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Abstract: 7,8,9-Trisubstituted dihydropurine derivatives were pre-
pared from 5-amino-4-(N,N-disubstituted)aminopyrimidines and
aromatic aldehydes via a cascade of reactions. The key transforma-
tion for the reaction is a [1,6]-hydrogen shift due to a ‘tert-amino ef-
fect’.
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Natural products are generated via evolutionary selection
processes and represent the biologically relevant and pre-
validated fractions of chemical spaces. Dihydropurine de-
rivatives are among the natural products that exhibit
important pharmacological properties.1 7-Methylgua-
nosine is unique since it is involved in certain transfer and
messenger RNAs, and is the only naturally occurring nu-
cleoside known to exist as a zwitterion at physiological
pH.2 Methods have been reported for the synthesis of di-
hydropurine derivatives, for example, the reduction of pu-
rine by NaBH4

2,3 and the reaction of urea with an aldehyde
or a ketone under basic conditions.4

The formation of heterocycles by ring closure of ortho-
substituted N,N-dialkylanilines is known as the ‘tert-ami-
no effect’ cyclization or a-cyclization of tertiary amines.5

Viehe investigated the scope and limitations of the ‘tert-
amino effect’ for the synthesis of heterocycles.6 The ‘tert-
amino effect’ has been successfully applied to the synthe-
sis of several heterocyclic scaffolds.7

Recently, we discovered that a Pictet–Spengler-type cy-
clization of pyrimidinediamine 1 with an electron-rich ar-
omatic ring (Ar = 3,5-di-MeOC6H4 or N-Me-indol-2-yl)
yielded novel tricyclic pyrimidine-fused eight-membered
heterocycle 2 (path a in Scheme 1).8 However, certain
substrates (e.g., when Ar was 3-methoxyphenyl and the
aldehyde was aromatic) produced 7,8,9-trisubstituted di-
hydropurine derivative 3 as the major product (path b in
Scheme 1). We reasoned that the formation of 3 was due
to the competition of the ‘tert-amino effect’ and further
investigations of this new mode of reaction may lead to a
new method for the synthesis of various dihydropurine an-
alogues. Herein, the preliminary results of this investiga-
tion are reported.

Suitably substituted pyrimidines 1, 4, and 5 were readily
prepared following a two-step process from commercially
available 4,6-dichloro-5-nitropyrimidine and correspond-
ing amines (Table 1).9 Their reactions with aromatic alde-
hydes proceeded smoothly in the presence of tri-
fluoroacetic acid (TFA) to give 7,8,9-trisubstituted dihy-
dropurine derivatives 3, and 6–8 (Table 2).10 The structure
of compound 8a was unequivocally determined through
an X-ray diffraction analysis (Figure 1).11
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Table 1 Synthesis of Pyrimidinediamine Derivatives

Entry Product n R Yield (%)a

1 1a 1 3-MeO 52

2 1b 1 H 65

3 1c 1 4-Me 23

4 1d 1 4-F 38

5 4a 2 H 47

6 4b 2 3,5-di-MeO 90

7 5 3 H 20

a Overall yield in two steps.
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As shown in Table 2, when an aromatic aldehyde was em-
ployed, the desired product was obtained in moderate to
good yields. Pyrimidines 1 (n = 1, benzylamino) and 5

(n = 3, phenpropylamino; entries 1–6 and 10–12, Table 2)
generally gave higher yields as compared to 4 with a
phenethylamino group (n = 2; entries 7–9 and 13–16,
Table 2). However, there was no clear correlation be-
tween the electronic properties of the substituents on the
aromatic rings and product yields.

A plausible mechanism for the formation of dihydropu-
rine derivatives was proposed in Scheme 2. It was envi-
sioned that the cyclization reaction proceeded through an
imine intermediate 10 formed between the amino group of
pyrimidine 1 (or 4–6) and an aldehyde under acid-cata-
lyzed conditions. Imine 10 was protonated to iminium 11
which underwent a [1,6]-hydrogen shift to give iminium
12. Ring closure of the iminium 12 and deprotonation
generated the expected dihydropurine derivatives.

Figure 1 X-ray crystal structure of 8a

Table 2 Synthesis of 6-Chloro-7,8,9-trisubstituted Dihydropurinesa

Entry Product R R1 n R2 Time (h) Yield (%)b

1 3a 3-MeO 4-O2NC6H4 1 Cl 12 67c

2 3b 3-MeO Ph 1 Cl 8 51

3 3c 3-MeO 4-MeC6H4 1 Cl 7 68

4 3d H 4-O2NC6H4 1 Cl 12 68

5 3e 4-Me 4-O2NC6H4 1 Cl 8 74

6 3f 4-F 4-O2NC6H4 1 Cl 12 61

7 7a H 4-O2NC6H4 2 Cl 12 60

8 7b H Ph 2 Cl 8 31

9 7c 3,5-(MeO)2 4-O2NC6H4 2 Cl 12 35

10 8a H 4-O2NC6H4 3 Cl 12 65

11 8b H Ph 3 Cl 8 59

12 8c H 4-MeC6H4 3 Cl 7 64

13 9a H 4-O2NC6H4 2 Xd 12 82

14 9b H Ph 2 X 12 47

15 9c H 4-MeC6H4 2 X 12 37

16 9d H n-Pr 2 X 3 59

a Reagents and conditions: 1 (1.0 equiv), R1CHO (1.5–2.0 equiv) and TFA (excess) in MeCN, reflux.
b Yields are based on pure products isolated by flash chromatography.
c 7% Imine intermediate was also isolated.
d X = 1-pyrrolidinyl.
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In conclusion, a new method was developed for the prep-
aration of 7,8,9-trisubstituted dihydropurine derivatives
via a cascade reaction. The key transformation was a pos-
sible [1,6]-hydrogen shift or hydride transfer due to a
‘tert-amino effect’. This method complements the exist-
ing ones for the preparation of dihydropurine derivatives,
and should be applicable to preparation of diverse librar-
ies, which may be useful in field of chemical biology and
medicinal chemistry.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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Scheme 2 A plausible mechanism for the formation of dihydropu-
rines
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