

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry

Bioorganic & Medicinal Chemistry 13 (2005) 549-556

Synthesis of 2-amino-6-(4-[¹¹C]methoxyphenylthio)-9-[2-(phosphonomethoxy)ethyl]purine bis(2,2,2-trifluoroethyl) ester as a novel potential PET gene reporter probe for HBV and HSV-tk in cancers

Ji-Quan Wang,^a Xiangshu Fei,^a Thomas A. Gardner,^b Gary D. Hutchins^a and Qi-Huang Zheng^{a,*}

^aDepartment of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA ^bDepartment of Urology, Indiana University School of Medicine, Indianapolis, IN 46202, USA

Received 23 April 2004; accepted 4 October 2004

Abstract—Acyclic nucleoside 2-amino-6-(4-methoxyphenylthio)-9-[2-(phosphonomethoxy)ethyl]purine bis(2,2,2-trifluoroethyl) ester (ABE, 1) is a new hepatitis B virus (HBV) specific antiviral reagent and shows high anti-HBV activity. Carbon-11 labeled ABE may serve as a novel reporter probe for positron emission tomography (PET) to image HBV and herpes simplex virus thymidine kinase (HSV-tk) in cancers. The radiolabeling precursors 2-amino-6-(4-hydroxyphenylthio)-9-[2-(phosphonomethoxy)ethyl]purine bis(2,2,2-trifluoroethyl) ester (10) and 2-*N*-Boc protected analogue 2-*N*-bis(Boc)amino-6-(4-hydroxyphenylthio)-9-[2-(phosphonomethoxy)ethyl]purine bis(2,2,2-trifluoroethyl) ester (12), and the reference standard ABE were synthesized from bis(trifluoroethyl) (2-iodoethoxy)methylphosphonate (5), guanine (6), and 2-amino-6-chloropurine (8). The target radiotracer 2-amino-6-(4-[¹¹C]methoxyphenylthio)-9-[2-(phosphonomethoxy)ethyl]purine bis(2,2,2-trifluoroethyl) ester (1²), and the reference standard ABE were synthesized from bis(trifluoroethyl) (2-iodoethoxy)methylphosphonate (5), guanine (6), and 2-amino-6-chloropurine (8). The target radiotracer 2-amino-6-(4-[¹¹C]methoxyphenylthio)-9-[2-(phosphonomethoxy)ethyl]purine bis(2,2,2-trifluoroethyl) ester ([¹¹C]ABE, [¹¹C]1) was prepared by O-[¹¹C]methylation of the unprotected HO-precursor 10, or 2-*N*-Boc protected HO-precursor 12 with [¹¹C]methyl triflate followed by a quick deprotection reaction, and isolated by solid-phase extraction (SPE) purification in 40–55% radiochemical yields.

© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Hepatitis B virus (HBV) infection is responsible for both acute and chronic hepatitis. Chronic HBV infection dramatically increases risks for development of liver cancer and cirrhosis.^{1–3} The World Health Organization (WHO) estimates about 400 million chronic carriers worldwide, with roughly 4 million deaths annually from the resulting cirrhosis and hepatocellular carcinoma. Treatment of HBV infection constitutes one of the therapeutic challenges in virology, and only a few drugs are currently available for the clinical treatment of HBV such as interferon α and lamivudine.⁴ Several nucleoside analogues like 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA) and its analogues, ^{5–8} ganciclovir (GCV), penciclovir (PCV), and 5-substituted analogue of thymidine

1-(2'-deoxy-2'-fluoro-β-D-arabinofuranosyl)-5-iodouracil (FIAU) have also been investigated as potent chemotherapeutic agents against viruses, for example, HBV and human immunodeficiency virus (HIV), and certain forms of cancer.¹⁻³ Radiolabeled fluorinated (fluorine-18) or iodinated (iodine-124, 125, and 131) prodrugs such as fluorinated GCV and PCV analogues 8-[¹⁸F]fluoroganciclovir ([¹⁸F]FGCV), 9-[(3-[¹⁸F]fluoro-1-hydr-oxy-2-propoxy)methyl]guanine ([¹⁸F]FHPG), 8-[¹⁸F]- $([^{18}F]FPCV), 9-(4-[^{18}F]fluoro-3-guanine ([^{18}F]FHBG); and$ fluoropenciclovir hydroxymethylbutyl)guanine fluorinated and iodinated FIAU analogues [¹⁸F]FIAU, [¹²⁴I]FIAU, and [^{125/131}I]FIAU have been synthesized as gene reporter probes for biomedical imaging techniques positron emission tomography (PET) or single photon emission computed tomography (SPECT) to image herpes simplex virus thymidine kinase (HSV-tk) gene expression,^{9–22} and we have also developed new carbon-11 labeled GCV and PCV analogues 8-[¹¹C]methoxyganciclovir ([¹¹C]MeOGCV) and

^{*}Corresponding author. Tel.: +1 317 278 4671; fax: +1 317 278 9711; e-mail: qzheng@iupui.edu

^{0968-0896/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmc.2004.10.007

8-[¹¹C]methoxypenciclovir ([¹¹C]MeOPCV) as novel HSV-tk gene reporter probes (Fig. 1).^{23,24} 2-Amino-6-(4-methoxyphenylthio)-9-[2-(phosphonomethoxy)ethyl]purine bis(2,2,2-trifluoroethyl) ester (ABE, 1) is a novel HBV-specific antiviral reagent and shows high anti-HBV activity in vitro, and its active metabolite was highly detected in the liver.⁴ Compound ABE might be suitable for hepatitis B chemotherapy. Carbon-11 labeled antiviral nucleoside analogue 2-amino-6-(4-[¹¹C]methoxyphenylthio)-9-[2-(phosphonomethoxy)ethyl]purine bis(2,2,2-trifluoroethyl) ester ([¹¹C]ABE, [¹¹C]I) may serve as a novel reporter probe for PET to image HBV and HSV-tk in cancers. In this study, we report the synthesis of [¹¹C]ABE, for the first time.

2. Results and discussion

2.1. Chemistry

The synthesis of the unprotected HO-precursor 2-amino-6-(4-hydroxyphenylthio)-9-[2-(phosphonomethoxy)ethyl]purine bis(2,2,2-trifluoroethyl) ester (10) and reference standard ABE, 1 as indicated in Scheme 1 was performed with the modifications according to procedures reported in the literature.⁴ 2-Chloroethyl chloromethyl ether (2) was treated with tris(2,2,2-trifluoroethyl)phosphite (3) to quantitatively give bis(trifluoroethyl) (2-chloroethoxy)methylphosphonate (4). Compound 4 was converted to bis(trifluoroethyl) (2iodoethoxy)methylphosphonate (5) with sodium iodide through halogen exchange reaction in 80% yield. Following the procedures reported in the literature,²⁵ guanine (6) was treated first with trifluoroacetic anhydride and then with 4-methoxybenzenethiol and eventually with ethanolic methylamine to afford 2-amino-6-[(4-methoxyphenyl)sulfanyl]purine (7) in 66% yield. Compound 7 was treated first with 1,8-diazabicyclo-[5,4,0]undec-7-ene (DBU) and then with compound 5 to yield the reference standard **1** in 42% yield. 2-Amino-6-chloropurine (**8**) was treated first with DBU and then with compound **5** to provide desired 9-isomer N⁹substituted product 2-amino-6-chloro-9-[2-(phosphonomethoxy)ethyl]purine bis(2,2,2-trifluoroethyl) ester (**9**) as the major product in 33% yield, and undesired 7-isomer N⁷-substituted product as the minor byproduct.^{18–20} Compound **9** was then reacted with 4-hydroxythiophenol to give the unprotected precursor **10** in 55% yield.

The synthesis of compound **1** has been reported in the reference,⁴ in which it was synthesized from compound **9** with 4-methoxybenzenethiol. In this paper, an improved synthetic approach²⁵ through the reaction of compound **7** with compound **5** was used for the synthesis of compound **1**. The purpose of this modification is to increase the yield of compound **1** through the avoidance of the formation and separation of undesired N⁷-substituted product, the 7-isomer of compound **9**. However, the improved method²⁵ did not work well for the synthesis of compound **10**, since the hydroxyl group in 4-hydroxythiophenol will be also reacted with compound **5**, therefore, the reported method⁴ through compound **9** appears to be the only approach to prepare compound **10**.

The 2-amino group in purine ring may affect the O-[¹¹C]methylation of the unprotected HO-precursor **10**, therefore, we also designed and synthesized a 2-*N*-Boc protected HO-precursor 2-*N*-bis(Boc)amino-6-(4-hydroxyphenylthio)-9-[2-(phosphonomethoxy)ethyl]-purine bis(2,2,2-trifluoroethyl) ester (**12**).^{26,27} The synthesis of the 2-*N*-Boc protected precursor **12** as outlined in Scheme 2 was performed with the modifications according to procedures indicated in the Scheme 1. Compound **9** was reacted with *t*-butoxycarbonyl anhydride (Boc₂O) to afford 2-*N*-bis(Boc)amino-6-chloro-9-[2-(phosphonomethoxy)ethyl]purine bis(2,2,2-trifluoroethyl) ester (**11**) in 77% yield. Compound **11**

Figure 1. Chemical structures of GCV, PCV; [¹⁸F]FGCV, [¹⁸F]FPCV; [¹⁸F]FHPG, [¹⁸F]FHBG; [¹¹C]MeOGCV, [¹¹C]MeOPCV; [¹⁸F]FIAU, [¹²⁴I]FIAU, and [^{125/131}I]FIAU.

Cl(CH₂)₂OCH₂PO(OCH₂CF₃)₂

ClCH₂CH₂OCH₂Cl + P(OCH₂CF₃)₃

Scheme 1. Synthesis of 2-amino-6-(4-[^{11}C]methoxyphenylthio)-9-[2-(phosphonomethoxy)ethyl]purine bis(2,2,2-trifluoroethyl) ester ([^{11}C]ABE, [^{11}C]1) using unprotected HO-precursor 10.

was then reacted with 4-hydroxythiophenol to give the 2-N-Boc protected precursor 12 in 31% yield. The direct methylation of compound 12 with methyl triflate (CH₃OTf) gave the O-methylated product 2-N-bis(Boc)amino-6-(4-methoxyphenylthio)-9-[2-(phosphonomethoxy)ethyl]purine bis(2,2,2-trifluoroethyl) ester (13) in very low yield, in which compound 13 will serve as a reference intermediate for the radiolabeling of 2-N-Boc protected precursor 12. Thus, the small-scale synthesis of compound 13 was carried out, in which the reference standard 1 was directly reacted with Boc₂O to provide compound 13 in 45% yield. The deprotection of compound 13 with 1 N HCl in acetonitrile gave the reference standard 1. The methylation of 2-N-Boc protected precursor 12 with CH₃OTf under basic conditions using tetrabutylammonium hydroxide (TBAH) followed by a quick deprotection with 1N HCl to remove the 2-N-Boc groups also gave the reference standard 1.

2-Amino-6-(3-methoxyphenylthio)-9-[2-(phosphonomethoxy)ethyl]purine bis(2,2,2-trifluoroethyl) ester (*meta*-ABE, IC₅₀ 0.04 μ M) and 2-amino-6-(2-methoxyphenylthio)-9-[2-(phosphonomethoxy)ethyl]purine bis(2,2,2-trifluoroethyl) ester (*ortho*-ABE, IC₅₀ 0.08 μ M) have similar in vitro anti-HBV activity to the target compound 1 (*para*-ABE, IC₅₀ 0.03 μ M).⁴ The potentiation effect order of 6-arylthio analogues is *para* > *meta* > *ortho*, which is consistent with the potentiation effect order of O⁶-benzylguanine (O⁶-BG) analogues,^{28–31} most likely because the steric effect at the *ortho*-position plays a more important role than the electronic effect. Therefore, *para*-ABE was designed as the target compound for radiolabeling.

2.2. Radiochemistry

The synthesis of the target tracer [11 C]ABE, [11 C]I using both unprotected precursor **10** and protected precursor **12** are outlined in Schemes 1 and 2. The unprotected HO-precursor **10** was labeled by [11 C]methyl triflate (11 CH₃OTf)^{32,33} through *O*-[11 C]methylation of hydroxyphenyl position under basic conditions using TBAH.^{34–38} The tracer was isolated by solid-phase extraction (SPE) purification^{34,39,40} to produce pure target compound radiolabeled [11 C]1 with 50–55% radiochemical yields, based on 11 CO₂, decay corrected to end of bombardment (EOB). The large polarity difference between the HO-precursor and the labeled methylated product permitted the use of SPE technique for purification of labeled product from radiolabeling

Scheme 2. Synthesis of 2-amino-6-(4-[^{11}C]methoxyphenylthio)-9-[2-(phosphonomethoxy)ethyl]purine bis(2,2,2-trifluoroethyl) ester ([^{11}C]ABE, [^{11}C]1) using 2-*N*-Boc protected HO-precursor 12.

reaction mixture. The reaction mixture was diluted with NaHCO₃ and loaded onto C-18 cartridge by gas pressure. The cartridge column was washed with water to remove unreacted ¹¹CH₃OTf and precursor and reaction solvent, and then final labeled product was eluted with ethanol. Similarly, 2-N-Boc protected HO-precursor 12 was labeled with ¹¹CH₃OTf followed by a quick deprotection reaction with 1N HCl and isolated by SPE purification technique to produce $[^{11}C]1$ in 40– 55% radiochemical yields. Comparing the radiochemistry of unprotected precursor 10 and protected precursor 12, no distinct difference was found. It is likely the concern that 2-amino group in purine ring may affect the O-[¹¹C]methylation reaction of HO-precursor is unnecessary. The N-[¹¹C]methylation at 2-amino group in the purine ring is a potential competing reaction in comparison with the O-[¹¹C]methylation at 4-hydroxyl group in the 6-(4-hydroxyphenylthio) ring. However, we do not have any evidence for labeling of the 2amino group in the purine ring, it is consistent with our previous works on the synthesis of the radiolabeled O⁶-BG analogues.^{28,29,31} It is also consistent with the theoretical explanation that the deprotonization at the 4-hydroxyl group is easier than at the 2-amino group since the acidity of HO- is greater than the acidity of H_2N_{-} , and the [¹¹C]methylation with [¹¹C]methyl triflate will prefer to occur at the oxygen position rather than at the nitrogen position.³⁸ The identity of the labeled product was determined by analytical high pressure liquid chromatography (HPLC) method, and the evidence provided by the exact same HPLC retention time data of the labeled product $[^{11}C]\mathbf{1}$ and reference standard $\mathbf{1}$ shows $[^{11}C]$ methyl triflate does not label the 2-amino group and confirms the theoretical explanation. Chemical purity, radiochemical purity and specific radioactivity were determined by analytical HPLC method. The chemical purity of precursors $\mathbf{10}$, $\mathbf{12}$, and reference standard $\mathbf{1}$ was >97%. The radio-chemical purity of target tracer $[^{11}C]\mathbf{1}$ was >95%, and the chemical purity of target tracer $[^{11}C]\mathbf{1}$ was >93%. The average (n = 3-5) specific radioactivity of target tracer $[^{11}C]\mathbf{1}$ was 0.6–0.8 Ci/µmol at the end-of-synthesis (EOS).

3. Conclusion

An efficient and convenient chemical and radiochemical synthesis of the unprotected precursor and 2-*N*-Boc protected precursor, reference intermediate and standard, and target tracer of ABE has been developed. Radiosynthesis produced [¹¹C]ABE in amounts and purity suitable for the preclinical application of [¹¹C]ABE in animal studies by PET imaging techniques. Labeled product suitable for injection, with the specific radioactivities in a range of 0.6–0.8 Ci/µmol at EOS, can be obtained in 20–25 min from EOB, including SPE purification and formulation. These chemistry results provide the foundation for further biological evaluation of [¹¹C]ABE as a novel potential PET cancer imaging agent for hepatitis B virus and herpes simplex virus thymidine kinase in vivo.

4. Experimental

4.1. General

All commercial reagents and solvents were used without further purification unless otherwise specified. Melting points were determined on a MEL-TEMP II capillary tube apparatus and were uncorrected. ¹H NMR spectra were recorded on a Bruker QE 400 NMR spectrometer using tetramethylsilane (TMS) as an internal standard. Chemical shift data for the proton resonances were reported in parts per million (δ) relative to internal standard TMS (δ 0.0). The low resolution mass spectra (LRMS) were obtained using a Bruker Biflex III MAL-DI-Tof mass spectrometer, and the high resolution mass spectra (HRMS) measurements were obtained using a Kratos MS80 mass spectrometer, in the Department of Chemistry at Indiana University. Chromatographic solvent proportions are expressed on a volume: volume basis. Thin layer chromatography was run using Analtech silica gel GF uniplates $(5 \times 10 \text{ cm}^2)$. Plates were visualized by UV light. Normal phase flash chromatography was carried out on EM Science silica gel 60 (230-400 mesh) with a forced flow of the indicated solvent system in the proportions described below. All moisture-sensitive reactions were performed under a positive pressure of nitrogen maintained by a direct line from a nitrogen source.

Analytical HPLC was performed using a Prodigy (Phenomenex) $5 \mu m C$ -18 column, $4.6 \times 250 mm$; $3:1:3 CH_3CN-$ MeOH–20mM, pH6.7 KHPO₄⁻ mobile phase, 1.5 mL/min flow rate, UV (240nm) and γ -ray (NaI) flow detectors. Semi-prep C-18 guard cartridge column $1 \times 1 cm$ was obtained from E. S. Industries, Berlin, NJ, and part number 300121-C18-BD $10 \mu m$. Sterile vented Millex-GS 0.22 μm vented filter unit was obtained from Millipore Corporation, Bedford, MA.

4.2. Bis(trifluoroethyl) (2-chloroethoxy)methylphosphonate (4)

Compound 4 was prepared by the reaction⁴ of 2-chloroethyl chloromethyl ether (2) with tris(2,2,2-trifluoroethyl)phosphite (3) as a colorless liquid in a quantitative yield, $R_f = 0.58$ (1:1 hexane/EtOAc).

4.3. Bis(trifluoroethyl) (2-iodoethoxy)methylphosphonate (5)

Compound **5** was prepared by the reaction⁴ of compound **4** with sodium iodide as a light brown liquid in 80% yield, $R_f = 0.31$ (CH₂Cl₂). ¹H NMR (CDCl₃, ppm): δ 4.40–4.55 (m, 4H, CH₂CF₃), 4.01 (d, 2H, J = 8.08 Hz, OCH₂P), 3.86 (t, 2H, J = 6.61 Hz, ICH₂. *CH*₂O), 3.27 (t, 2H, J = 6.62 Hz, I*CH*₂CH₂O). LRMS (FAB, *m/z*): 453 [(M+Na)⁺, 100%]. HRMS (FAB, *m/z*): calcd for C₇H₁₀F₆INaO₄P 452.9163. Found: 452.9163.

4.4. 2-Amino-6-[(4-methoxyphenyl)sulfanyl]purine (7)

To a 250mL two-necked flask containing guanine (6, 5.00g, 31.1 mmol) and dry pyridine (50mL) was added

trifluoroacetic anhydride (17.0mL, 120mmol) dropwise over a period of 10 min at 0 °C. After 30 min, a solution of 4-methoxybenzenethiol (10mL, 81.3mmol) in dry acetonitrile (10mL) was added dropwise over a period of 15min. The reaction was allowed to warm up to rt and was stirred at rt overnight. Then ethanolic methylamine (16mL) was added and the solution was stirred at rt for 2h. After concentration under reduced pressure, the residue obtained was triturated with petroleum ether (bp 40–60 $^{\circ}$ C) and was then collected by filtration. The solid was suspended in water (100 mL), stirred, and filtered. Crystallization of the resultant solid from ethanol give a colorless crystalline solid 7 (5.58 g, 66%), mp 259-260 °C. ¹H NMR (DMSO-*d*₆, ppm): δ 12.54 (s, 1H, 9-NH), 7.93 (s, 1H, 8-CH), 7.49 (d, 2H, J = 8.82 Hz, Ph), 7.00 (d, 2H, J = 8.82 Hz, Ph), 6.13 (s, 2H, 2-NH₂), 3.79 (s, 3H, OCH₃). LRMS (FAB, *m*/*z*): 154 (100%), 296 $[(M+Na)^+, 9.6\%]$. HRMS (FAB, m/z): calcd for C₁₂H₁₁N₅NaOS 296.0582. Found 296.0582.

4.5. 2-Amino-6-(4-methoxyphenylthio)-9-[2-(phosphonomethoxy)ethyl]purine bis(2,2,2-trifluoroethyl) ester (ABE, 1)

To a 100 mL two-necked flask were charged with compound 7 (1.00g, 3.66mmol), dry DMF (20mL) and DBU (0.6mL, 4.01mmol). The solution was heated at 80°C for 1h. Then compound 5 (1.74g, 4.04mmol) was added to the reaction mixture and the mixture was heated at 100°C overnight. Solvent was removed by rotatory evaporation, and the residue was dissolved in CH₂Cl₂ and transferred to the top of a silica gel column. The column was eluted with 50:1 CH₂Cl₂/MeOH to afford a white solid 1 (0.88g, 42%), mp 84-85°C, $R_{\rm f} = 0.36$ (20:1 CH₂Cl₂/MeOH). The chemical purity (CP) of compound 1 was determined by analytical HPLC method, $t_{\rm R}$ **1** = 6.95 min, CP**1** = 99.4%. The analysis of the chemical purity of compound 1 was also confirmed by the ¹H NMR method. ¹H NMR (CDCl₃, ppm): δ 7.70 (s, 1H, 8-CH), 7.52 (d, 2H, J = 8.09 Hz, Ph), 6.93 (d, 2H, J = 8.83 Hz, Ph), 4.90 (s, 2H, NH₂, D_2O exchangeable), 4.30–4.50 (m, 4H, OCH_2CF_3), 4.10-4.30 (m, 2H, NCH2CH2O), 3.85-4.01 (m, 4H, OCH_2P and NCH_2CH_2O , 3.82 (s, 3H, OCH_3).

4.6. 2-Amino-6-chloro-9-[2-(phosphonomethoxy)ethyl]purine bis(2,2,2-trifluoroethyl) ester (9)

Compound **9** was prepared by the reaction⁴ of 2-amino-6-chloropurine (**8**) with compound **5** in dry DMF and DBU as a white solid in 33% yield, mp 103–104 °C, $R_f = 0.26$ (25:1 CH₂Cl₂/MeOH). ¹H NMR (CDCl₃, ppm): δ 7.83 (s, 1H, 8-CH), 5.08 (s, 2H, 2-NH₂), 4.25– 4.45 (m, 6H, NCH₂CH₂O and CH₂CF₃), 3.88–3.98 (m, 4H, OCH₂P and NCH₂CH₂O). LRMS (EI, *m/z*): 212 (100%), 471 (M⁺, 42%). HRMS (EI, *m/z*): calcd for C₁₂H₁₃ClF₆N₅O₄P 471.0298. Found 471.0289.

4.7. 2-Amino-6-(4-hydroxyphenylthio)-9-[2-(phosphonomethoxy)ethyl]purine bis(2,2,2-trifluoroethyl) ester (10)

Compound 10 was prepared by the reaction⁴ of compound 9 with 4-hydroxythiophenol in dry pyridine

and dry DMF as a white solid in 55% yield, mp 55 °C (dec.), $R_f = 0.20$ (25:1 CH₂Cl₂/MeOH). The chemical purity (CP) of compound **10** was determined by analytical HPLC method, t_R **10** = 4.10 min, CP**10** = 98.7%. The analysis of the chemical purity of compound **10** was also confirmed by the ¹H NMR method. ¹H NMR (DMSO- d_6 , ppm): δ 9.85 (s, 1H, OH, D₂O exchangeable), 7.88 (s, 1H, 8-CH), 7.36 (d, 2H, J = 8.09 Hz, Ph), 6.83 (d, 2H, J = 8.83 Hz, Ph), 6.26 (s, 2H, 2-NH₂, D₂O exchangeable), 4.55–4.73 (m, 4H, CH₂CF₃), 4.20 (t, 2H, J = 5.14 Hz, NCH₂CH₂O), 4.13 (d, 2H, J = 8.09 Hz, OCH₂P), 3.86 (t, 2H, J = 5.15 Hz, NCH₂CH₂O). LRMS (EI, m/z): 561 (M⁺, 100%). HRMS (EI, m/z): calcd for C₁₈H₁₈F₆N₅O₅PS 561.0670. Found 561.0665.

4.8. 2-*N*-Bis(Boc)amino-6-chloro-9-[2-(phosphonometh-oxy)ethyl]purine bis(2,2,2-trifluoroethyl) ester (11)

To a 25 mL two-necked flask equipped with a stir-bar were charged with compound **9** (0.50 g, 1.06 mmol), 4-dimethylaminopyridine (DMAP, 0.010 g, 0.082 mmol), dry THF (10 mL), and Boc₂O (0.7 mL, 3.05 mmol). The reaction mixture was stirred at rt overnight. After removal of solvent, the residue was dissolved in CH₂Cl₂ and transferred to a silica gel column. The column was eluted with 50:1 CH₂Cl₂/MeOH to give a viscous solid **11** (0.55 g, 77%), $R_f = 0.18$ (50:1 CH₂Cl₂/MeOH). ¹H NMR (CDCl₃, ppm): $\delta 8.22$ (s, 1H, 8-CH), 4.32–4.52 (m, 6H, NCH₂CH₂O) and CH₂CF₃), 3.98 (t, 2H, J = 5.15Hz, NCH₂CH₂O), 3.94 (d, 2H, J = 7.35Hz, OCH₂P), 1.47 (s, 18H, Boc). LRMS (EI, *m*/*z*): 471 (100%), 671 (M⁺, 2.1%). HRMS (EI, *m*/*z*): calcd for C₂₂H₂₉CIF₆N₅O₈P 671.1346. Found 671.1338.

4.9. 2-*N*-Bis(Boc)amino-6-(4-hydroxyphenylthio)-9-[2-(phosphonomethoxy)ethyl]purine bis(2,2,2-trifluoroethyl) ester (12)

To a 25 mL two-necked flask fitted with a condenser were charged with compound 11 (0.52g, 0.77 mmol), 4hvdroxythiophenol (0.12g, 0.95 mmol), pyridine (0.2mL), and DMF (5mL). The mixture was heated at 60°C for 5h. After removal of solvent at 45–50°C, the residue was dissolved in CH₂Cl₂ and transferred to the top of a silica gel column. The column was eluted with $50:1 \text{ CH}_2\text{Cl}_2/\text{MeOH}$ to give a white foam solid 12 (0.18 g, 31%), $R_{\rm f} = 0.15$ (40:1 CH₂Cl₂/MeOH). The chemical purity (CP) of compound 12 was determined by analytical HPLC method, $t_{\rm R}$ **12** = 2.68 min, CP**12** = 98.3%. The analysis of the chemical purity of compound 12 was also confirmed by the ¹H NMR method. ¹H NMR (CDCl₃, ppm): δ 8.07 (s, 1H, 8-CH), 7.46 (d, 2H, J = 8.83 Hz, Ph), 6.83 (d, 2H, J = 8.83 Hz, Ph), 5.73 (s, 1H, OH), 4.31–4.48 (m, 6H, NCH₂CH₂O and CH₂CF₃), 3.86–4.00 (m, 4H, NCH₂*CH*₂O and OCH₂P), 1.36 (s, 18H, Boc). LRMS (EI, m/z): 561 (100%), 761 (M⁺, 4%). HRMS (EI, m/z): calcd for C₂₈H₃₄F₆N₅O₉PS 761.1719. Found 761.1721.

4.10. 2-*N*-Bis(Boc)amino-6-(4-methoxyphenylthio)-9-[2-(phosphonomethoxy)ethyl]purine bis(2,2,2-trifluoroethyl) ester (13)

To a 100mL two-necked flask containing compound **1** (0.10g, 0.17mmol), DMAP (0.001g), and dry THF

(30 mL) was added Boc₂O (0.16 mL, 0.70 mmol). The solution was stirred at rt overnight. Solvent was removed at reduced pressure. The residue was dissolved in CH₂Cl₂, and transferred to the top of a silica gel column. The column was eluted first with CH₂Cl₂, then 50:1 CH₂Cl₂/MeOH to afford a viscous solid **13** (0.060 g, 45%), $R_{\rm f} = 0.18$ (50:1 CH₂Cl₂/MeOH). The chemical purity (CP) of compound 13 was determined by analytical HPLC method, $t_{\rm R}$ **13** = 4.34 min, CP**13** = 97.8%. The analysis of the chemical purity of compound 13 was also confirmed by the ¹H NMR method. ¹H NMR (CDCl₃, ppm): δ 8.06 (s, 1H, 8-H), 7.52 (d, 2H, J = 8.82 Hz, Ph), 6.92 (d, 2H, J = 8.82 Hz, Ph), 4.30–4.50 (m, 6H, NCH₂CH₂O and CH₂CF₃), 3.87– 4.00 (m, 4H, NCH₂CH₂OCH₂P), 3.84 (s, 3H, OCH₃), 1.35 (s, 18H, Boc). LRMS (EI, *m/z*): 121 (100%), 775 (M⁺, 12.5%). HRMS (EI, m/z): calcd for C₂₉H₃₆F₆N₅O₉PS 775.1876. Found 775.1879.

4.11. 2-Amino-6-(4-[¹¹C]methoxyphenylthio)-9-[2-(phosphonomethoxy)ethyl]purine bis(2,2,2-trifluoroethyl) ester ([¹¹C]ABE, [¹¹C]1)

4.11.1. Starting from unprotected precursor 10. ¹¹CO₂ was produced by the ¹⁴N(p, α)¹¹C nuclear reaction in small volume (12.3 cm³) aluminum gas target (CTI) from 11 MeV proton cyclotron on research purity nitrogen $(+3\% O_2)$ in a Siemens radionuclide delivery system (RDS-112). The precursor 10 (0.6–1.0 mg) was dissolved in CH₃CN (300 µL). To this solution was added TBAH $(2-3\,\mu\text{L}, 1\,\text{M} \text{ solution in methanol})$. The mixture was transferred to a small volume, three-neck reaction tube. ¹¹CH₃OTf that was produced by the gas-phase production method³² from ${}^{11}CO_2$ through ${}^{11}CH_4$ and ¹¹CH₃Br was passed into the air-cooled reaction tube at -15 to -20 °C, which was generated by a Venturi cooling device powered with 100psi compressed air, until radioactivity reached a maximum ($\sim 3 \min$), then the reaction tube was heated at 70-80°C for 3min. The contents of the reaction tube were diluted with NaHCO₃ (1mL, 0.1M). This solution was passed onto a C-18 cartridge by gas pressure. The cartridge was washed with $H_2O(2 \times 3 \text{ mL})$, and the aqueous washing was discarded. The product was eluted from the column with EtOH $(2 \times 3 \text{ mL})$, and then passed onto a rotatory evaporator. The solvent was removed by evaporation under high vacuum. The labeled product $[^{11}C]1$ was formulated with NaH₂PO₄ (50mM), whose volume was dependent upon the use of the labeled product 1 in tissue biodistribution studies ($\sim 6 \text{ mL}$, $3 \times 2 \text{ mL}$) or in micro-PET imaging studies (1-3mL) of tumor-bearing athymic mice³⁹, sterile-filtered through a sterile vented Millex-GS 0.22 µm cellulose acetate membrane and collected into a sterile vial. Total radioactivity was assayed and total volume was noted. The overall synthesis, purification and formulation time was $\sim 20 \text{ min}$ from EOB. The decay corrected yield, from $^{11}\text{CO}_2$, was 50– 55%. Retention times in the analytical HPLC system were: $t_{\rm R} \mathbf{10} = 4.10 \text{ min}, t_{\rm R} [^{11}\text{C}] \mathbf{1} = 6.95 \text{ min}.$

4.11.2. Starting from protected precursor 12. The solution of the precursor 12 (0.6–1.0 mg) in CH₃CN (300 μ L) and TBAH (2–3 μ L, 1 M solution in methanol) was reacted with ¹¹CH₃OTf. The radiolabeling mixture

containing [¹¹C]**13** in reaction tube was added with 1 N HCl (0.5mL) and heated at 70–80 °C for another 3min. The contents of the reaction tube were diluted with NaHCO₃ (0.5mL, 0.1 M). The target tracer [¹¹C]**1** was isolated from the radiolabeling mixture by a C-18 cartridge through SPE purification in ~25min with 40–55% radiochemical yield. Retention times in the analytical HPLC system were $t_{\rm R}$ **12** = 2.68 min, $t_{\rm R}$ [¹¹C]**13** = 4.34 min, $t_{\rm R}$ [¹¹C]**1** = 6.95 min.

Acknowledgements

This work was partially supported by the Susan G. Komen Breast Cancer Foundation grant IMG 02-1550 (to Q.H.Z.), the Department of Defense Congressionally Directed Medical Research Programs grant DMAD17-03-1-0077 (to T.A.G.), the National Institutes of Health/National Cancer Institute Grant P20CA86350 (to G.D.H.), the Indiana 21st Century Research and Technology Fund (to G.D.H.), and the Lilly Endowment Inc. (to the Indiana Genomics Initiative (INGEN) of Indiana University). The referees' criticisms and editor's comments for the revision of the manuscript are greatly appreciated.

References and notes

- 1. Shaw, T.; Locarnini, S. Drugs 2000, 60, 517.
- Hong, J. H.; Choi, Y.; Chun, B. K.; Lee, K.; Chu, C. K. Arch. Pharm. Res. 1998, 21, 89.
- 3. Gumina, G.; Song, G.-Y.; Chu, C. K. Antiviral Chem. Chemother. 2001, 12, 93.
- Sekiya, K.; Takashima, H.; Ueda, N.; Kamiya, N.; Yuasa, S.; Fujimura, Y.; Ubasawa, M. J. Med. Chem. 2002, 45, 3138.
- Starrett, J. E.; Tortolani, D. R.; Russell, J.; Hitchcock, M. J.; Whiterock, V.; Martin, J. C.; Mansuri, M. M. J. Med. Chem. 1994, 37, 1857.
- Holy, A.; Gunter, J.; Dvorakova, H.; Masojidkova, M.; Andrei, G.; Snoeck, R.; Balzarini, J.; De Clercq, E. J. Med. Chem. 1999, 32, 2064.
- Li, X.; Carmichael, E.; Feng, M.; King, I.; Doyle, T. W.; Chen, S. H. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 57.
- Anastasi, C.; Vlieghe, P.; Hantz, O.; Schorr, O.; Pannecouque, C.; Witvrouw, M.; De Clercq, E.; Clayette, P.; Dereuddre-Bosquet, N.; Dormont, D.; Gondois-Rey, F.; Hirsch, I.; Kraus, J. L. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 2459.
- 9. Iyer, M.; Barrio, J. R.; Namavari, M.; Bauer, E.; Satyamurthy, N.; Nguyen, K.; Toyokuni, T.; Phelps, M. E.; Herschman, H. R.; Gambhir, S. S. J. Nucl. Med. 2001, 42, 96.
- Gambhir, S. S.; Barrio, J. R.; Herschman, H. R.; Phelps, M. E. Nucl. Med. Biol. 1999, 26, 481.
- Gambhir, S. S.; Barrio, J. R.; Phelps, M. E.; Iyer, M.; Namavari, M.; Satyamurthy, N.; Wu, L.; Green, L. A.; Bauer, E.; MacLaren, D. C.; Nguyen, K.; Berk, A. J.; Cherry, S. R.; Herschman, H. R. *Proc. Natl. Acad. Sci.* U.S.A. 1999, 96, 2333.
- Gambhir, S. S.; Bauer, E.; Black, M. E.; Liang, Q.; Kokoris, M. S.; Barrio, J. R.; Iyer, M.; Namavari, M.; Phelps, M. E.; Herschman, H. R. *Proc. Natl. Acad. Sci.* U.S.A. 2000, 97, 2785.
- Alauddin, M. M.; Conti, P. S.; Mazza, S. M.; Hamzeh, F. M.; Lever, J. R. Nucl. Med. Biol. 1996, 23, 787.

- Alauddin, M. M.; Shahinian, A.; Kundu, R. K.; Gordon, E. M.; Conti, P. S. *Nucl. Med. Biol.* **1999**, *26*, 371.
- Shiue, G. G.; Shiue, C. Y.; Lee, R. L.; MacDonald, D.; Hustinx, R.; Eck, S. L.; Alavi, A. A. Nucl. Med. Biol. 2001, 28, 875.
- Tjuvajev, J. G.; Doubrovin, M.; Akhurst, T.; Cai, S.; Balatoni, J.; Alauddin, M. M.; Finn, R.; Bornmann, W.; Thaler, H.; Conti, P. S.; Blasberg, R. G. J. Nucl. Med. 2002, 43, 1072.
- 17. Alauddin, M. M.; Conti, P. S. Nucl. Med. Biol. 1998, 25, 175.
- Wang, J.-Q.; Zheng, Q.-H.; Fei, X.; Mock, B. H.; Hutchins, G. D. *Bioorg. Med. Chem. Lett.* 2003, 13, 3933.
- Wang, J.-Q.; Zheng, Q.-H.; Fei, X.; Liu, X.; Gardner, T. A.; Kao, C.; Raikwar, S. P.; Glick-Wilson, B. E.; Sullivan, M. L.; Mock, B. H.; Hutchins, G. D. Synth. Commun. 2004, 34, 917.
- Zheng, Q.-H.; Wang, J.-Q.; Liu, X.; Fei, X.; Mock, B. H.; Glick-Wilson, B. E.; Sullivan, M. L.; Raikwar, S. P.; Gardner, T. A.; Kao, C.; Hutchins, G. D. Synth. Commun. 2004, 34, 689.
- Vaidyanathan, G.; Zalutsky, M. R. Nucl. Med. Biol. 1998, 25, 487.
- Mangner, T. J.; Klecker, R. W.; Anderson, L.; Shields, A. F. Nucl. Med. Biol. 2003, 30, 215.
- 23. Wang, J.-Q.; Zheng, Q.-H.; Fei, X.; Hutchins, G. D. *Abstracts of Papers of the American Chemical Society* **2003**, 226, 133-MEDI.
- Zheng, Q.-H.; Wang, J.-Q.; Fei, X.; Hutchins, G. D. Synthesis 2003, 18, 2785.
- 25. Brand, B.; Reese, C. B.; Song, Q.; Visintin, C. *Tetrahedron* **1999**, *55*, 5239.
- Yun, M.; Oh, S. J.; Ha, H. J.; Ryu, J. S.; Moon, D. H. Nucl. Med. Biol. 2003, 30, 151.
- 27. Dey, S.; Garner, P. J. Org. Chem. 2000, 65, 7697.
- Zheng, Q.-H.; Liu, X.; Fei, X.; Wang, J.-Q.; Ohannesian, D. W.; Erickson, L. C.; Stone, K. L.; Hutchins, G. D. *Nucl. Med. Biol.* 2003, *30*, 405.
- Liu, X.; Zheng, Q.-H.; Fei, X.; Wang, J.-Q.; Ohannesian, D. W.; Erickson, L. C.; Stone, K. L.; Hutchins, G. D. *Bioorg. Med. Chem. Lett.* 2003, 13, 641.
- Liu, X.; Zheng, Q.-H.; Hutchins, G. D.; Fei, X. S.; Erickson, L. C.; Miller, K. D.; Mock, B. H.; Glick-Wilson, B. E.; Winkle, W. L.; Stone, K. L.; Carlson, K. A. *Synth. Commun.* 2003, *33*, 941.
- Zheng, Q.-H.; Liu, X.; Fei, X. S.; Wang, J.-Q.; Ohannesian, D. W.; Erickson, L. C.; Stone, K. L.; Martinez, T. D.; Miller, K. D.; Hutchins, G. D. J. Labelled Compd. Radiopharm. 2002, 45, 1239.
- 32. Mock, B. H.; Mulholland, G. K.; Vavrek, M. T. Nucl. Med. Biol. 1999, 26, 467.
- 33. Jewett, D. M. Appl. Radiat. Isot. 1992, 43, 1383.
- Zheng, Q.-H.; Mulholland, G. K. Nucl. Med. Biol. 1996, 23, 981.
- 35. Zheng, Q.-H.; Fei, X.; Liu, X.; Wang, J.-Q.; Sun, H. B.; Mock, B. H.; Stone, K. L.; Martinez, T. D.; Miller, K. D.; Sledge, G. W.; Hutchins, G. D. *Nucl. Med. Biol.* **2002**, *29*, 761.
- Zheng, Q.-H.; Fei, X.; DeGrado, T. R.; Wang, J.-Q.; Stone, K. L.; Martinez, T. D.; Gay, D. J.; Baity, W. L.; Mock, B. H.; Glick-Wilson, B. E.; Sullivan, M. L.; Miller, K. D.; Sledge, G. W.; Hutchins, G. D. *Nucl. Med. Biol.* 2003, *30*, 753.
- 37. Fei, X.; Zheng, Q.-H.; Liu, X.; Wang, J.-Q.; Sun, H. B.; Mock, B. H.; Stone, K. L.; Miller, K. D.; Sledge, G. W.; Hutchins, G. D. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 2217.
- Fei, X. S.; Zheng, Q.-H.; Hutchins, G. D.; Liu, X.; Stone, K. L.; Carlson, K. A.; Mock, B. H.; Winkle, W. L.;

Glick-Wilson, B. E.; Miller, K. D.; Fife, R. S.; Sledge, G. W.; Sun, H. B.; Carr, R. E. J. Labelled Compd. Radiopharm. 2002, 45, 449.

39. Zheng, Q.-H.; Stone, K. L.; Mock, B. H.; Miller, K. D.; Fei, X.; Liu, X.; Wang, J.-Q.; Glick-Wilson, B. E.; Sledge, G. W.; Hutchins, G. D. Nucl. Med. Biol. 2002, 29, 803.

 Zheng, Q.-H.; Liu, X.; Fei, X.; Wang, J.-Q.; Mock, B. H.; Glick-Wilson, B. E.; Sullivan, M. L.; Hutchins, G. D. *Bioorg. Med. Chem. Lett.* 2003, 13, 1787.