3-dihydrothiazol-2-ylidene]hydrazino}-1,3,
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7-trimethyl-3,7-dihydro-purine-2,6-dione (II, Fig. 1)

displayed a moderate anti-HIV-1 activity, and 8-[(3-sub-

stituted-4-oxo-thiazolidin-2-ylidene)hydrazino]-1,3-dimethyl-

3,7-dihydropurine-2,6-diones (III, Fig. 1) were 2–4 times

more potent than ampicillin against P. aeruginosa.

Moreover, methylxanthines, including caffeine, pen-

toxifylline and theophylline are compounds used world-

wide. Many known biological effects of methylxanthines

were reported in the literature. They have been found to

enhance the cytocidal and growth-inhibitory effects of

DNA-damaging agents such as anticancer activity of some

chemotherapeutic agents, UV light and ionizing irradiation

(Saito et al., 2003; Lazarczyk et al., 2004). On the other

hand, methylxanthines have been recently shown to protect

cells against the cytostatic or cytotoxic effects of several

aromatic compounds and significantly decrease the muta-

genicity of the anticancer aromatic drugs such as dauno-

mycin, dixorubicin and mitoxantrone (Piosik et al., 2005).

Furthermore, some reports indicated that methylxan-

thines changed the inhibitory effect of antibacterial agents

(Charles and Rawal, 1973; Banerjee and Chatterjee, 1981;

Hosseinzadeh et al., 2006). Aminophylline and caffeine

potentiated the antimicrobial action of penicillin G, car-

benicillin, ceftizoxime and gentamicin against Staphylo-

cous aureus and Pseudomenous aeruginosa (Charles and

Rawal, 1973; Hosseinzadeh et al., 2006). Also, caffeine

increased the efficacy of furazolidone against Vibrios

(Banerjee and Chatterjee, 1981).

In addition, some polycyclic fused purine derivatives

have been reported as potent anticancer or antiviral agents.

For example, 6-dialkylaminoalkyl-8,10-dimethylpurino

[7,8-a]quinazoline-5,9,11(6H, 8H, 10H)triones (IV, Fig. 1)

exhibited significant in vitro cytotoxic activity against

human promyelocytic leukemia and cervix adenocarci-

noma (Settimo et al., 1998). 4-Substituted pyrido[1,2-

e]purine derivatives (V, Fig. 1) showed interesting activity

on multidrug resistant cell lines, MCF7R, which were

shown to have increased resistance to doxorubicin (Pinguet

et al., 1999). 7,8-Dihydrothiazolo[2,3-b]purin-4-ol (VI,

Fig. 1) showed in vitro inhibiting effect on influenza

virus(Hadden et al., 1986). 1,3,8,10-Tetramethylpurino

[7,8-g]-6-azapteridine-2,4,7,9(1H,3H,8H,10H)-tetrone was

found to be active against P 338 Leukemia (Ueda et al.,

1987). 4-Amino-tetrahydroquinazolino [3,2-e] purine deriv-

atives showed antiproliferative effects on the murine leu-

kemia L1210 cell line (Verones et al., 2010). Oligo and

polyribonucleotides containing selected triazolo [2,3-a]

purines were moderately active against HIV but showed

greater potency against human cyclomelagovirus (HCMV)

than ganciclovir (Tutonda et al., 1998). These findings,

together with the fact that the majority of DNA interca-

lating agents comprising a planar tricyclic or tetracyclic

chromophore(Palmer et al., 1988; Filippatos et al., 1994;

Kimura et al., 1992; Abadi et al., 1999), motivated our

interest toward the design and synthesis of some triazino

and triazolo[4,3-e]purine derivatives to explore their
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anticancer, antiviral and antimicrobial activities hoping

to go a step forward in the field of antimetabolities. Two

new series of substituted 6,8-dimethyl-1,4-dihydro-1,2,4-

triazino[4,3-e]purine-7,9(6H, 8H)-diones 3; 4; 5 and

6a, b (Scheme 1) and 5,7,9-trimethyl-1,2,4-triazolo[4,3-e]

purine-6,8(5H, 7H, 9H)-diones 11a–d; 12 and 13a–

c (Scheme 2). These compounds are considered as related

structural analogs of the previously reported IV, V and

VI (Fig. 1). In addition, 8-(3,5-diamino-1H-pyrazol-4-

yl)diazenyl-1,3-dimethyl-1H-purine-2,6(3H, 7H)-dione 7

(Scheme 1) was designed as another molecular variant of I,

II, and III (Fig. 1). The prepared compounds were bio-

logically evaluated for their anticancer, anti-HIV-1 and

antimicrobial activities to explore the effect of such

molecular modifications on the anticipated pharmacologi-

cal effects.

Chemistry

The target compounds were prepared following the syn-

thetic pathways depicted in Schemes 1 and 2. The key

intermediates hydrazono derivatives 2a–c were prepared in

good yields, as previously reported (Jones and Robins,

1960), by coupling an alcoholic suspension of 8-diazothe-

ophylline 1 with the active methylene of malononitrile,

ethyl cyanoacetate or ethyl acetoacetate in dry pyridine.

The 8-diazo-1,3-dimethyl-3,7-dihydropurine-2,6-dione

hydrochloride 1 was prepared following the previously

reported procedure (Jones and Robins, 1960), by diaz-

otization of 8-amino-1,3-dimethyl-3,7-dihydropurine-2,

6-dione hydrochloride with sodium nitrite in 5% hydro-

chloric acid at 0–5�C. Refluxing ethanolic solution of the

hydrazono derivative 2a afforded the respective 4-imino-

6,8-dimethyl-1,4-dihydro-1,2,4-triazino[4,3-e]purine-7,9-

(6H,8H)-dione-3-carbonitrile 3. However, ethyl (4-imino-

6,8-dimethyl-1,4-dihydro-1,2,4-triazino[4,3-e]purine-7,9

(6H,8H)-dione)-3-carboxylate 4 was obtained by refluxing

2b in dimethyl formamide instead of ethanol. 3-Acetyl-4-

oxo-6,8-dimethyl-1,4-dihydro-1,2,4-triazino[4,3-e]purine-

7,9(6H,8H)-dione 5 was prepared in an excellent yield by

refluxing a solution of the hydrazono derivative 2c in

absolute ethanol in the presence of equivalent amount

anhydrous sodium acetate as a catalyst. However, cycli-

zation failed in absence of sodium acetate, even on using

boiling dimethyl formamide as a solvent. Hydrolysis of

the imino derivative 3 or 4 in 18% hydrochloric acid

afforded the corresponding oxo derivative 6a or b,

respectively. 8-(3,5-diamino-1H-pyrazol-4-yl)diazenyl-1,3-

dimethyl-1H-purine-2,6(3H, 7H)-dione 7 was obtained in a

good yield by treating 2a with hydrazine hydrate in dry

dimethyl formamide at room temperature. Attempts to

prepare compound 8, by cyclocondensation of 4b with
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hydrazine hydrate, following the reaction condition descri-

bed for compound 7, failed and the result was the recovery

of the starting material. However, raising the reaction

temperature from ambient to reflux gave the unexpected

compound 4 (Confirmed by mixed m.p. with compound 4,

IR and 1H-NMR spectra).

Scheme 2 starts with 8-hydrazinocaffeine 9 which was

prepared in a good yield, as previously reported (Priewe

and Poljak,1955), by refluxing the corresponding 8-chloro

derivative with hydrazine hydrate in ethanol. Condensation

of 9 with the appropriate aromatic aldehydes in boiling

ethanol yielded the corresponding 8-arylidenehydrazino-

3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-diones 10a-d,

as previously described (Klosa, 1956). Oxidative cycliza-

tion of 10a–d using bromine in the presence of equivalent

amount of anhydrous sodium carbonate afforded the cor-

responding 3-aryl-5,7,9-trimethyl-1,2,4-triazolo[4,3-e]pur-

ine-6,8(5H,7H,9H)-diones 11a–d. On the other hand, 5,7,

9-trimethyl-3-thioxo-2,3-dihydro-1,2,4-triazolo[4,3-e]pur-

ine-6,8(5H,7H,9H)-dione 12 was obtained by refluxing

ethanolic solution of 9 with carbon disulfide in the presence

of equivalent amount of sodium hydroxide. Alkylation of

12 with different alkyl halides in dimethyl formamide in

the presence of equivalent amount of anhydrous potassium

carbonate gave the respective 3-alkylthio or aralkylthio-

5,7,9-trimethyl-1,2,4-triazolo[4,3-e]purine-6,8(5H,7H,9H)-

diones 13a–c.

The structures of the synthesized compounds were

confirmed by microanalyses, IR, 1H-NMR, 13C-NMR and

mass spectral data (experimental section). 1H-NMR spec-

trum of compound 2c showed two singlets at 7.19 and

12.88 ppm due to two NH protons, indicating the existence

of this compound in the hydrazono form rather than the azo

form. 1H-NMR spectrum of compounds 3 and 4 showed

two deuterium oxide-exchangeable singlets at different

chemical shifts attributed to two NH protons, confirming

that these compounds exist in the imino form rather than

the amino form. IR and 1H-NMR spectra of compounds 6a,

b revealed the existence of three possible tautomeric forms.

The IR spectrum showed OH and NH stretching absorption

bands and the 1H-NMR showed two NH and one OH

signals at different chemical shifts each is integrated for 1/3

proton. IR spectrum of compound 12 revealed a broad band

at 3442 cm-1 due to NH stretching and its 1H-NMR
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showed a deuterium oxide exchangeable singlet at

6.73 ppm attributed to NH proton, confirming the existence

of this compound in the thione rather than the thiol form.

Experimental

All melting points were determined in open-glass capil-

laries on a Gallenkamp melting point apparatus (Sanyo)

and were uncorrected. The IR spectra were recorded using

KBr discs on a Perkin-Elmer 1430 spectrophotometer

(Perkin-Elmer, Norwalk, CT, USA). 1H-NMR spectra were

recorded on a Varian Gemini 200 MHz spectrometer

(Varian Inc., Palo Alto, CA, USA) or JNM-LA 400 FT

NMR system (JEOL, Tokyo, Japan) using tetramethylsil-

ane (TMS) as internal standard and dimethyl sulfoxide

(DMSO-d6) as solvent. Splitting patterns were assigned as

follows: s = singlet, d = doublet, t = triplet, q = quartet,

and m = multiplet (chemical shift d ppm). The 13C-NMR

spectra were performed on Joel spectrometer (500 MHZ)

using tetramethylsilane (TMS) as internal standard and

dimethylsulfoxide (DMSO-d6) as a solvent. MS were run

on a Finnigan mass spectrometer model SSQ/7000 (70 eV,

Thermo Electron Corporation). The microanalyses were

performed at the Microanalytical Laboratory, National

Research Center, Cairo, and the data were within 0.4% of

the theoretical values. Reactions were monitored by thin

layer chromatography on silica gel-protected aluminium

sheets (Type 60 F254, Merck, Darmstadt, Germany) and

the spots were detected by exposure to UV-lamp at c
254 nm for few seconds.

Synthesis of 3,7-dihydro-1,3-dimethyl-2,6-dioxo-1H-

purin-8-ylhydrazono malononitrile 2a, ethyl (3,7-

dihydro-1,3-dimethyl-2,6-dioxo-1H-purin-8-

ylhydrazono)cyanoacetate 2b, and ethyl 2-[(3,7-

dihydro-1,3-dimethyl-2,6-dioxo-1H-purin-8-

yl)hydrazono]-3-oxobutanoate 2c

To an ice-cooled suspension of 8-diazotheophylline 1

(1.03 g, 5 mmole) in absolute ethanol (25 ml), a solution of

malononitrile, ethyl cyanoacetate or ethyl acetoacetate

(7.5 mmole) in dry pyridine (25 ml) was added dropwise

while stirring over a period of half an hour. The reaction

mixture was then stirred at room temperature for 3 h. The

separated product was filtered, washed with water then

ethanol and air dried (Table 1).

Table 1 Physical and analytical data of the synthesized compounds (2–13)

Comp. No. R R1 Yield (%) MP (Crys. Solv.) Mol. formulaa (mol. wt.)

2a CN CN 70 165–167 C10H8N8O2 (272.22)

2b CN COOC2H5 97 209–211b –

2c COCH3 COOC2H5 41 161–163 C13H16N6O5 (336.31)

3 – – 78 [350 (EtOH) C10H8N8O2 (272.22)

4 – – 72 234–236 (EtOH) C12H13N7O4 (319.28)

5 – – 94 [350 (DMF/EtOH) C11H10N6O4 (290.24)

6a CN – 96 272–274 (EtOH) C10H7N7O3 (273.21)

6b COOH – 96 224–226 (EtOH) C10H8N6O5.HCl (328.67)

7 – – 67 [350 (DMF/EtOH) C10H12N10O2 (304.27)

10a H – 82 273–275c (EtOH) C15H16N6O2 (312.33)

10b Cl – 91 260–262 (DMF) C15H15ClN6O2 (346.77)

10c Br – 89 265–267 (DMF) C15H15BrN6O2 (391.22)

10d OCH3 – 74 262–264c (EtOH) C16H18N6O3 (342.35)

11a H – 68 240–242 (EtOH) C15H14N6O2 (310.31)

11b Cl – 58 237–239 (EtOH) C15H13ClN6O2 (344.76)

11c Br – 52 248–250 (EtOH) C15H13BrN6O2 (389.21)

11d OCH3 – 85 225–227 (Dioxane) C16H16N6O3 (340.34)

12 – – 45 281–283 (EtOH/Ether) C9H10N6O2S (266.28)

13a CH3 – 85 188–190 (EtOH) C10H12N6O2S (280.31)

13b CH2CH3 – 77 164–166 (EtOH) C11H14N6O2S (294.33)

13c CH2C6H5 – 63 132–134 (EtOH) C16H16N6O2S (356.40)

a Analyzed for C, H, N and the results are within ±0.4% of the theoretical values
b Jones and Robins, 1960
c Klosa, 1956
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IR of compound 2a (m cm-1): 3225 (br.NH); 2206

(C:N); 1711 (C=O purine); 1666, 1552, 1503 (C=N, NH

bending, C=C).

IR of compound 2b (m cm-1): 3258, 3164 (NH); 2219

(C:N); 1711 (br.C=O ester and C=O purine); 1656, 1614,

1540 (C=N, NH bending, C=C); 1236, 1140, 1053 (C–O–C).

IR of compound 2c (m cm-1): 3276, 3201(NH); 1726

(C=O ester); 1697 (C=O ketone and C=O purine); 1649,

1563, 1525 (C=N, NH bending, C=C); 1239, 1139, 1067

(C–O–C).
1H-NMR of compound 2c (DMSO-d6, d ppm, Varian

Gemini 200 MHz): 1.29 (t, J = 7 Hz, 3H, CH2–CH3); 2.22

(s, 3H, COCH3); 3.23 (s, 3H, purine-N3–CH3); 3.41 (s, 3H,

purine-N1–CH3); 4.24 (q, J = 7 Hz, 2H, CH2–CH3); 7.19,

12.88 (two s, each 1H, two NH, D2O exchangeable).

Synthesis of 4-imino-6,8-dimethyl-1,4-dihydro-1,2,4-

triazino[4,3-e]purine-7,9-(6H,8H)-dione-

3-carbonitrile 3

A solution of 3,7-dihydro-1,3-dimethyl-2,6-dioxo-1H-purin-

8-ylazomalononitrile 2a (0.54 g, 2 mmole) in absolute eth-

anol (10 ml) was heated under reflux for 15 min then left to

cool at room temperature. The separated crystalline product

was filtered, dried and recrystallized from ethanol (Table 1).

IR (m cm-1): 3310 (br.NH); 2242 (C:N); 1697 (C=O

purine); 1637, 1502, 1471 (C=N, NH bending, C=C).
1H-NMR (DMSO-d6, d ppm, JNM-LA 400 FT): 3.30 (s,

3H, purine-N3-CH3); 3.54 (s, 3H, purine-N1–CH3); 9.99,

10.45 (two s, each 1H, two NH, D2O exchangeable).

Synthesis of ethyl (4-imino-6,8-dimethyl-1,4-dihydro-

1,2,4-triazino[4,3-e]purine-7,9(6H,8H)-dione)-3-

carboxylate 4

A solution of ethyl (3,7-dihydro-1,3-dimethyl-2,6-dioxo-

1H-purin-8-yl azo)cyanoacetate 2b (0.64 g, 2 mmole) in

dry dimethyl-formamide (10 ml) was heated under reflux

for 2 h then left to cool to room temperature. The precip-

itate formed after addition of few drops of water was fil-

tered, dried and crystallized from ethanol (Table 1).

IR (t cm-1): 3306, 3174 (NH); 1718, 1700 (C=O ester

and C=O purine respectively); 1637, 1592, 1514, 1468

(C=N, NH bending, C=C); 1237, 1171, 1068 (C–O–C).
1H-NMR (DMSO-d6, d ppm, JNM-LA 400 FT): 1.36 (t,

J = 7 Hz, 3H, CH2–CH3); 3.30 (s, 3H, purine-N3–CH3);

3.54 (s, 3H, purine-N1–CH3); 4.41 (q, J = 7 Hz, 2H, CH2–

CH3); 9.25, 10.71 (two s, each 1H, two NH, D2O

exchangeable). 13C-NMR (DMSO-d6, d ppm):13.77

(O = C–CH2–CH3 ester); 61.13(O–CH2–CH3 ester);162.89

(C=O ester), 153.97(C3-COOEt triazinopurine); 139.47

(C4=NH iminotriazinopurine); 135.96(N-C5a=C9a triazin-

opurine) 32.26, 28.98(N3–CH3, N1–CH3 purine, respec-

tively); 151.38, 154.89(C2=O, C4=O purine, respectively);

114.58 (N–C9a=C5a triazinopurine); 145.24(N10–C10a=N1–

H triazinopurine).

Electron impact Mass Spectrum m/z (% abundance):

320 (2) M ?1; 319 (9) M; 275 (6); 247 (30); 195 (100); 178

(5); 163 (9); 152 (11); 138 (16); 120 (9); 110 (10); 109 (8);

108 (7), 106 (7); 94 (9); 93 (12); 83 (5); 82 (40); 81 (12);

80 (13); 78 (9); 69 (5); 68 (28); 67 (49); 66 (6); 58 (13); 57

(5); 56 (10); 55 (8); 54 (14); 53 (29).

Synthesis of 3-acetyl-4-oxo-6,8-dimethyl-1,4-dihydro-

1,2,4-triazino[4,3-e]purine-7,9(6H,8H)-dione 5

To a solution of ethyl 2-[(3,7-dihydro-1,3-dimethyl-2,6-

dioxo-1H-purin-8-yl)azo]-3-oxobutanoate 2c (0.67 g, 2

mmole) in absolute ethanol (10 ml), anhydrous sodium

acetate (0.16 g, 2 mmole) was added. The reaction mixture

was heated under reflux for 1 h and left to cool to room

temperature. The separated crystals were filtered, washed

with water, dried and recrystallized from dimethylforma-

mide/ethanol (Table 1).

IR (m cm-1): 3344, 3257 (NH); 1732 (C=O triazinone);

1695, 1690 (C=O purine and C=O ketone, respectively);

1655, 1590, 1476 (C=N, NH bending, C=C).
1H-NMR (DMSO-d6, d ppm, JNM-LA 400 FT): 2.44 (s,

3H, COCH3); 3.16 (s, 3H, purine-N3-CH3); 3.42 (s, 3H,

purine-N1-CH3); 6.95 (s, 1H, NH, D2O exchangeable). 13C-

NMR (DMSO-d6, dppm):23.14(O=C–CH3 acetyl); 194.57

(C=Oacetyl); 154.17(C3–COCH3 triazinopurine); 193.23

(C4=O oxotriazinopurine); 136.15(N–C5a=C9a triazinopu-

rine) 32.32,29.12 (N3-CH3, N1-CH3 purine, respectively);

151.41, 154.92(C2=O, C4=O purine, respectively); 114.62

(N-C9a=C5a triazinopurine); 145.12(N10–C10a=N1–H

triazinopurine).

Synthesis of 4-oxo-6,8-dimethyl-1,4-dihydro-1,2,4-

triazino[4,3-e]purine-7,9(6H,8H)-dione-3-carbonitrile

6a, and 4-oxo-6,8-dimethyl-1,4-dihydro-1,2,4-

triazino[4,3-e]purine-7,9(6H,8H)-dione-3-carboxylic

acid 6b

A solution of 4-imino-6,8-dimethyl-1,4-dihydro-1,2,4-

triazino-[4,3-e]purine-7,9(6H,8H)-dione-3-carbonitrile 3

or ethyl (4-imino-6,8-dimethyl-1,4-dihydro-1,2,4-triazino

[4,3-e]purine-7,9(6H,8H)-dione)-3-carboxylate 4 (2 mmole)

in 18% hydrochloric acid (10 ml) was heated under reflux

for 1 h. The reaction mixture was concentrated under

reduced pressure and left to cool to room temperature. The

separated crystalline product was filtered, dried and re-

crystallized from ethanol (Table 1).
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IR of compound 6a (m cm-1): 3440, 3166, 3133 (br.OH,

NH); 2243 (C:N); 1727 (C=O triazinone); 1694 (C=O

purine); 1664, 1597, 1500, 1459 (C=N, NH bending, C=C).
1H-NMR of compound 6a (DMSO-d6, d ppm, JNM-LA

400 FT): 3.24 (s, 3H, purine-N3-CH3); 3.46 (s, 3H, purine-

N1-CH3); 6.93, 7.06, 7.19 (three s, each 1=3 H, OH, NH,

NH-N, D2O exchangeable).

Electron impact mass spectrum of compound 6a m/z

(% abundance): 274 (8) M ? 1; 273 (58) M; 244 (8); 217

(6); 216 (20); 215 (8); 189 (16); 188 (22); 161 (17); 152

(13); 136 (15); 109 (9); 108 (21); 94 (8); 93 (7); 82 (23);

81 (17); 80 (10); 79 (11); 78 (9); 69 (13); 68 (56); 67

(100); 66 (12); 58 (11); 56 (31); 55 (24); 54 (24); 53 (38);

52 (9).

IR of compound 6b (t cm-1): 3522–3441, 3126 (br.OH,

br.NH); 1726 (C=O triazinone); 1699 (br.C=O acid and

C=O purine); 1664, 1646, 1569, 1535 (C=N, NH bending,

C=C).
1H-NMR of compound 6b (DMSO-d6, d ppm, JNM-LA

400 FT): 3.19 (s, 3H, purine-N3–CH3); 3.38 (s, 3H, purine-

N1–CH3); 6.98, 7.11, 7.20 (three s, each 1=3 H, OH, NH,

NH–N, D2O exchangeable); 13.19 (s, 1H, COOH, D2O

exchangeable).

Synthesis of 8-(3,5-diamino-1H-pyrazol-4-yl)diazenyl-

1,3-dimethyl-1H-purine-2,6(3H, 7H)-dione 7

To an ice-cooled suspension of 3,7-dihydro-1,3-dimethyl-

2,6-dioxo-1H-purin-8-yl azomalononitrile 2a (0.54 g, 2

mmole) in dry dimethylformamide (5 ml), hydrazine

hydrate (98%) (0.5 g, 10 mmole) was added dropwise with

stirring. After complete addition, the reaction mixture was

left overnight at room temperature, poured onto ice/water

and neutralized with dilute hydrochloric acid. The sepa-

rated product was filtered, washed with water, dried, and

crystallized from dimethylformamide/water (Table 1).

IR (m cm-1): 3445, 3328, 3239 (NH2, NH); 1677 (C=O

purine); 1645, 1569, 1484 (C=N, NH bending, C=C).
1H-NMR (DMSO-d6, d ppm, Varian Gemini 200 MHz):

3.26 (s, 3H, purine-N3–CH3); 3.47 (s, 3H, purine-N1–CH3);

6.58 (br.s, 4H, two NH2, D2O exchangeable); 11.22, 12.45

(two s, each 1H, NH purine, NH pyrazole, D2O exchange-

able).

Synthesis of 8-arylidenehydrazino-3,7-dihydro-1,3,7-

trimethyl-1H-purine-2,6-diones 10a–d

To a suspension of 8-hydrazinocaffeine 9 (1.12 g, 5

mmole) in absolute ethanol (20 ml), the appropriate aro-

matic aldehyde (5 mmole) was added. The reaction mix-

ture was heated under reflux for 30 min then cooled to

room temperature. The separated solid was filtered, washed

with ethanol, dried and crystallized from the proper solvent

(Table 1).

IR of compounds 10a–d (t cm-1): 3177–3115 (NH);

1697–1691 (C=O); 1645–1624, 1623–1596, 1578–1574,

1548–1538 (C=N, NH bending, C=C).
1H-NMR of compound 10a (DMSO-d6, d ppm, JNM-

LA 400 FT): 3.19 (s, 3H, purine-N3–CH3); 3.37 (s, 3H,

purine-N1–CH3); 3.92 (s, 3H, purine-N7–CH3); 7.37–7.44

(m, 3H, Ar–C3,4,5–H); 7.65 (d, 2H, Ar–C2,6–H), 8.09 (s,

1H, N=CH); 11.45 (s, 1H, NH, D2O exchangeable).
1H-NMR of compound 10b (DMSO-d6, d ppm, JNM-

LA 400 FT): 3.17 (s, 3H, purine-N3–CH3); 3.33 (s, 3H,

purine-N1–CH3); 3.85 (s, 3H, purine-N7–CH3); 7.45 (d,

J = 8.4 Hz, 2H, Ar–C2,6–H); 7.65 (d, J = 8.4 Hz, 2H, Ar–

C3,5–H); 8.07 (s, 1H, N=CH); 11.50 (s, 1H, NH, D2O

exchangeable).

Synthesis of 3-aryl-5,7,9-trimethyl-1,2,4-triazolo[4,3-

e]purine-6,8(5H,7H,9H)-diones 11a–d

To a stirred mixture of 8-arylidenehydrazino-3,7-dihydro-

1,3,7-trimethyl-1H-purine-2,6-diones 10a–d (2 mmole)

and anhydrous sodium carbonate (2.3 g, 2 mmole) in

chloroform (20 ml), bromine (0.3 ml) was added. The

reaction mixture was stirred at room temperature for 2 h,

evaporated under reduced pressure. The residue was tritu-

rated with ice-cold water, filtered, washed with water, dried

and crystallized from the proper solvent (Table 1).

IR of compounds 11a–d (t cm-1): 1713–1707 (C=O);

1676–1664, 1645–1637, 1533–1525, 1482–1469 (C=N,

C=C).
1H-NMR of compound 11a (DMSO-d6, d ppm, JNM-

LA 400 FT): 2.88 (s, 3H, purine-N3–CH3); 3.31 (s, 3H,

purine-N1–CH3); 3.83 (s, 3H, purine-N7–CH3); 7.53–7.60

(m, 3H, Ar–C3,4,5–H); 7.68 (d, 2H, Ar–C2,6–H).
1H-NMR of compound 11b (DMSO-d6, d ppm, JNM-

LA 400 FT): 2.95 (s, 3H, purine-N3–CH3); 3.37 (s, 3H,

purine-N1–CH3); 3.83 (s, 3H, purine-N7–CH3); 7.62 (d,

J = 8 Hz, 2H, C2,6–Ar–H); 7.72 (d, J = 8 Hz, 2H, C3,5–

Ar–H).
1H-NMR of compound 11c (DMSO-d6, d ppm, JNM-LA

400 FT): 2.96 (s, 3H, purine-N3–CH3); 3.25 (s, 3H, purine-

N1–CH3); 3.83 (s, 3H, purine-N7–CH3); 7.65 (d, J = 8 Hz,

2H, C2,6–Ar–H); 7.76 (d, J = 8 Hz, 2H, C3,5–Ar–H).

Synthesis of 5,7,9-trimethyl-3-thioxo-2,3-dihydro-

1,2,4-triazolo[4,3-e]purine-6,8(5H,7H,9H)-dione 12

To a mixture of 8-hydrazinocaffeine 9a (2.24 g, 10 mmole)

and sodium hydroxide (0.4 g, 10 mmole) in absolute eth-

anol (20 ml), carbon disulphide was added (30 ml). The

reaction mixture was heated under reflux for 24 h and then
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the solvent was evaporated under reduced pressure. The

residue was dissolved in water, filtered and the filterate was

neutralized with concentrated hydrochloric acid. The

formed precipitate was filtered, washed with water, dried

and crystallized from ethanol/ether (Table 1).

IR (t cm-1): 3442 (br.NH); 2631 (weak SH); 1715

(C=O); 1684, 1489, 1467 (C=N, C=C); 1549, 1331, 1035,

970 (N–C=S amide I, II, III, IV bands).
1H-NMR (DMSO-d6, d ppm, Varian Gemini 200 MHz):

3.16 (s, 3H, purine-N3–CH3); 3.33 (s, 3H, purine-N1–CH3);

3.60 (s, 3H, purine-N7–CH3); 6.73 (s, 1H, NH, D2O

exchangeable).

Synthesis of 3-alkylthio or aralkylthio- 5,7,9-trimethyl-

1,2,4-triazolo[4,3-e]purine-6,8(5H,7H,9H)-diones

13a–c

A. mixture of 5,7,9-trimethyl-3-thioxo-2,3-dihydro-1,2,4-

triazolo[4,3-e]purine-6,8(5H,7H,9H)-dione 12 (0.53 g, 2

mmole), anhydrous potassium carbonate (0.28 g, 2 mmole)

and the appropriate alkyl halide (3 mmole) in dry dimethyl

formamide (5 ml) was stirred at room temperature for 3 h.

The reaction mixture was poured onto ice/water and the

formed precipitate was filtered, washed with water, dried

and crystallized from ethanol (Table 1).

IR of compounds 13a–c (t cm-1): 1711–1698 (C=O);

1664–1652, 1550–1535, 1452–1449 (C=N, C=C);

1220–1215, 1036–1035 (C–S–C).
1H-NMR of compound 13a (DMSO-d6, d ppm, JNM-

LA 400 FT): 2.68 (s, 3H, S–CH3); 3.19 (s, 3H, purine-N3–

CH3); 3.40 (s, 3H, purine-N1–CH3); 3.73 (s, 3H, purine-

N7–CH3).

Biological activity

Anticancer screening

Materials and methods

Anticancer screening was performed at the National Can-

cer Institute (NCI), Bethesda, Maryland, USA. The com-

pounds were evaluated in three cell lines in a one-dose

primary anticancer assay subsequent to the NCI preclinical

antitumor drug discovery screen (Grever et al., 1992;

Boyed and Paull, 1995). The three cell lines used were lung

(NCI-H460), breast (MCF-7) and CNS (SF-268). In the

current protocol, each cell is inoculated and preincubated

on microtiter plates. Test agents are then added at a single

concentration (100 lM), and the culture is incubated for

48 h. Endpoint determinations are made with alamar blue.

The results for each agent are presented as the percent of

growth of the treated cells compared to the untreated

control cells. Compounds which reduced the growth of any

one of the cell lines to 32% or less (negative numbers

indicate cell kill) were passed on for the evaluation in the

full panel in vitro antitumor screen consisting of 60 human

tumor cell lines, derived from nine clinically isolated types

of cancer types (Leukemia, non-small cell lung cancer,

colon cancer, CNS cancer, melanoma, ovarian cancer,

renal cancer, prostate cancer, breast cancer) following the

NCI preclinical antitumor drug discovery screen. Each

compound was tested at five concentrations at ten-fold

dilutions. A 48 h continuous drug exposure protocol was

used and a sulforodamine B (SRB) protein assay was used

to estimate cell viability or growth (Boyed and Paull,

1995).

Results

Four of the synthesized compounds (3; 4; 11a, b) were

selected by the National Cancer Institute (NCI) and eval-

uated for their in vitro antineoplastic activity against three-

cell-line panel consisting of the Breast-MCF-7 cell line, the

lung-NCI-H460 cell line and the CNS-SF-268 cell line.

Only compound 3 showed promising activity. It reduced

the growth of breast cell line to less than 32% (14%)

(Table 2). Compound 3 was then subjected to the NCI in

vitro disease-oriented human cells screening panel assay

(Grever et al., 1992; Boyed and Paull, 1995) to investigate

its antitumor activity. About 60 cell lines of nine tumor

subpanels were incubated with five concentrations

(0.01–100 lM) for each compound and were used to create

log concentration versus % growth inhibition curves. Three

response parameters (GI50, TGI, and LC50) were calculated

for each cell line. The GI50 value corresponds to the

compound’s concentration causing 50% decreases in net

cell growth. The TGI value is the compound’s concentra-

tion resulting in total growth inhibition and the LC50 is the

compound’s concentration causing a net 50% loss of initial

cells at the end of the incubation period (48 h). Subpanel

and full panel mean-graph midpoint values (MG-MID) for

certain agents are the average of individual real and default

GI50, TGI or LC50 values of all cell lines in subpanel and

fullpanel, respectively.

Compound 3 exhibited considerable activity against

some of the tested cell lines (Table 3). For example, GI50

values of 31.8 lM against non-small cell lung cancer HOP-

92, 25.2 lM against melanoma MALME-3 M and

32.9 lM against breast T-47D.

The GI50, TGI, and LC50 subpanel and full panel mean-

graph midpoint (MG-MID) values, respectively, are shown

(Table 4). The ratio obtained by dividing the compound’s

full panel MG-MID (lM) by its individual subpanel MG-

MID (lM) has been considered as a measure of compound
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selectivity (Monks et al., 1991). Ratios between 3 and 6

refer to moderate selectivity, ratios greater than 6 indicate

high selectivity toward the corresponding cell line, while

compounds meeting neither of these criteria are rated non-

selective (Monks et al., 1991). Accordingly, compound 3

was non-selective with ratios ranging between 0.85 and

1.18 (Table 4).

In vitro anti-HIV-1 activity

Materials and methods

The in vitro anti-HIV drug testing system was performed in

the National Cancer Institute’s Developmental Therapeutics

Program, AIDS antiviral screening program, according to a

reported procedure (Weislow et al., 1989). The assay

involved the killing of T4 lymphocytes by HIV. T4 lym-

phocytes (CEM cell line) were exposed to HIV at a virus-to-

cell ratio of approximately 0.05 and treated with the com-

pounds, dissolved in dimethylformamide, at doses ranging

from 10-8 to 10-4 M. A complete cycle of virus reproduction

is necessary to obtain the required cell killing (incubation at

37�C in a 5% carbon dioxide atmosphere for 6 days).

Uninfected cells with the compound served as a toxicity

control, whereas the infected and uninfected cells without

the compound served as basic controls. After incubation, the

tetrazolium salt XTT was added to all wells, and cultures

were incubated to allow formazan color development by

viable cells. Formazan production was measured spectro-

photometrically and possible protective activity was con-

firmed by microscopic detection of viable cells. The effect of

each compound on cell growth of HIV-infected and unin-

fected cells was compared to that of untreated uninfected

cells. All tests were compared with AZT as positive control

carried out at the same time under identical conditions.

Table 3 Growth inhibitory action (GI50) of some selected in vitro tumor cell lines (lM)

Comp. no. NCS no. Panel Subpanel cell lines (cytotoxicity GI50 in lM)a

3 S-720606 Melanoma MALME-3M (25.2), SK-MEL-5 (45.9)

Lung cancer HOP-92 (31.8), NCI-H226 (54.0)

Breast cancer T-47D (32.9)

Renal cancer ACHN (44.3), A498 (51.4), CAKI-1 (51.7), UO-31 (50.6)

Leukemia CRF-CEM (67.8)

a Data obtained from NCI in vitro disease-oriented human cell screen

Table 2 Growth percentages of the 3-cell line panel in primary anticancer screen of some selected compounds

Comp. no. NSC no. Sample concentration Growth percentages

Lung NCI-H460 Breast MCF7 CNS SF-268

3 S-720606 1.00E-04 Molar 62 14 47

4 S-720605 1.00E-04 Molar 99 93 98

11a S-720609 1.00E-04 Molar 98 84 90

11b S-720610 1.00E-04 Molar 95 82 90

Table 4 Median growth inhibitory concentrations (GI50, lM),

Median total growth inhibitory concentrations (TGI, lM) of in vitro

subpanel tumor cell lines, and selectivity ratios of compound 3 toward

the nine tumor cell lines

Subpanel tumor

cell linesa
GI50 (lM) TGI (lM) Selectivity

ratios

I 94.6 100 0.90

II 87.3 100 0.97

III 100 100 0.85

IV 98.0 100 0.87

V 81.6 96.9 1.04

VI 97.9 100 0.87

VII 72.2 100 1.18

VIII 86.3 100 0.99

IX 91.6 100 0.93

Full panel MG-MID 85.1b 100c (100)d –

a I, Leukemia; II,non-small cell lung cancer; III, colon cancer; IV,

CNS cancer; V, melanoma; VI, ovarian cancer; VII, renal cancer;

VIII, prostate cancer; IX, breast cancer
b GI50 (lM) full panel mean-graph mid-point (MG-MID) = The

average sensitivity of all cell lines toward the test agent
c TGI (lM) full panel mean-graph mid-point (MG-MID) = The

average sensitivity of all cell lines toward the test agent
d LC50 (lM) full panel mean-graph mid-point (MG-MID)
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Results

Six compounds (5; 6a, b; 7; 13a, c) have been selected by

NCI and evaluated for their effects on HIV-1 induced cy-

topathogenicity in a human T4 lymphocyte cell line (CEM)

(Weislow et al., 1989). Activity is expressed as % of

protection which represents the percentage of surviving

HIV-infected cells treated with the test compound (at the

indicated concentration) relative to the same uninfected

untreated controls. The effective concentration 50%

(EC50), represents the concentration of the test agent

resulting in 50% reduction of viral cytopathic effect. The

50% inhibitory concentration (IC50), represent the toxic

concentration of drug resulting in 50% growth inhibition of

normal uninfected cells. In this screen, the compounds are

considered to be active if they display complete protection

at a concentration \0.1 lM. Compounds which show

incomplete protection or show protection at a concentration

above 0.1 lM are considered moderately active. As

revealed from (Table 5), compounds 7 and 13c showed

moderate reduction of viral cytopathic effect by 30.52 and

35.54% at 2.00 9 10-4 M, respectively. The other tested

compounds were inactive.

Antimicrobial evaluation

Materials and methods

Inhibition zones measurement

The tested compounds were evaluated by the agar cup

diffusion technique (Conte and Barriere, 1988), using a

2 mg/ml solution in DMF. The test organisms were

Staphylococcus aureus (NCTC 4163) and Bacillus subtilis

(ATTC 6633) as Gram-positive bacteria, Pseudomonas

aeruginosa (ATTC 9027), Escherichia coli (5933), and

Salmonella typhi (ATCC 13311) as Gram-negative bacteria

and Proteus vulgaris (ATTC 49132) as spore forming

Gram-negative bacteria. They were also evaluated for their

in vitro antifungal activity against four types of fungi,

Candida albicans (NCTC 2708) and Saccharomyces cer-

visiae (ATTC 9763) as examples of yeast; Asperigillus

niger (ATTC 16404) and Asperigillus terreus (local iso-

late) as examples of true fungi. Each 100 ml of sterile

molten agar (at 45�C) received 1 ml of 6 h broth and then

the seeded agar was poured into sterile Petri dishes. Cups

(8 mm in diameter) were cut in the agar. Each cup received

0.1 ml of the 2 mg/ml solution of the tested compounds.

The plates were then incubated at 37�C for 24 h for bac-

teria or 48 h for fungi. A control using DMF without the

test compound was included for each organism. Ampicillin

in DMF was used as standard antibacterial, while clot-

rimazol was used as antifungal reference.

Minimal inhibitory concentration (MIC) measurement

The minimal inhibitory concentration (MIC) of the most

active compounds was measured using the two-fold serial

broth dilution method (Scott, 1989). The test organisms

were grown in their suitable broth for 24 h for bacteria and

48 h for fungi at 37�C. Twofold serial dilutions of the test

compounds solution were prepared using the suitable broth

to obtain concentrations 200, 100, 50, and 25 lg/ml. The

tubes were then inoculated with the test organisms; each

5 ml received 0.1 ml of the above inoculum and were

incubated at 37�C for 48 h. Then the tubes were observed

for the presence or absence of microbial growth.

Results

Compounds (3; 4; 5; 6a, b; 7; 11a–d; 12; 13a–c) were

preliminary evaluated for their in vitro antibacterial activ-

ity. The results recorded in (Table 6) revealed that the

tested compounds exhibited promising activity toward the

Gram-negative P. aeruginosa and P. vulgaris. Compound

12 was the most active against P. aeruginosa, it was

equipotent to ampicillin (MIC \ 100 lg/ml), while com-

pounds 11b, 11c, 11d, and 13a showed half the activity. On

the other hand, compound 11d was the most active against

P. vulgaris, it was as active as ampicillin (MIC \ 50 lg/

ml). Compounds 4, 5, 6a, 11b, and 11c displayed half the

Table 5 Maximum % Protection, the corresponding dose (molar) and IC50 (molar) of the selected compounds

Comp. no. NCS no. Maximum % protection Dose (M) IC50 (M)

5 722234-U/1 1.43 2.00 9 10-5 [2.00 9 10-4

6a 722233-T/1 10.90 2.00 9 10-4 [2.00 9 10-4

6b 722232-S/1 3.73 2.00 9 10-5 [2.00 9 10-4

7 722235-V/1 30.52 2.00 9 10-4 [2.00 9 10-4

13a 722239-Z/1 4.86 2.00 9 10-4 [2.00 9 10-4

13c 722240-A/1 35.54 2.00 9 10-4 [2.00 9 10-4
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potency of ampicillin, while compound 6b showed

weak activity (one fourth the activity). Furthermore,

determination of the antibacterial activity against the

Gram-positive S. aureus indicated that compounds 12 and

13c exhibited significant activity but lower than that of

ampicillin (MIC \ 50 and \25 lg/ml, respectively).

Considering the antifungal activity, the tested com-

pounds were devoid of activity except 6b and 11c, which

showed weak activity against A. niger (Table 7).

Discussion

From the previously mentioned results, it could be deduced

that compound 3 exhibited considerable activity against

melanoma MALME-3M, non-small lung cancer HOP-92

and breast cancer T-47D. Moreover, significant antibacte-

rial activity was associated with the 3-aryl-1,2,4-triazol-

o[4,3-e]purine series 11a–d. Maximum activity was

achieved when the substituent at position 3 was

4-methoxyphenyl group 11d. Replacement of 3-aryl moi-

ety in (compounds 11a–d) by 3-alkylthio or aralkylthio

(compounds 13a–c) decreased the activity toward the

Gram-negative P. aeruginosa and P. vulgaris and increased

the activity toward the Gram-positive S. aureus. Maximum

activity was obtained when the substituent at position 3

was benzylthio 13c. Substituted 1,2,4-triazino[4,3-e]pur-

ines 4, 5, and 6a showed promising activity against the

spore forming Gram-negative bacteria P. vulgaris.

It is worthy to mention that compounds 11b, 12, and 13a

exhibited broad spectrum of activity against Gram-positive

and Gram-negative bacteria.

Acknowledgments The authors with to thank Dr. Manal A. Sha-

laby, Genetic Engineering and Biotechnology Research Institute

(GEBRI), Mubark City for Scientific Research and Technology

Table 7 The inhibition zones (IZ) in mm diameter and minimal

inhibitory concentration (MIC) in lg/ml of the tested compounds

against fungi

Comp. no. C. albicans S. cerevisiae A. niger A. terreus

IZ MIC IZ MIC IZ MIC IZ MIC

3 12 – 14 – 12 – – –

4 17 – 15 – – – – –

5 13 – 13 – – – – –

6a 15 – 14 – – – – –

6b 13 – 14 – 20 \200 – –

7 11 – 12 – – – – –

11a 12 – 15 – 16 – – –

11b 12 – 14 – – – – –

11c 14 – 13 – 22 \100 – –

11d 18 – 16 – – – 16 –

12 11 – 12 – – – – –

13a 11 – 12 – – – – –

13b 11 – 13 – – – – –

13c 11 – 14 – – – – –

Clotrimazole – 5 – 5 – 10 – 10

Table 6 The inhibition zones (IZ) in mm diameter and minimal inhibitory concentration (MIC) in lg/ml of the tested compounds against

different bacterial strains

Comp. no. S. aureus B. subtilis S. typhi P. aeruginosa E. coli P. vulgaris

IZ MIC IZ MIC IZ MIC IZ MIC IZ MIC IZ MIC

3 – – 14 – 12 – 18 – 14 – 19 –

4 16 – 14 – – – 20 – 15 – 22 \100

5 – – 14 – – – – – 14 – 23 \100

6a 14 – – – – – 16 – 12 – 22 \100

6b 14 – 14 – – – 16 – 13 – 21 \200

7 – – 10 – – – – – – – 14 –

11a – – 15 – 11 – 17 – 14 – 19 –

11b 22 \100 13 – – – 21 \200 12 – 25 \100

11c 14 – 11 – – – 20 \200 12 – 22 \100

11d 14 – 20 \200 17 – 21 \200 20 \200 28 \50

12 24 \50 11 – – – 21 \100 12 – 19 –

13a 20 \200 – – – – 20 \200 12 – 19 –

13b 20 \200 13 – – – 19 – 12 – 19 –

13c 26 \25 – – – – 19 – 12 – 18 –

Ampicillin – 5 – 5 – 100 – 100 – 10 – 50
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