This article was downloaded by: [Universite Laval] On: 14 March 2013, At: 22:00 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/gpss20</u>

Silica Sulfuric Acid (SSA) as a Highly Efficient Heterogeneous Catalyst for Persilylation of Purine and Pyrimidine Nucleobases and Other N-Heterocycles Using Hmds

Mohammad Navid Soltani Rad^a, Ali Khalafi-Nezhad^b, Masoumeh Divar^b & Somayeh Behrouz^b

^a Department of Chemistry, Faculty of Basic Sciences, Shiraz University of Technology, Shiraz, Iran

^b Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran

Version of record first published: 25 Aug 2010.

To cite this article: Mohammad Navid Soltani Rad , Ali Khalafi-Nezhad , Masoumeh Divar & Somayeh Behrouz (2010): Silica Sulfuric Acid (SSA) as a Highly Efficient Heterogeneous Catalyst for Persilylation of Purine and Pyrimidine Nucleobases and Other N-Heterocycles Using Hmds, Phosphorus, Sulfur, and Silicon and the Related Elements, 185:9, 1943-1954

To link to this article: http://dx.doi.org/10.1080/10426500903383952

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phosphorus, Sulfur, and Silicon, 185:1943–1954, 2010 Copyright © Taylor & Francis Group, LLC ISSN: 1042-6507 print / 1563-5325 online DOI: 10.1080/10426500903383952

SILICA SULFURIC ACID (SSA) AS A HIGHLY EFFICIENT HETEROGENEOUS CATALYST FOR PERSILYLATION OF PURINE AND PYRIMIDINE NUCLEOBASES AND OTHER *N*-HETEROCYCLES USING HMDS

Mohammad Navid Soltani Rad,¹ Ali Khalafi-Nezhad,² Masoumeh Divar,² and Somayeh Behrouz²

¹Department of Chemistry, Faculty of Basic Sciences, Shiraz University of Technology, Shiraz, Iran ²Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran

Purine and pyrimidine nucleobases and other N-heterocycles have been silylated with HMDS in excellent yields in the presence of a catalytic amount of silica sulfuric acid (SSA) as a heterogeneous catalyst. SSA utilizes a shorter reaction time and higher yields of silylated nucleobases. SSA is reusable for several times without a decrease in reactivity or yield of silylated adducts.

Keywords HMDS; nucleobase; persilylation; silica sulfuric acid (SSA)

INTRODUCTION

Trimethylsilylation of organic compounds having labile hydrogen atoms is finding increasing use in analytical and in preparative organic chemistry.¹ It is a frequently used protection method in multistep synthesis due to its enhanced stability under a variety of conditions, solubility in nonpolar solvents, thermal stability, and the ease of removal of the protecting group, which is simply carried out by acid- or base-induced hydrolysis, giving only unreactive siloxane as a byproduct. Several silylating agents such as chlorotrimethyl-silane,² hexamethyldisiloxane,³ *N*-(trimethylsilyl) imidazoles,⁴ and ethyl(trimethylsilyl) acetate⁵ have been used for the introduction of a trimethylsilyl group onto hydrogen labile hydroxyl and thio substrates. Hexamethyldisilazane (HMDS), as a stable, cheap, and commercially available reagent,^{6,7} has been frequently used for this purpose. HMDS handling is easy, and its workup from the reaction mixture is rarely time consuming; however, the low

Received 12 July 2009; accepted 2 October 2009.

We wish to thank the Shiraz University of Technology and Shiraz University Research Councils for partial support of this work.

Address correspondence to Mohammad Navid Soltani Rad, Department of Chemistry, Faculty of Basic Sciences, Shiraz University of Technology, Modaress Blvd., Shiraz 71555-313, Iran. E-mail: soltani@sutech.ac.ir and Ali Khalafi-Nezhad, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran. E-mail: khalafi@chem.susc.ac.ir

silylating power of HMDS is the main drawback for its application.⁸ Therefore, a variety of catalysts have been reported for the activation of HMDS.^{9–16}

Acyclic nucleosides constitute a special class of nucleoside analogues, which have attracted great interest due to their broad spectrum of antiviral and anticancer activities.¹⁷ The most common route into nucleoside synthesis involves the *N*-alkylation of nucleobases with various carbon electrophiles.^{18–23} The *N*-alkylation of purine and pyrimidine nucleobases is often achieved using two general methods: so-called direct^{18–23} and persilylated²⁴ methods.

The former method has several drawbacks, including low solubility of nucleobases, especially that of purine nucleobases in organic solvents, lack of regioselectivity in the case of ambident nucleobase, low yields of products, harsh reaction condition, tedious workup, and cumbersome separation process. The latter method possesses the apparent advantages of remarkable increment in solubility of nucleobase in organic solvents, enhancement in regioselectivity of the N-alkylation site, higher yields of products, milder reaction conditions, and easier workup procedure. Many silvlating reagents are used for silvlation of hydroxyl compounds such as phenols and alcohols, but HMDS is the most common silylating agent used for nucleobases. Due to the weak silvlating power of HMDS and less nucleophilic behavior of nucleobases, the reaction of HMDS with nucleobases requires efficient Lewis or Brønsted acid catalysts. Up to now, ammonium sulfate and/or TMSCl²⁴ combined with HMDS have been widely employed for the silvlation of nucleobases. However, the employment of these acid catalysts is usually accompanied with several limitations and drawbacks. For example, $(NH_4)_2SO_4$ and TMSCl are quite sensitive to moisture and could decompose during prolonged reflux conditions. Additionally, they are nonrecoverable and nonreusable. Furthermore, these catalysts do not efficiently convert the nucleobases to their corresponding silvl ethers, especially in the case of purine derivatives, even if the reaction time is prolonged. Hence finding an efficient heterogeneous Lewis or Brønsted acids catalyst to establish a facile and effective method for silvlation of nucleobases is an interesting challenge.

Silica sulfuric acid (SSA) is a heterogeneous acid that currently is largely used for many organic transformations as a solid acid catalyst under various conditions.²⁵ The wide application of SSA is due to its strong acidity, chemical and thermal stabilities, low cost, reusability, ease of handling, and environmentally benign nature with fewer disposals problems. Encouraged by suitable performance and usefulness of SSA in organic synthesis, and also in continuation of our interest in design and synthesis of novel carboacyclic nucleosides,^{18–20,26,27} in this article we report SSA as a highly efficient solid acid catalyst for presilylation of nucleobases as well as the other *N*-heterocycles using HMDS (Scheme 1).

(1) [B]-H
$$\xrightarrow{\text{HMDS, SSA (cat.)}}_{\text{reflux, 10min-24h}}$$
 [B]-SiMe₃

(2) [B]—SiMe₃
$$\xrightarrow{\text{CE, TBAF}}$$
 [B]—CE

B : purin, pyrimidine nucleobases &, *N*-heterocycles CE : carbon electrophile

Scheme 1

In the second part of this work, to demonstrate the efficiency of SSA and HMDS for silylation of nucleobases, the presilylated nucleobases attained by this method were condensed with various sources of carbon electrophiles to produce various carboacyclic nucleosides (Scheme 1).

RESULTS AND DISCUSSION

Initially, silylation of uracil was carried out in the presence of a catalytic amount of SSA (0.05 g, 0.13 mmol) as an active heterogeneous acid catalyst in refluxing HMDS (Scheme 2). Uracil was successfully converted to its corresponding trimethylsilyl ether in quantitative yield in a short reaction time.

The generality and versatility of this method was demonstrated by extension to various purine and pyrimidine nucleobases and other *N*-heterocycles (Table I). As the results in Table I indicate, trimethylsilylation of nucleobases was easily carried out in the presence of SSA in refluxing HMDS in almost quantitative yields. The depicted data in Table I indicate this method is highly efficient and suitable for pyrimidine (Table I, entries 1–4) and purine nucleobases and/or purine-like scaffolds (Table I, entries 5–9). Interestingly, guanine as the most unreactive and insoluble purine nucleobase was efficiently converted to its corresponding trimethylsilyl ether (Table I, entry 6) after refluxing for 24 h.

Scheme 3

Substrate	Product	Time (h)	Yield ^a (%)	
0 	OSiMe ₃	0.5	100	
NH NO	N NOSiMe ₃			
0	OSiMe ₃	0.5	100	
н - 0	QSiMe ₃	2	100	
NH	N N SSiMe			
H C	QSiMe ₃	0.5	100	
O ₂ N NH				
H NH2	NHSiMe ₃	3	100	
N N	N N			
H M	SiMe ₃	24	90	
N NH N NH2				
0	Me₃Si Ç ^{∕ SiMe} ₃	1.5	100	
N NH N N H				
H O L	Me ₃ Si O	1	100	
		2	100	
N N	N N	0.5	100	
N H	SiMe ₃			
O ₂ N N	O ₂ N N	2	100	
-N H	[∼] N SiMe₃	0.16	100	
∏ N N		0.16	100	
H N /=	SiMe ₃	0.5	100	
	SiMe ₃			
	$ \begin{array}{c} \circ \underset{z \neq 1}{\overset{H}{\longrightarrow}} \circ \underset{z \to 1}{\overset{H}{\longrightarrow}$	$ \begin{array}{cccc} & & & & & & & \\ & & & & & & \\ & & & & $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Table I Silylation of pyrimidine and purine nucleobases and other N-heterocycles using SSA/HMDS

Entry	Substrate	Product	Time (h)	Yield ^a (%)
14		Me ₃ SiO N OSiMe ₃	0.33	100
15	O HN S	Me ₃ SiO N SSiMe ₃	2	100

Table I Silylation of pyrimidine and purine nucleobases and other N-heterocycles using SSA/HMDS (Continued)

^aGC yield.

Table II Comparison of some of the results obtained by silylation of nucleobases and other N-heterocycles withHMDS in the presence of SSA, TMSCl, and $(NH_4)_2SO_4$

		Time (h)/Yield ^{a} (%)			
Entry	Substrate	SSA	TMSCl	(NH ₄) ₂ SO ₄	
1	O NH	0.5/100	3.5/100	2/100	
2		0.5/100	4/100	2/100	
3		3/100	24/80	12/95	
4		24/90	48/50	80/63	
5		0.5/100	0.66/100	1/100	
6	H N N N H	0.16/100	0.5/100	0.75/100	

^aGC yield.

Table III The reusability of SSA for presilvlation of uracil and adenine

			Ti	ime (h)/Yield ^a (%)	
Entry	Substrate	1	2	3	4	5
1		0.5/100	0.67/100	1/95	1.67/91	1.25/88
2		3/100	3.33/100	3.75/94	4.17/86	4.5/82

^aGC yield.

M. N. S. RAD ET AL.

Entry ^{Ref.}	Substrate	Electrophile	Product	Mp (°C)	Yield ^a (%)
1	OSiMe ₃	Br		167	85
2	OSiMe ₃	CI ∕ ^{—C} ≡N		180	85
319	OSiMe ₃	O OPh		156	87
4 ¹⁹	OSiMe ₃	OPh		Oil	80
5	OSiMe ₃			80	85
6	N SSiMe ₃ NHSiMe ₃ N N N N N SiMe ₃	O OPh		137	80
7 ²⁷	Me ₃ Si	Br		104	75
8	Me ₃ Si O N N N N	Br		188	90
9	Me ₃ Si O N N N	OPh		129	87
10		° Northogonal Antipathana (Northogonal Antipat		58	90
11	N SiMe ₃	Br		oil	80

Table IV N-Alkylated nucleobases and other N-heterocycles

SSA AS CATALYST FOR PERSILVLATION OF NUCLEOBASES

Entry ^{Ref.}	Substrate	Electrophile	Product	Mp (°C)	Yield ^a (%)
12	N N	CI∕──C≡N		58	90
13		° • •		114	90
14	Me ₃ SiO N N OSiMe ₃	OPh		130	90

Table IV N-Alkylated nucleobases and other N-heterocycles (Continued)

^aIsolated yield.

Additionally, the optimized conditions were also applied to other *N*-heterocycles, including benzimidazole, 2-methyl-4-nitro-1*H*-imidazole, imidazole, 2-phenyl imidazole, hydantoin, and thiohydantoin (Table I, entries 10–15).

To demonstrate the efficiency of the present method, we compared some of our results using SSA with those attained by TMSCl and $(NH_4)_2SO_4$ (Table II). As the data in Table II indicate, higher yields of silylated nucleobases and/or shorter reaction times were obtained when SSA was used.

The reusability of the catalyst was tested in presilylation of uracil and adenine (Table III). As shown in Table III, the catalyst was recovered after each run, washed three times with acetone, dried in a vacuum oven at 100°C for 30 min prior to use, and tested for its activity in the subsequent run and fresh catalyst was not added. The catalyst was tested for five runs. It was seen that the catalyst displayed favorable reusability.

The mechanism of the reaction is not clear; however on the basis of our observations related to the fast evolution of NH_3 gas from the reaction mixture and the reusability of the catalyst without any considerable loss of its catalytic activity, we have proposed a mechanism that is shown in Scheme 3.⁹

On the basis of this mechanism, acid–base interaction between SSA and HMDS polarizes the Si-N bond in HMDS to produce the reactive silylating agent (I). A reaction of purine and pyrimidine nucleobases as well as other *N*-heterocycles with (I) results in the formation of ammonium silylating species (II) with concomitant release of the corresponding silyl ether. Irreversible cleavage of (II) with a nucleobase or other *N*-heterocycles leads to the fast evolution of NH₃ and also formation of the unstable protonated silyl ether (III). Release of H⁺ as catalyst from intermediate (III) re-enters catalytic cycle (Scheme 3).

To demonstrate the effectiveness of SSA in the persilylation reaction of nucleobases, the silyl ethers of nucleobases as well as other *N*-heterocycles prepared by present method were condensed with different sources of carbon electrophiles including alkyl halides, epoxides, and Michael acceptors by using tetra-*n*-butylammonium fluoride (TBAF) as a desilylating agent (Scheme 1). The structures of the synthesized compounds are shown in Table IV. As the data in Table IV indicate, high yields of corresponding acyclic nucleosides were attained. The good yield of acyclic nucleosides is evidence for efficient persilylation of nucleobases using SSA.

CONCLUSION

In summary, a convenient method for trimethylsilylation of various nucleobases and other *N*-heterocycles using SSA and HMDS has been established. SSA has proven to be an efficient heterogeneous acid catalyst for presilylation of nucleobases and showed a favorable reusability after many runs. Higher yields of the silyl ethers, shorter reaction times, and easier workup procedure are the main advantages of the described method.

EXPERIMENTAL

All reagents were purchased from Merck and Fluka and were used without further purification. The progress of the reactions was followed with TLC using silica gel SILG/UV 254 plates. Silica gel 60, 0.063–0.200 mm (70–230 mesh ASTM) was used for column chromatography. IR spectra were run on a Shimadzu FTIR-8300 spectrophotometer. The ¹H NMR (250 MHz) and ¹³C NMR (62.5 MHz) spectra were run on a Brüker Avanced DPX-250 FT-NMR spectrometer, δ in ppm, *J* in Hz. GC analysis was run with Shimadzu GC-14A. Melting points (mp) were recorded on a Büchi 510 apparatus in open capillary tubes and are uncorrected.

Preparation of Silica Sulfuric Acid

SSA was prepared by the method described in the literature.²⁸

Typical Procedure for SSA-Catalyzed Silylation of Nucleobases and Other N-Heterocycles in the Presence of HMDS

In a 250-mL round-bottom flask, a mixture of the appropriate nucleobase or other *N*-heterocycle (10 mmol), SSA (0.05 g), and HMDS (100 mL) was heated at reflux until a clear solution was obtained (Table I). Then the catalyst was filtered off, and the filtrate was evaporated under vacuum to remove the solvent (HMDS). The resulting crude was pure enough as indicated by GC analysis to be used for any synthetic application and does not require further purification or characterization.

Typical Procedure for N-Alkylation of Silylated Nucleobases and Other N-Heterocycles

To a double-necked 250-mL round-bottom flask equipped with a condenser containing an appropriate amount of persilylated nucleobase (0.01 mol) and electrophile (15 mmol) diluted in freshly distilled, anhydrous THF (100 mL), anhydrous TBAF (2.62 g, 10 mmol) in THF solution (20 mL) was gradually added over 20 min. Then, the mixture was heated at reflux (TLC control). The solvent was evaporated at reduced pressure, and the residue was dissolved in CHCl₃ (200 mL) and washed with H₂O (3 × 100 mL). The organic layer was dried (10 g of Na₂SO₄) and concentrated to afford the crude product.

Spectral Data for1-Benzylpyrimidine-2,4(1*H*,3*H*)-dione (Table III, Entry 1)

Purification by column chromatography on silica gel using EtOAc/*n*-hexane (1:1) afforded white crystals (1.7 g, 85%). Mp = 167°C. R_f (EtOAc/*n*-hexane 1:1) (0.66). IR

(KBr) cm⁻¹: 3350, 3089, 2855, 1730, 1705. $\delta_{\rm H}$ (250 MHz, DMSO-d₆) 11.53 (1H, s, NH exchangeable with D₂O), 7.71 (1H, d, J = 7.8 Hz, C(6)–H), 7.35–7.26 (5H, m, Ph), 5.58 (1H, d, J = 7.8 Hz, C(5)–H), 4.86 (2H, s, CH₂). $\delta_{\rm C}$ (62.5 MHz, DMSO-d₆) 163.68, 150.99, 145.57, 136.79, 128.58, 127.59, 127.35, 101.31, 50.23. Anal. Calcd for C₁₁H₁₀N₂O₂: C, 65.34; H, 4.98; N, 13.85%. Found: C, 65.30; H, 4.91; N, 13.94%.

Spectral Data for 2-(2,4-Dioxo-3,4-dihydropyrimidin-1(2*H*)yl)acetonitrile (Table IV, Entry 2)

Purification by column chromatography on silica gel using EtOAc/*n*-hexane (1:1) afforded white crystals (1.2 g, 85%). Mp = 180°C. R_f (EtOAc/*n*-hexane 1:1) (0.68). IR (KBr) cm⁻¹: 3300, 3080, 2842, 2195, 1725, 1700. $\delta_{\rm H}$ (250 MHz, DMSO-d₆) 11.48 (1H, s, NH exchangeable with D₂O), 7.51 (1H, d, J = 7.7 Hz, C(6)–H), 5.66 (1H, d, J = 7.7 Hz, C(5)–H), 4.74 (2H, s, CH₂). $\delta_{\rm C}$ (62.5 MHz, DMSO-d₆) 161.93, 150.49, 141.79, 115.93, 99.31, 27.48. Anal. Calcd for C₆H₅N₃O₂: C, 47.69; H, 3.33; N, 27.81%. Found: C, 47.72; H, 3.38; N, 27.75%.

Spectral Data for Butyl 3-(6-Oxo-1,6-dihydropyrimidin-2ylthio)propanoate (Table IV, Entry 5)

Purification by column chromatography on silica gel using EtOAc/*n*-hexane (1:2) afforded white crystals (2.1 g, 85%). Mp = 80°C. R_f (EtOAc/*n*-hexane 1:2) (0.58). IR (KBr) cm⁻¹: 3200, 3050, 2895, 1750, 1725, 1300. $\delta_{\rm H}$ (250 MHz, DMSO-d₆) 12.54 (1H, s, NH exchangeable with D₂O), 7.84 (1H, d, J = 6.5 Hz, C(6)–H), 6.08 (1H, d, J = 6.5 Hz, C(5)–H), 4.00 (2H, t, J = 6.4 Hz, OCH₂), 3.26 (2H, t, J = 6.6 Hz, SCH₂), 2.71 (2H, t, J = 6.6 Hz, O=CCH₂), 1.55–1.47 (2H, m, CH₂), 1.34–1.25 (2H, m, CH₂), 0.83 (3H, t, J = 7.2 Hz, CH₃). $\delta_{\rm C}$ (62.5 MHz, DMSO-d₆) 175.96, 171.21, 153.70, 146.44, 109.61, 63.82, 33.58, 30.07, 24.96, 18.52, 13.43. Anal. Calcd for C₁₁H₁₆N₂O₃S: C, 51.54; H, 6.29; N, 10.93; S, 12.51%. Found: C, 51.58; H, 6.33; N, 10.90; S, 12.55%.

Spectral Data for 1-(6-Amino-9*H*-purin-9-yl)-3-phenoxypropan-2-ol (Table IV, Entry 6)

Purification by column chromatography on silica gel using EtOAc/*n*-hexane (1:2) afforded white crystals (2.2 g, 80%). Mp = 137° C. R_f (EtOAc/*n*-hexane 1:2) (0.53). IR (KBr) cm⁻¹: 3500, 3350, 3090, 1350, 1300, 1050. $\delta_{\rm H}$ (250 MHz, DMSO-d₆) 8.42 (1H, s, C(8)–H), 8.30 (1H, s, C(2)–H), 7.51–7.45 (5H, m, Ph), 7.14 (2H, br s, NH, exchangeable with D₂O), 4.47 (1H, s, OH, exchangeable with D₂O), 4.44–4.38 (1H, m, CH), 4.30 (2H, dd, J = 3.7, 10.2 Hz), 4.14 (2H, dd, J = 6.2,10.2 Hz). $\delta_{\rm C}$ (62.5 MHz, DMSO-d₆) 158.56, 156.32, 152.76, 150.05, 141.92, 129.85, 121.11, 119.09, 114.64, 70.07, 69.48, 46.72. Anal. Calcd for C₁₄H₁₅N₅O₂: C, 58.94; H, 5.30; N, 24.55%. Found: C, 58.97; H, 5.24; N, 24.59%.

Spectral Data for 1,3-Dimethyl-7-(2-oxo-2-phenyl-ethyl)-3,7-dihydropurine-2,6-dione (Table IV, Entry 8)

Purification by column chromatography on silica gel using EtOAc/*n*-hexane (1:2) afforded white crystals (2.6 g, 90%). Mp = 188°C. R_f (EtOAc/*n*-hexane 1:2) (0.60). IR

(KBr) cm⁻¹: 3085, 2910, 1725, 1715, 1705. $\delta_{\rm H}$ (250 MHz, CDCl₃) 7.98–7.95 (2H, m, Ph), 7.62 (1H, s, C(8)–H), 7.52–7.46 (3H, m, Ph), 5.77 (2H, s, NCH₂), 3.58 (3H, s, N-Me), 3.30 (3H, s, N-Me). $\delta_{\rm C}$ (62.5 MHz, CDCl₃) 191.12, 155.34, 151.54, 148.43, 142.37, 134.39, 133.85, 129.00, 128.04, 107.02, 51.81, 29.72, 27.74. Anal. Calcd for C₁₅H₁₄N₄O₃: C, 60.40; H, 4.73; N, 18.78%. Found: C, 60.49; H, 4.70; N, 18.72%.

Spectral Data for 7-(2-Hydroxy-3-phenoxypropyl)-1,3-dimethyl-1*H*purine-2,6(3H,7H)-dione (Table IV, entry 9)

Purification by column chromatography on silica gel using EtOAc/*n*-hexane (1:2) afforded white crystals (2.8 g, 87%). Mp = 129°C. R_f (EtOAc/*n*-hexane 1:2) (0.69). IR (KBr) cm⁻¹: 3500, 3100, 2943, 1725, 1710, 1303, 1055. δ_H (250 MHz, CDCl₃) 7.66 (1H, s C(8)–H), 7.32–7.25 (2H, m, Ph), 7.01–6.87 (3H, m, Ph), 4.65 (2H, dd, J = 2.5, 13.4 Hz, OCH₂), 4.51–4.48 (1H, m, CH), 4.18 (1H, s, OH exchangeable with D₂O), 4.07–3.95 (2H, dd, J = 3.5, 13.4 Hz, NCH₂), 3.56 (3H, s, N-Me), 3.37 (3H, s, N-Me). δ_C (62.5 MHz, CDCl₃) 158.04, 155.59, 151.29, 148.75, 142.66, 129.49, 121.36, 114.35, 106.97, 68.82, 68.68, 49.65, 29.76, 27.96. Anal. Calcd for C₁₆H₁₈N₄O₄: C, 58.17; H, 5.49; N, 16.96%. Found: C, 58.24; H, 5.45; N, 16.98%.

Spectral Data for Butyl 3-(1,3-Dimethyl-2,6-dioxo-1,2,3,6tetrahydropurin-7-yl)propanoate (Table IV, Entry 10)

Purification by column chromatography on silica gel using EtOAc/*n*-hexane (1:2) afforded white crystals (2.7 g, 90%). mp = 58°C. R_f (EtOAc/*n*-hexane 1:2) (0.59). IR (KBr) cm⁻¹: 3085, 2895, 1730, 1718, 1704, 1350, 1310. δ_H (250 MHz, CDCl₃) 7.59 (1H, s, C(8)–H), 4.40 (2H, t, J = 6.5 Hz, OCH₂), 3.89 (2H, t, J = 6.1 Hz, NCH₂), 3.43 (3H, s, N-Me), 3.25 (3H, s, N-Me), 2.80 (2H, t, J = 6.1 Hz, O=CCH₂), 1.49–1.37 (2H, m, CH₂), 1.25–1.13 (2H, m, CH₂), 0.73 (3H, t, J = 7.30 Hz, CH₃). δ_C (62.5 MHz, CDCl₃) 170.70, 154.95, 151.47, 148.92, 142.08, 106.40, 64.78, 42.57, 34.78, 30.36, 29.62, 27.81, 18.90, 13.50. Anal. Calcd for C₁₄H₂₀N₄O₄: C, 54.54; H, 6.54; N, 18.17%. Found: C, 54.62; H, 6.51; N, 18.23%.

Spectral Data for 1-Allyl-1H-benzo[d]imidazole (Table IV, Entry 11)

Purification by column chromatography on silica gel using EtOAc/*n*-hexane (1:2) afforded a colorless oil (1.2 g, 80%). R_f (EtOAc/*n*-hexane 1:2) (0.62). IR (film) cm⁻¹: 3090, 2943, 1350. δ_H (250 MHz, CDCl₃) 8.62 (1H, s, C(2)–H), 7.46–7.41 (2H, m, aryl), 6.88–6.82 (2H, m, aryl), 5.43–5.39 (1H, m, =CH), 4.79 (2H, dd, J = 8.4, 16.5 Hz, =CH₂), 4.11 (2H, d, J = 5.7 Hz, NCH₂). δ_C (62.5 MHz, CDCl₃) 143.55, 142.84, 133.60, 131.79, 122.66, 121.87, 119.86, 118.01, 109.93, 46.88. Anal. Calcd for C₁₀H₁₀N₂: C, 75.92; H, 6.37; N, 17.71%. Found: C, 75.95; H, 6.42; N, 17.78%.

Spectral Data for 2-(1*H*-Benzo[d]imidazol-1-yl)acetonitrile (Table IV, Entry 12)

Purification by column chromatography on silica gel using EtOAc/*n*-hexane (1:2) afforded white crystals (2.7 g, 90%). Mp = 58°C. R_f (EtOAc/*n*-hexane 1:2) (0.59). IR

(KBr) cm⁻¹: 3090, 2880, 2200, 1350. $\delta_{\rm H}$ (250 MHz, DMSO-d₆) 8.37 (1H, s, C(2)–H), 7.78–7.61 (2H, m, aryl), 7.39–7.18 (2H, m, aryl), 5.69 (2H, s, NCH₂). $\delta_{\rm C}$ (62.5 MHz, DMSO-d₆) 143.99, 129.12, 122.40, 122.06, 121.84, 119.47, 116.14, 111.17, 46.77. Anal. Calcd for C₉H₇N₃: C, 68.78; H, 4.49; N, 26.74%. Found: C, 68.73; H, 4.56; N, 26.72%.

Spectral Data for Butyl 3-(1*H*-Benzo[*d*]imidazol-1-yl)propanoate (Table IV, Entry 13)

Purification by column chromatography on silica gel using EtOAc/*n*-hexane (1:2) afforded white crystals (2.1 g, 90%). Mp = 114° C. R_f (EtOAc/*n*-hexane 1:2) (0.55). IR (film) cm⁻¹: 3088, 2860, 1735, 1350, 1305. δ_H (250 MHz, CDCl₃) 7.84 (1H, s, C(2)–H), 7.71–7.67 (2H, m, aryl), 7.29–7.13 (2H, m, aryl), 4.30 (2H, t, J = 6.5 Hz, OCH₂), 3.90 (2H, t, J = 6.7 Hz, NCH₂), 2.69 (2H, t, J = 6.7 Hz, O=CCH₂), 1.47–1.35 (2H, m, CH₂), 1.23–1.09 (2H, m, CH₂), 0.73 (3H, t, J = 7.3 Hz, CH₃). δ_C (62.5 MHz, CDCl₃) 170.64, 143.73, 143.31, 133.32, 122.92, 122.11, 120.33, 109.32, 64.93, 40.26, 34.30, 30.36, 18.91, 13.55. Anal. Calcd for C₁₄H₁₈N₂O₂: C, 68.27; H, 7.37; N, 11.37%. Found: C, 68.29; H, 7.45; N, 11.32%.

Spectral Data for 3-(2-Hydroxy-3-phenoxypropyl)imidazolidine-2,4dione (Table IV, Entry 14)

Purification by column chromatography on silica gel using EtOAc/*n*-hexane (1:2) afforded white crystals (2.25 g, 90%). Mp = 130°C. R_f (EtOAc/*n*-hexane 1:2) (0.55). IR (KBr) cm⁻¹: 3350, 3200, 3050, 2885, 1715, 1705, 1315, 1057. $\delta_{\rm H}$ (250 MHz, CDCl₃) 7.21–7.10 (2H, m, Ph), 6.83 (1H, s, NH, exchangeable with D₂O), 6.80–6.72 (3H, m, Ph), 4.22–4.15 (5H, complex, OCH₂, NCH₂C=O), 3.79 (1H, s, OH, exchangeable with D₂O), 3.56 (2H, dd, J = 6.35, 14.47 Hz, NCH₂). $\delta_{\rm C}$ (62.5 MHz, CDCl₃) 171.56, 158.83, 158.48, 129.62, 121.22, 114.50, 70.43, 68.11, 46.48, 42.10. Anal. Calcd for C₁₂H₁₄N₂O₄: C, 57.59; H, 5.64; N, 11.19%. Found: C, 57.54; H, 5.71; N, 11.13%.

REFERENCES

- T. W. Greene and P. G. M. Wuts, *Protective Groups in Organic Synthesis*, 3rd ed. (Wiley, New York, 1999).
- 2. S. H. Langer, S. Connell, and I. Wender, J. Org. Chem., 23, 50 (1958).
- 3. H. W. Pinnick, B. S. Bal, and N. H. Lajis, Tetrahedron Lett., 4261 (1978).
- 4. E. J. Corey and A. Venkateswarlu, J. Am. Chem. Soc., 94, 6190 (1972).
- 5. E. Nakamura, K. Hashimoto, and I. Kuwajima, Bull. Chem. Soc. Jpn., 54, 805 (1981).
- 6. J. Cossy and P. Pale, Tetrahedron Lett., 6093 (1978).
- 7. S. Tarkelson and C. Anisworth, Synthesis, 722 (1976).
- 8. C. A. Bruynes and T. K. Jurrines, J. Org. Chem., 47, 3966 (1982).
- 9. H. R. Shaterian, F. Shahrekipoor, and M. Ghashang, J. Mol. Catal. A: Chem., 272, 142 (2007).
- A. Khazaei, M. A. Zolfigol, A. Rostami, and A. Ghorbani Choghamarani, *Catalysis Commun.*, 8, 543 (2007).
- 11. B. Karimi and B. Golshani, J. Org. Chem., 65, 7228 (2000).
- 12. D. Zareyee and B. Karimi, Tetrahedron Lett., 48, 1277 (2007).
- 13. N. Azizi, R. Yousefi, and M. R. Saidi, J. Organomet. Chem., 691, 817 (2006).
- 14. H. Firouzabadi, N. Iranpoor, S. Sobhani, and S. Gassamipour, Synthesis, 595 (2005).
- 15. V. H. Tillu, V. H. Jadhav, H. B. Borate, and R. D. Wakharkar, Arkivoc, XIV, 83 (2004).

M. N. S. RAD ET AL.

- 16. N. Azizi and M. R. Saidi, Organometallics, 23, 1457 (2004).
- E. De Clercq, In Advances in Antiviral Drug Design, N. G. Johnsson, ed. (JAI Press, Greenwich, CT, 1993).
- A. Khalafi-Nezhad, M. N. Soltani Rad, A. A. Moosavi-Movahedi, and M. Kosari, *Helv. Chim.* Acta, 90, 730 (2007).
- 19. A. Khalafi-Nezhad, M. N. Soltani Rad, and A. Khoshnood, Synthesis, 583 (2004).
- A. Khalafi-Nezhad, A. Zarea, M. N. Soltani Rad, B. Mokhtari, and A. Parhami, *Synthesis*, 419 (2005).
- J.-R. Choi, D.-G. Cho, K. Y. Roh, J.-T. Hwang, S. Ahn, H. S. Jang, W.-Y. Cho, K. W. Kim, Y.-G. Cho, J. Kim, and Y.-Z. Kim, J. Med. Chem., 47, 2864 (2004).
- 22. F. Amblard, S. P. Nolan, R. F. Schinazi, and L. A. Agrofoglio, Tetrahedron, 61, 537 (2005).
- 23. Y.-K. Han and L. A. Paquette, J. Org. Chem., 44, 3733 (1979).
- 24. C. K. Chu and S. J. Cutler, J. Heterocycl. Chem., 23, 289 (1986).
- P. Salehi, M. A. Zolfigol, F. Shirini, and M. Baghbanzadeh, *Current. Org. Chem.*, 10, 2171 (2006).
- M. N. Soltani Rad, A. Khalafi-Nezhad, S. Behrouz, M. A. Faghihi, A. Zare, and A. Parhami, *Tetrahedron*, 64, 1778 (2008).
- M. N. Soltani Rad, A. Khalafi-Nezhad, S. Behrouz, Z. Asrari, M. Behrouz, and Z. Amini, Synthesis, 3067 (2009).
- 28. M. A. Zolfigol, Tetrahedron, 57, 9509 (2001).