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Summary of main observation and conclusion An efficient and organic ligand-free heterogeneous catalytic system for hydroformylation of olefins is 
highly desirable for both academy and industry. In this study, simple Rh black was employed as a heterogeneous catalyst for hydroformylation of olefins in 
the absence of organic ligand. The Rh black catalyst showed good catalytic activity for a broad substrate scope including the aliphatic and aromatic 
olefins, affording the desired aldehydes in good yields. Taking the hydroformylation of ethylene as an example, 86% yield of propanal and TOF of 200 h-1 

were obtained, which was superior to the reported homogeneous catalytic systems. In addition, the catalyst could be reused five times without loss of 
activity under identical reaction conditions, and the Rh leaching was negligible after each cycle. 

 

Background and Originality Content 
Hydroformylation is the addition of olefins and synthesis gas 

in the presence of a catalyst for the formation of aldehydes and 
was discovered in early 1938 by Otto Roelen, which represents 
one of the largest homogeneously catalyzed reactions in industry 
today and has more than 10 million metric tons of oxo chemicals 
annually. [1-5] The aldehyde can be extensively served as key 
intermediates in the synthesis of esters, alcohols, carboxylic acids 
and other fine chemicals, which are used for the manufacturing of 
plasticizers, surfactants, soaps, and detergents. [6-8] 

Over the past years, both industry and academia have 
invested heavily in research related to hydroformylation, [9] and a 
number of transition metals, such as Rh, [10-12] Co, [13-15] Ir, [16-19] Ru, 
[20-22] Pt [23-29] and Pd [30-32] have been used for catalyze olefins 
hydroformylation reaction. Much effort has been focused on the 
use of Rh complexes as catalysts, due to their better activity and 
selectivity in the hydroformylation of olefins than heterogeneous 
ones. [6, 33] However, the separation and recovery is important 
technical problems for the soluble catalysts.  

Then, it is highly desirable to develop heterogeneous 
Rh-based catalysts. And up to now, Rh supported on many solid 
supports, such as SiO2, [34-36] Cu2O, [37] ZnO, [38] carbon materials, 
[39-43] TiO2, [44] and Al2O3, [45, 46] have been investigated for 
heterogeneous olefins hydroformylation. Nevertheless, the 
activity and selectivity are usually lower compared with the 
corresponding homogeneous catalysts. So it is still extremely 
relevant to search for new catalytic systems that effectively 
combine the advantages of both heterogeneous and 
homogeneous catalysis in the context of widening the range of 
applications of hydroformylation in fine chemistry industrial 
processes. 

One of the main synthetic strategies for achieving these goals 
is based on the development of heterogenization of 
homogeneous catalysts, which usually tethers metal complexes to 

either organic polymers or inorganic matrixes modified with 
organic phosphine ligands. [47-65] This strategy allows not only their 
easy separation/reutilization but also the potential enhancement 
of activity and selectivity. However, the use of expensive and 
sensitive organic phosphine ligand as well as the complicated 
processes for homogeneous catalysts immobilized on support 
limited the further application. 

In the current work, an efficient organic ligand-free 
heterogeneous catalytic system for hydroformylation of olefins 
was constructed with simple Rh particles as the catalyst. The 
catalyst system exhibited excellent catalytic activity in 
hydroformylation of olefins, as well as easy separation and 
recycle. 

Scheme 1 Organic ligand-free heterogeneous Rh-based catalytic system 
for hydroformylation of olefins. 
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Results and Discussion 
Characterization of catalysts  

 
Figure 1 XRD pattern of catalysts. (A) Rh-22 mesh; (B) Rh-60 mesh; (C) 
Rh-325 mesh; (D) Rh black. (E) Reused five times Rh black. 

The Rh particle catalysts were characterized by XRD, XPS, SEM, 
TEM and N2 adsorption-desorption to explore the correlation of 
the structure and activity. The XRD patterns of Rh-22, Rh-60, 
Rh-325, Rh black and used Rh black catalysts are compared in 
Figure 1. The diffraction pattern of Rh particles shows five peaks 
at about 41.1°, 47.8°, 69.9°, 84.4° and 89.1°, which can be 
ascribed to the (111), (200), (220), (311) and (222) reflections of 
Rh (JCPDS no. 870714).  

 
Figure 2 XPS spectra of catalysts. (A) Rh-22 mesh; (B) Rh-60 mesh; (C) 
Rh-325 mesh; (D) Rh black. (E) Reused five times Rh black. 

Further, the electronic properties of Rh particles was 
determined by  XPS analysis. As shown in Figure 2, The Rh 3d5/2 

signals of Rh-22, Rh-60, Rh-325, Rh black and used Rh black 
catalysts appeared at 307.4 and 308.5 eV, which indicated the 
existence of Rh+ and Rh0 state on the surface of catalysts. However, 
the peak intensity of Rh+ in used Rh black catalyst was significantly 
lower than other catalysts, which suggested that Rh+ might be 
reduced in hydroformylation of olefins. Furthermore, the 
morphologies of the catalysts was characterized by SEM and TEM. 
SEM images of Rh-22, Rh-60, Rh-325 catalysts (Figure 3(A), 3(B), 
3(C) and Figure S1(A), 1(B), 1(C)) displayed a quite rough 
morphology, and Rh black and used Rh black catalysts showed a 
morphology consisting of nanoparticles (Figure 3(D), 3(E), 3(F), 
and Figure S1(D)). The HR-TEM images of Rh black and used Rh 
black show a lattice spacing of 0.22 nm, which can be indexed to 
the (111) plane of Rh. The N2 adsorption-desorption tests (Figure 
S2) showed that the BET surface areas of the catalysts (Table S1) 
were in the range of 13.4-62.4 m2/g, and the pore radius were in 
the in range of 2.24-13.35 nm, Clearly, the BET surface area and 
pore radius of Rh balck, which is 62.4 m2/g and 13.35 nm, 
respectively, are larger than other catalysts. 

 
Figure 3 SEM images of (A) Rh-22 mesh; (B) Rh-60 mesh; (C) Rh-325 mesh; 
(D) Rh black. TEM images of (E) Rh black; (F) Rh black used five times; 
HR-TEM of (G) Rh black; (H) Rh black used five times. 

Catalytic performance of catalysts  
Then, the catalytic performance of Rh particles catalysts was 

tested by the hydroformylation of ethylene as model reaction 
(Table 1). Initial hydroformylation experiments were performed at 
60 bar syngas (CO/H2 =1:1) with toluene as solvent. Clearly, Rh 
black exhibited the best catalytic performance, and the desired 
hydroformylation product, propanal, was obtained in 64% yield 
(Table 1, entry 1). Lower conversions were observed in the case of 
other Rh particles (Rh-22, Rh-60, and Rh-325). Based on the 
amount of different Rh particle catalysts used, the TOFs for 
propanal formation of Rh-22, Rh-60, Rh-325 and Rh black are 17, 
21, 33, and 200 h−1, respectively (Entries 1-4). Thus, the order of 
catalytic performance of the different Rh particle catalysts is Rh 
black > Rh-325 > Rh-60 > Rh-22. It is clear that the catalytic 
performances of the Rh particle are strongly dependent on the 
size of Rh particle. In addition, the surface area and pore 
distribution of catalyst play important roles in catalytic activity, 
surface area, pore volume and average pore radius of Rh black are 
large than other catalysts. Therefore, Rh black is the most active 
catalyst. As is well known, RhCl3 XH2O, [Rh(COD)Cl]2 and 
Rh(CO)(acac)2 are classical homogeneous catalysts in 
hydroformylation of olefins. [66, 67] Much lower TOFs of 39 and 66 
h−1were obtained when RhCl3 XH2O and [Rh(COD)Cl]2 were 
employed at the same reaction conditions (Entries 5-6). 

This article is protected by copyright. All rights reserved.
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Rh(CO)(acac)2 as a catalyst showed a TOF of 161 h−1 (Entry 7), but 
it is still lower than that obtained in this work. The by-product of 
ethylene hydroformylation was not detected in GC-MS. The 
catalytic performance of Rh black has compared with supported 
Rh catalysts (Table S2). Surprisingly, the Rh black exhibited better 
catalyst activity than supported Rh catalysts except Rh-P-MMCb 
containing phosphine ligand.  

Table 1 Screening of the catalyst for the Hydroformylation of ethylene a. 

+ CO + H2
Cat.

CHO  

Entry Cat. n/mmolb Yield/ %b TOF/h-1 

1 Rh black 3.89 64 200 

2c Rh-325 1.93 39 33 

3c Rh-60 1.24 22 21 

4c Rh-22 1.00 18 17 

5c RhCl3 XH2O 2.28 43 39 

6 Rh(COD)Cl2 1.28 24 66 

7 Rh(acac)(CO)2 3.13 55 161 
a Reaction conditions: ethylene (5 mmol), [Rh] (0.01 mmol), CO (3 MPa), 
H2 (3 MPa), 100 oC, toluene (2.0 mL), 2 h; b The yields of propanal were 
determined by GC-FID with decane as an internal standard; c 6 h. 

Furthermore, the kinetic study on the hydroformylation of 
ethylene to propanal was conducted over Rh black catalyst. The 
evolution relationships of propanal yield with reaction time at 
different temperatures over Rh black catalyst were investigated 
(Figures 4(A), Table S3). The data points were used to construct 
linear -ln(1-Y) versus time plots, and the observed first-order rate 
constants k were obtained from the slopes of the rise lines. These 
results reveal that the catalytic conversion of ethylene to propanal 
is a pseudo first order reaction process. In addition, the apparent 
activation energy barrier (Ea) of the rate-determining step was 
calculated according to the Arrhenius equation [k = A e(−Ea/RT)] 
based on the reaction rate constants (k) at different temperatures. 
An Arrhenius plot for ethylene hydroformylation in the 
temperature interval 87-110 oC was obtained, and the apparent 
activation energy for propanal formation was calculated to be 
23.1 kJ•mol−1 (Figure 4(B)). 

 
Figure 4 (A) Effect of temperature on rate of propanal synthesis. Ethylene 
(5 mmol), Rh black (0.01 mmol), CO (3 MPa), H2 (3 MPa), toluene (2 mL); 
(B) Arrhenius plot for apparent activation energies of the Rh black catalyst. 

Scope of the substrates 
Next, we examined the substrates scope to test the efficiency 

of the Rh black catalyst (Table 2). Both aliphatic (ethylene, 
1-propylene, 1-hexene and 1-octene) and aromatic olefins 
(styrene, 4-tert-butyl-styrene and α-methyl styrene) served as 
starting materials and afforded the desired aldehydes in good 
yields and chemical selectivities. As shown in Table 2, aliphatic 
olefins such as ethylene, 1-propylene, 1-hexene and 1-octene, 
were converted to the corresponding aldehydes with good yields 
(74-90%), excellent chemical selectivities (97-99%) and moderate 
regioselectivity (n/iso =40:60-47:53) (2a-2d). Similarly, the 
hydroformylation reaction of allylbenzene also proceeded well, 
affording the corresponding product in 76% yield and 99% 
chemical selectiviey with moderate regioselectivity (n/iso = 50:50) 
(2e). It should be mentioned that in the case of α-methyl styrene 
as the substrate, the desired linear product could be selectively 
obtained in 67% yield (2f). In addition, styrene and related 
derivatives could be also converted to the corresponding 
aldehydes (2g-2h) in 77-93% yields and 95-98% chemical 
selectivities. It was noted that substitution at the para-position of 
styrene had a significant electronic effect on reactivity. For 
examples, styrene bearing electron-donating group at the 
para-position led to functionalized aldehyde in 93% yield while 
styrene delivered benzenepropanal in 77% yield (2g vs 2h). 

Table 2 Substrate scope of olefins.a 

 
 

a Reaction conditions: alkenes (5 mmol), [Rh] (0.01 mmol), CO (3 MPa), H2 
(3 MPa), toluene (2.0 mL), 100 oC, 4 h, yields and selectivities of aldehyde 
were determined by GC-FID; b alkenes (2 mmol). 

Recycling of Rh black catalyst 
Finally, the recycling of Rh black catalyst in hydroformylation 

of ethylene was tested, as shown in Figure 5 and Table S2. For 
each recycling experiment, the catalyst was collected by 
centrifugation and sequentially washed with 50 mL ethyl acetate 
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and dried in 80 ℃ prior to use. It was found that the Rh black 
catalyst can be reused at least 5 cycles with good yield of propanal. 
To investigate the leaching of Rh, the reaction solution after each 
cycle was determined by ICP-AES in Table S4, and results showed 
the Rh leaching is negligible after each cycle. 

 
Figure 5 Stability test of catalyst: ethylene (43 mmol), Rh black (50 mg), CO 
(4.5 MPa), H2 (4.5 MPa), toluene (60 mL), 100 oC, 1 h, yield was 
determined by GC-FID with decane as an internal standard. 

Conclusions 
In the present study, a simple organic ligand-free 

heterogeneous Rh-based catalytic system were developed for the 
hydroformylation of olefins. A series of functional aldehydes were 
synthesized by simple Rh black catalyst under optimal reaction 
conditions, and good yields were generally obtained. Meanwhile, 
this catalytic system showed good reusability, and the catalyst 
could be reused up to five times without loss of activity. 

Experimental 
All chemicals, solvent, and Rh particles were obtained 

commercially and used as received. The catalysts of Rh-22 mesh, 
Rh-60 mesh, Rh-325 mesh and Rh black were purchased from the 
company of Alfa Aesar, and the CAS number of Rh particles is 
7440166. 

Rh catalyst (0.01 mmol), olefins (5 mmol), and toluene (2 mL) 
were added to a stainless steel autoclave (80 mL) with a magnetic 
stir bar. After the autoclave was sealed and purged with CO three 
times, the pressure of syngas (CO/H2=1:1) was adjusted to 6 MPa 
and the autoclave was put into a preheated reactor, stirring at 
100 °C for 4 h. After reaction, the autoclave was cooled to room 
temperature and the pressure was carefully released. 
Subsequently, the reaction mixture was diluted with 5 mL of ethyl 
acetate and the catalyst was removed from the system by 
centrifugation and analyzed by gas chromatography (Agilent 
7890A GC equipped with a HP-5 capillary column with 5 wt% 
phenyl groups and a FID detector). For recycling, the catalyst was 
separated by centrifugation, washed with ethyl acetate, dried at 
80 °C for 12 h and used directly for the next run. 
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