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As a preliminary study directed towards the synthesis of a
stable analogue of the guanofosfocins, a methylene analogue
of the endocyclic oxygen atom in the mannose moiety, was
designed. The construction of the pseudo-�-mannosyl linkage
at the 8-position of the purine nucleoside was accomplished by
the regioselective ring-opening substitution of the 1,2-O-cyclic
sulfate derivative of 5a-carba-mannopyranose.

Guanofosfocins are a novel family of chitin synthase inhib-
itors, isolated from the fermentation broths of Streptomyces sp.
and Trichoderma sp.1 Despite their potent inhibitory activity
against Candida albicans CHS 2, a further investigation of these
fascinating molecules has been hindered by their low stability.
In addition to their role as promising therapeutic agents against
fungous diseases, the guanofosfocins contain a highly distinctive
three component structure, a central part of which is a unique
glycosidic type bond between the 8-position of guanosine
and a D-mannose moiety. In earlier reports on the synthesis of
8-(mannopyranosyloxy)purine nucleosides, we disclosed that
three different approaches were possible for the construction
of such a glycosyl linkage.2–5 However, at the same time the
constructed glycosyl bonds were found to be easily hydrolyzed
under acidic conditions, affording 8-oxopurine nucleosides. In
contrast, an ethereal bond, for example, the 8-(cyclohexyloxy)-
purine nucleoside, was shown to be quite stable under the same
acidic conditions. Based on these findings, we designed the
carba-sugar analogues of the guanofosfocins, in which the endo-
cyclic oxygen atom of the mannose moiety is replaced by a
methylene group, as stable guanofosfocin analogues (Figure 1,
X = CH2).

6 In this letter, we describe our preliminary studies
of the synthetic route to 8-(5a-carba-�-D-mannopyranosyloxy)-
purine nucleoside.

The synthesis of 5a-carbamannose from (–)-quinic acid
was established by Shing and Tang.7,8 Based on this protocol,
our synthetic strategy for the stereoselective formation of the
pseudo-�-mannopyranosyl linkage features the regioselective
substitution of the 1,2-O-cyclic sulfate derivative of 5a-carba-
�-D-mannnopyranose by a nucleophile, derived from the 8-oxo-
purine nucleoside.9

The cyclohexene derivative 2 was obtained in five steps
from commercially available (–)-quinic acid (1) as described
by Shing and Tang.7,8 Treatment of the methyl ester 2 with
DIBAL-H afforded the alcohol 3, which was protected as a
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Figure 1. Structure of guanofosfocin A–C and their carba-ana-
logues.
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Scheme 1. Reagents and conditions: (i) Refs. 7 and 8; (ii)
DIBAL-H, THF, �20 to 0 �C; (iii) BnBr, NaH, DMF, 0 �C;
(iv) 9-BBN, THF, reflux, then H2O2 aq, NaOH aq, r.t.; (v) BnBr,
NaH, DMF, 0 �C; (vi) PrSH (2 equiv.), BF3.OEt2 (0.2 equiv.),
�78 to �20 �C; (vii) SOCl2, Py, CH2Cl2, 0

�C, RuCl3/n-H2O,
NaIO4, CCl4, CH3CN, H2O, r.t.
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benzyl ether to yield the cyclohexene 4. The double bond in 4
was subjected to a stereocontrolled hydroboration–oxidation
sequence at the less hindered �-face, exclusively furnishing
the cyclohexane derivative 5. After protection of the hydroxy
group as a benzyl ether, the attempt to remove the cyclohexyli-
dene acetal in 6 under acidic conditions failed due to the simul-
taneous cleavage of the TBS group. However, selective removal
of the cyclohexylidene group was fortunately accomplished
under acetal exchange conditions. The treatment of 6 with
two equiv. of PrSH in the presence of a catalytic amount of
BF3.OEt2 afforded a good yield of the diol 7, which was con-
verted into the cyclic sulfate 8 by the Sharpless method
(Scheme 1).10

The ring-opening substitution reaction was initially ex-
plored by employing sodium phenoxide as a simple nucleophile.
Treatment of the cyclic sulfate 8with sodium phenoxide in DMF
at 50 �C for 24 h, and then under acidic conditions, furnished a
mixture two phenoxy alcohols 9 and 10 with the desired re-
gioisomer as the predominant product. The regio- and stereo-
chemical assignments were based on the 1HNMR spectral anal-
yses of the alcohol 10 and an acetate derivative 11 due to signal
overlapping in 9. H-2 in 10 resonated at � 4.24 as a triplet
(J ¼ 9:2Hz), indicating that the C-2 phenoxy group was at
the equatorial position. H-1 in 11 appeared at � 4.53 (J1;2 ¼
5:1Hz), demonstrating that the C-1 phenoxy group was at the
axial position.
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As the model reaction using sodium phenoxide showed a
preferential regioselectivity, a purine nucleoside was next em-
ployed as the nucleophile. The 8-oxoadenosine derivative 12,
easily accessible from the commercially available 20,30-O-iso-
propylideneadenosine in four steps, was treated with sodium hy-
dride in DMF at r.t. for 15min, and then added to the DMF solu-
tion of 8. After stirring at 50 �C for 23 h, acid-hydrolysis afford-
ed the desirable substitution product 13 in 69% yield along with
the 9% yield of the regio isomer 14. In this case, the good regio-
selectivity observed was most likely due to the bulkiness of the
nucleophile 12 that would preferentially attack the sterically
favorable C-1 position in 8. Again, H-200 in 14 appeared at �
5.21 as a triplet (J ¼ 9:5Hz), reflecting the doubled ax–ax cou-
plings, whereas H-100 in 13 appeared at � 5.30 as a broad singlet.
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In conclusion, the ring-opening substitution of the 1,2-O-
cyclic sulfate of the 5a-carbamannopyranose derivative predom-
inately proceeded at the C-1 position, affording 8-(5a-carba-
�-D-mannopyranosyloxy)purine nucleoside in good yield. A
further investigation employing an 8-oxoguanosine derivative
as a nucleophile as well as the ring-closure reaction between
the 50-position of the nucleoside and 3-OH of the pseudo-man-
nose is currently underway.

This paper is dedicated to Professor Teruaki Mukaiyama on
the occasion of his 80th birthday.
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