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SUMMARY

Nonribosomal peptide synthetases (NRPSs) protect
microorganisms from environmental threats by pro-
ducing diverse siderophores, antibiotics, and other
peptide natural products. Their modular molecular
structure is also attractive from the standpoint of
biosynthetic engineering. Here we evaluate a meth-
odology for swapping module specificities of these
mega-enzymes that takes advantage of flavodoxin-
like subdomains involved in substrate recognition.
Nine subdomains encoding diverse specificities
were transplanted into the Phe-specific GrsA initia-
tion module of gramicidin S synthetase. All chimeras
could be purified as soluble protein. One construct
based on a Val-specific subdomain showed sizable
adenylation activity and functioned as a Val-Pro
diketopiperazine synthetase upon addition of the
proline-specific GrsB1 module. These results sug-
gest that subdomain swapping could be a viable
alternative to previous NRPS design approaches tar-
geting binding pockets, domains, or entire modules.
The short length of the swapped sequence stretch
may facilitate straightforward exploitation of the
wealth of existing NRPS modules for combinatorial
biosynthesis.

INTRODUCTION

The evolutionary history of proteins provides a rich source of

ideas worthy of imitation by protein engineers (Glasner et al.,

2007). These ideas extend beyond single point mutations. Pro-

tein evolution ‘‘one amino acid at a time’’ (Bloom and Arnold,

2009; Tracewell and Arnold, 2009) alone cannot account for

the vast diversity of proteins found in the biological world. In

addition to incremental sequence optimization, genetic events

that perturb protein folds more drastically present shortcuts to

remote areas of the fitness landscape (Grishin, 2001; Lupas

et al., 2001). For example, gene fusions, circular permutations,

and illegitimate recombinations between unrelated genes (Lupas

et al., 2001) mix and match folding units of proteins. Compari-

sons of bacterial genomes show that protein domains from

one species are sometimes found as freestanding proteins in
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another species (Enright et al., 1999). In other cases, the free-

standing progenitors may no longer exist but can be inferred

from phylogenetic analyses and structural studies. The wide-

spread (b/a)8 fold of TIM barrel enzymes, for instance, is believed

to have arisen from fusion of two no longer extant half barrels

(Farı́as-Rico et al., 2014; Lang et al., 2000). Insertion-deletions

can also alter protein topology in a dramatic fashion (Grishin,

2001).

Protein engineering can be very successful when designers

turn to nature for inspiration. For instance, introduction of point

mutations, screening, selection, and recombination in directed

evolution experiments is nothing more than a recapitulation of

Darwinian evolution in the laboratory (Jäckel and Hilvert, 2010).

In analogy to homologous recombination in nature, family shuf-

fling of genes takes advantage of the natural diversity in a protein

family to boost activity in laboratory evolution (Crameri et al.,

1998; Minshull and Stemmer, 1999). Circular permutation, too,

is a tool that has been used for protein engineering, for example

tomodulate substrate specificity of the ene-reductase old yellow

enzyme (Daugherty et al., 2013). In another impressive design

effort, a (b/a)8 barrel was illegitimately recombined with a (b/a)4
motif excised from a flavodoxin fold (Bharat et al., 2008), thereby

swapping four strands of the barrel. Only a few mutations were

needed to restore stability and ligand binding capability to the

artificial fusion protein (Eisenbeis et al., 2012). Mixing andmatch-

ing of protein fragments has also been successfully applied to

multimodular natural product synthetases (Calcott and Ackerley,

2014; Cane et al., 1998; Williams, 2013).

Domains of modular nonribosomal peptide synthetases

(NRPSs) (Tanovic et al., 2008), polyketide synthetases, and fatty

acid synthetases (Smith and Tsai, 2007) lend themselves to en-

gineering by fragment recombination because they are con-

nected like beads on a string. NRPSs, for example, are

multienzyme clusters in which the number and order of domains

usually determines the sequence of the synthesized peptide.

Adenylation (A), condensation (C), and thiolation (T) domains

work together in modules that elongate nascent peptides by

successive addition of amino acids. Permutation of NRPS

domains and individual modules has shown great promise for

the purposeful, combinatorial biosynthesis of novel peptides

(Calcott and Ackerley, 2014; Cane et al., 1998; Kries and Hilvert,

2011; Williams, 2013).

In a seminal study, Stachelhaus et al. engineered surfactin A

synthetase by transplanting A domains to alter amino acid spec-

ificities (Stachelhaus et al., 1995). Module deletions (Mootz et al.,

2002), insertions (Butz et al., 2008), and fusions of unrelated
Ltd All rights reserved
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Figure 1. A Flavodoxin-like Subdomain Is

Responsible for Substrate Binding in A

Domains

(A) Topological map of the A domain fold, adapted

from Conti et al. (1997). Circles and arrows

symbolize helices and b-strands, respectively.

Approximate positions of binding pocket residues

are indicated in red. The subdomain of the protein

containing all variable binding pocket residues is

shown in blue.

(B) Cartoon structure of the subdomain in rainbow

colors from the N terminus (blue) to the C terminus

(red). The surface of the residues lining the L-Phe

binding pocket is shown as a red mesh. The sec-

ondary structure elements are characteristic of a

flavodoxin-type fold.

(C) Homology score of an alignment of GrsAA with

all A domains from GrsB. The homology score

was calculated with jalview (Waterhouse et al.,

2009) taking into account the physicochemical

similarity of residues (Livingstone and Barton,

1993) and averaged over awindowof 30 sequence

positions. Binding pocket residues are shown as

red diamonds.
modules (Duerfahrt et al., 2003; Mootz et al., 2000) identified

additional degrees of freedom for combinatorial biosynthesis.

Mechanistic investigations of individual domains helped to

circumvent unproductive module combinations (Belshaw et al.,

1999). Later, the discovery of small, terminal domains that

mediate noncovalent module communication enabled the func-

tional connection of noncognate modules (Hahn and Stachel-

haus, 2004).

Cutting and pasting individual domains or entire modules has

become standard practice in NRPS engineering (Baltz, 2012;

Calcott et al., 2014; Duerfahrt et al., 2003; Mootz et al., 2000,

2002; Schauwecker et al., 2000; Schneider et al., 1998; Stachel-

haus et al., 1995). Nevertheless, this approach is not always

robust. In the past, the focus has been on changing the order

of the beads on the string—essentially the individual C, A, and

T domains—because the flexible linkages between them are

believed to be rather insensitive to changes (Udwary et al.,

2002). However, the bead on a string metaphor is not necessarily

the best guide for NRPS engineering. Spatial and temporal coor-

dination of domain interactions is still poorly understood. As a

consequence, domain and module swaps often result in low ac-

tivities (Fischbach et al., 2007; Schneider et al., 1998; Stachel-

haus et al., 1995). Alternatively, synthetases can be tailored by

fine-tuning individual domains, usually the specificity-deter-

mining A domains (Eppelmann et al., 2002; Evans et al., 2011;

Kries et al., 2014; Thirlway et al., 2012), but the specificity

changes that can be achieved are typically conservative.

Here, we investigate an alternative strategy for modulating A

domain specificity in NRPSs that takes advantage of modularity

on a subdomain structural level. We identify a compactly folded

subdomain of the A domain that encompasses the specificity-
Chemistry & Biology 22,
determining binding pocket region. Transplantation of such sub-

domains into a phenylalanine-encoding A domain affords a

chimera that functions in peptide formation.

RESULTS

Engineering Strategy
We scanned the GrsAA adenylation domain from the first module

of gramicidin S synthetase for a sequence stretch suitable for

specificity engineering of NRPSs. Such a sequence stretch

should meet several criteria. First, all residues relevant for sub-

strate recognition in the A domain should be included. Second,

it should be short. Third, the tertiary structure should be

compact. And fourth, functionally relevant domain interfaces

should be avoided.

Inspection of the GrsAA structure (PDB: 1AMU) (Conti et al.,

1997) suggested a 132-residue-long segment encompassing

the active site (T221 to I352) as a possible binding subdomain

(Figure 1). This protein fragment has a flavodoxin-like topology

(Figure 1): a parallel, five-stranded b-sheet sandwiched by a-he-

lices with the first two strands of the sheet in inverted order

(Eisenbeis et al., 2012). A sixth strand at the C terminus was

included because it is part of the same b-sheet. The flavodoxin

fold has been classified as one of nine ancestral protein folds

to which all fold diversity observed today can be traced (Cae-

tano-Anollés et al., 2007). NRPS adenylation domains belong

to the ANL superfamily of enzymes (Gulick, 2009), which also in-

cludes acyl-CoA synthetases and firefly luciferase. It is tempting

to speculate that the evolutionary history of the ANL superfamily

might have begun with a freestanding flavodoxin-like subunit

that later became embedded within a larger scaffold.
640–648, May 21, 2015 ª2015 Elsevier Ltd All rights reserved 641
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Figure 2. Pyrophosphate Exchange Assay with Subdomain-

Swapped GrsA Variants

Exchange between 1mM 32P-labeled pyrophosphate (PPi) and 5mMATPwas

measured for 2 hr catalyzed by 5 mM enzyme in the presence of 1 mM amino

acid substrate. Background without amino acid is subtracted. Error bars

indicate the SD of four replicates with one batch of protein. With sdV-GrsA

additionally purified by anion exchange chromatography, PPi exchange in-

creases to 18%.

Table 1. Michaelis-Menten Parameters of NRPS Modules

Enzyme Substrate kcat (min�1) KM (mM) kcat/KM (mM�1 min�1)

GrsB2 L-Val 100 ± 30 21 ± 3 4.5 ± 0.7

sdV-GrsA L-Val 50 ± 20 160 ± 30 0.3 ± 0.1

sdV-GrsA L-Phe n.d.a n.d. 0.07 ± 0.03

Michaelis-Menten parameters were measured for the adenylation partial

reaction in a pyrophosphate exchange assay (Otten et al., 2007). Errors

are given as the SD of at least four independent measurements with

different batches of protein.
an.d., not determined due to the absence of substrate saturation.
The sequence of the binding subdomain comprises only 24%

of the 558 A domain residues, but includes nine of ten binding

pocket residues correlated with substrate specificity (Challis

et al., 2000; Stachelhaus et al., 1999). In the absence of informa-

tion about NRPSdynamics, it is unclear whether the binding sub-

domain is part of interaction networks relevant for substrate

recognition and catalysis. In the only available crystal structure

of an entire module (SrfA-C; PDB: 2VSQ) (Tanovic et al., 2008),

inevitably a static picture, the binding subdomain does not

engage in interdomain contacts. The structure of an A-T bido-

main suggests, however, that certain subdomain residues are

probably involved in T domain binding (Sundlov et al., 2012).

Subdomain swapping occurred at least once during the evolu-

tion of natural NRPSs. Genetic analysis of the NRPS for hormao-

mycin revealed A domains with nucleotide identities in the range

of 90% but different specificities (Höfer et al., 2011). Within these

almost identical A domain genes, only a stretch of ca. 400 base

pairs (bp) encoding active site residues showed lower identities.

This observation was interpreted as the likely result of a genetic

recombination event that transferred the specificity-determining

portion of one domain into the protein scaffold of another.

Indeed, using the sequence boundaries inferred from the natural

recombination event (K205 to A322 in GrsAA numbering), evolu-

tion-guided genetic recombination of hormaomycin domains in

the laboratory succeeded in transplanting A domain specificity

in three of five cases (Crüsemann et al., 2013).

Constructs
The feasibility of exploiting subdomain swaps for NRPS engi-

neering with our structure-guided boundaries was tested with

nine constructs based on the D-Phe-encoding initiation module

GrsA. In addition to the canonical AT domain, GrsA contains

an E domain for epimerization of the amino acid. Subdomains

were excised from all four A domains of the second protein

from gramicidin S synthetase, GrsB, yielding constructs sdX-
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GrsA, where X stands for the amino acid specificity of the subdo-

main (X = P, V, O, L). The recombination partners and GrsAA had

pairwise sequence identities in the range of 44%–48% (Table S1)

and showed relatively low sequence conservation in the region

of the subdomain (Figure 1C; Table S1). An additional set of

five subdomains was obtained from several other organisms,

yielding constructs sdX2-GrsA (X = R, Q, L, F, and W). For the

second set, recombination partners possessing similarly high

levels of identity to GrsAA as the first set (38%–48%; Table S1)

but different specificities were retrieved from an annotated

collection of partial A domain sequences (K198 to T334) (Röttig

et al., 2011) by a BLAST search (Altschul et al., 1990).

All nine constructs were expressed as phosphopantetheiny-

lated holoenzymes in Escherichia coli strain HM0079 (Gruene-

wald et al., 2004) and purified by NiNTA affinity and anion

exchange chromatography. Each construct was isolated as

soluble protein in quantities ranging from 5 to 21 mg/l (GrsA,

26 mg/l; Figures S1A and S1B). Successful incorporation of the

phosphopantetheine prosthetic group into sdV-GrsA was indi-

cated by electrospray ionization mass spectrometry (ESI-MS)

(Figure S2: calc., 128,848 Da; meas., 128,880 Da). Corroborating

evidence was obtained by MALDI-tandem mass spectrometry

(MS/MS) analysis of the trypsin digested protein, which

yielded the mass for the phosphopantetheinylated peptide

IGIKDNFYALGGDS(ppant)IK (calc., 2050.992 Da; meas.,

2050.869 Da) with the cofactor attached to Ser578, as expected.

A fragment with amass corresponding to the unmodified peptide

was not found. Together, these results clearly show that the

variant created by subdomain swapping is efficiently phospho-

pantetheinylated by the genomically encoded Sfp. Circular di-

chroism (CD) spectra of six constructs, including sdV-GrsA,

resemble that of GrsA (Figure S1C). Evidently, despite the heavy

mutational load of more than 80 amino acid substitutions and

two to four insertions or deletions, structural integrity was not

substantially compromised.

Adenylation Activity
We measured adenylation activities of all nine constructs using

a pyrophosphate exchange assay (Otten et al., 2007). In an

initial screen, sdV-GrsA, sdL-GrsA, sdF2-GrsA, and sdL2-GrsA

showed significant pyrophosphate exchange activity stimulated

by the respective target amino acid at 1 mM (Figure 2). Kinetic

analysis of sdV-GrsA revealed a slightly reduced kcat (50 min�1)

for valine and an elevated KM (160 mM) compared with GrsB2,

the source of the subdomain (kcat = 100 min�1; KM = 21 mM;

Table 1). As a consequence, the apparent second-order rate

constant kcat/KM for the chimera was 15-fold lower than for
Ltd All rights reserved
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Figure 3. Specificity of sdV-GrsA Is Remi-

niscent of Wild-Type A Domains

Adenylation kinetics of (A) GrsA, (B) sdV-GrsA, and

(C) GrsB2 were measured with all proteinogenic

amino acids as substrates (abbreviated in one-

letter code) at 1 mM substrate concentration. Re-

actions with the preferred amino acid substrate

were quenched at 10%–15% conversion and all

others were normalized to this value. Error bars

depict the SD from four measurements with the

same enzyme batch.

(D) A homology model of sdV-GrsAA (left) in

comparison with the crystal structure of GrsAA

(right) (Conti et al., 1997). The protein is cut away

in the plane of the amino acid binding pocket.

Amino acid ligands are shown as spheres (left,

L-Val; right, L-Phe; green, carbon; red, oxygen;

blue, nitrogen) and protein sidechains as cyan

sticks.
GrsB2. Detailed kinetic characterization of other active con-

structs proved challenging probably due to low kcat values.

In analogous experiments, Crüsemann et al. (2013) obtained

active A domains upon swapping subdomains within the hor-

maomycin NRPS. However, constructs with subdomains from

unrelated synthetases showed no activity. The observation of

substantial adenylation activity in sdF2-GrsA and sdL2-GrsA

(Figure 2) demonstrates that species borders need not be pro-

hibitive for a subdomain swap approach.

Adenylation Specificity
Confronted with a plethora of cellular metabolites, including

many amino acids, NRPSs have to be specific, a property gener-

ally attributed to A domains (Villiers and Hollfelder, 2009), which

activate the appropriate amino acid and covalently tether it to the

assembly line. We mapped the substrate specificity of GrsA,

sdV-GrsA, and the subdomain donor GrsB2 with all 20 standard

amino acids at 1 mM substrate concentration (Figures 3A–3C).

The specificity profile shows that the sdV-GrsA chimera is as se-

lective as the native GrsA domain under these conditions (Villiers

and Hollfelder, 2009) but less discriminating than GrsB2. L-Val

gave the highest activity, as expected by design, followed by

L-Leu and L-Phe. However, because the kinetics were measured

at a single substrate concentration, this specificity profile is only

a snapshot of the complex situation in the cell. The preference of

sdV-GrsA for L-Val over L-Phe, in terms of kcat/KM parameters

(Table 1), is roughly four-fold.

A homology model of sdV-GrsAA, constructed on the Swiss-

Model server (Biasini et al., 2014) using the crystal structure of

the GrsAA PheA domain (PDB: 1AMU) (Conti et al., 1997) as a

template, rationalizes the substrate preferences of the chimera.

After manually docking the L-Val substrate and AMP into the

structure, the complex was optimized with the Rosetta Relax

protocol (Leaver-Fay et al., 2011). In qualitative agreement with

the measured substrate profile (Figure 3B), L-Val fits snuggly in

the modeled binding pocket, which is contracted compared
Chemistry & Biology 22,
with GrsAA (Figure 3D), whereas L-Phe would experience severe

steric clashes.

DKP Synthesis
The ability of the subdomain-swapped sdV-GrsA to communi-

cate with other domains and modules was tested in an artificial

diketopiperazine (DKP) synthetase consisting of sdV-GrsA and

GrsB1, the second module from gramicidin S synthesis (Fig-

ure 4A). GrsB1 is a typical proline-specific elongation module

with C, A, and T domains. DKP synthetases provide a convenient

sensor for peptide formation activity because the required mod-

ules are reasonably small and can be expressed and assayed

in vitro (Gruenewald et al., 2004; Kries et al., 2014; Stachelhaus

et al., 1998). The cyclized DKP products are readily detected by

liquid chromatography (LC)-MS.

When combined with GrsB1, sdV-GrsA stimulated significant

DKP formation. The expected product, D-Val-L-Pro DKP, was de-

tected by LC-MS along with 25% unepimerized L-Val-L-Pro DKP

(Figure 4B). The engineered sdV-GrsA/GrsB1 synthetase incor-

porated L-Val with a kobs of 0.003 min�1 (Figure 4C), 300 times

slower than the wild-type GrsA/GrsB1 system, which produces

D-Phe-L-Pro DKP with a kobs of 0.9 min�1 (Kries et al., 2014).

Despite the large structural transition from the native substrate

L-Phe to L-Val, all domains remain at least partially functional.

DISCUSSION

Combinatorial biosynthesis of natural products is a powerful

strategy employed by natural evolution. The notion that modular

machines like NRPSs and PKSs are also a valuable resource for

biosynthetic engineering in the laboratory has attracted broad

attention over the last two decades (Calcott and Ackerley,

2014; Cane et al., 1998; Hur et al., 2012; Kries and Hilvert,

2011; Williams, 2013). While the chemical logic underlying effi-

cient assembly of polyketides and nonribosomal peptides has

been elucidated in detail, modifying these mega-enzymes for
640–648, May 21, 2015 ª2015 Elsevier Ltd All rights reserved 643
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Figure 4. Peptide Synthesis by sdV-GrsA/GrsB1

(A) Mechanism of DKP formation. A, adenylation domain; E, epimerization

domain; C, condensation domain; T, thiolation domain.

(B) Extracted ion chromatograms (m/z 197.12 ± 0.5) of a synthetic standard

for D-Val-L-Pro DKP (1) and L-Val-L-Pro DKP (2), and an enzymatic reaction with

sdV-GrsA and GrsB1 (3).

(C) Kinetics of Val-Pro DKP formation monitored by LC-MS. Error bars depict

the SD of three independent measurements with three batches of protein.

Errors were below 11%when measurements were repeated with the same set

of proteins. The large batch-to-batch variation is probably due to impurities in

GrsB1, which was obtained in low yield.
the production of novel antibiotics and other drugs has proved

challenging (Wilkinson and Micklefield, 2007).

Efforts directed at biosynthetic engineering of natural prod-

ucts should be redoubled for several reasons. First, the number

of building blocks for biosynthetic engineering is growing expo-

nentially in the postgenomic era with every microbial genome

deposited in a public database. Second, the field of enzyme

design and redesign is maturing as increasingly robust methods

for the design and optimization of biocatalysts are emerging
644 Chemistry & Biology 22, 640–648, May 21, 2015 ª2015 Elsevier
(Kries et al., 2013). Third, technological innovations are helping

to unravel the dynamic processes in natural product synthetases

(Dutta et al., 2014; Whicher et al., 2014). Many problems associ-

ated with combinatorial biosynthesis today may thus be allevi-

ated in the near future.

What would a reliable platform for the biosynthetic diversifica-

tion of nonribosomal peptides look like? Juggling genetic frag-

ments several kilobases long is clearly not an easy task. Our

findings support the feasibility of an alternative approach based

on genetic parts—binding subdomains—that are only �400 bp

long and, in contrast to genes of individual A domains or entire

modules, amenable to gene synthesis. Modern sequencing

technologies are providing metagenomic data from heteroge-

neous environmental samples, circumventing the need for

monoclonal DNA constructs. As a consequence, sequence da-

tabases are continuously growing and include data from organ-

isms that cannot be cultivated (Venter et al., 2004; Wilson and

Piel, 2013). Subdomain swaps with synthetic genes provide a

potentially powerful means to exploit these databases for combi-

natorial biosynthesis.

Subdomain exchange in NRPSs is likely to be an ancient

evolutionary strategy. Crüsemann et al. (2013) have argued

that swapping subdomains by evolutionary recombination

events shaped the hormaomycin gene cluster. Based on the

presence of a flavodoxin-like folding unit embedded within the

A domain structure (Figure 1), we inferred slightly different sub-

domain boundaries than those deduced for hormaomycin.

Both frames are similar but our subdomain stretch is shifted by

approximately one secondary structural element toward the

C terminus. Interestingly, Crüsemann et al.’s more N-terminal

evolution-guided frame does not include two residues of the

specificity code proposed by Stachelhaus et al. (1999) (residues

330 and 331 in GrsAA). One of these residues (amino acid 331) is

also missing in the specificity code proposed by Challis et al.

(2000) because it was argued to point away from the substrate.

Adenylation activities and specificity profiles of subdomain-

swapped constructs created with the more N-terminal frame

indicate that these residues are not necessary for specificity

transplantation in every case. Nevertheless, the beta hairpin

motif containing these residues directly contacts the substrate,

whereas the first helix of the evolution-guided subdomain,

which is not included in our structure-guided frame, contains

only second-shell residues. The more C-terminal frame is

altogether more proximal to the substrate binding pocket. In

the future, experimentally comparing different frames from one

subdomain sourcemay help delineate the best frame for efficient

swaps.

Our results extend those of Crüsemann et al. (2013) and

provide a proof-of-principle demonstration that a subdomain

swap strategy can yield active and selective A domain chi-

meras. In particular, our experiments show that such chimeric

A domains can function in the context of a dipeptide synthe-

tase. Although the yields are still low, the kinetic parameters

determined for sdV-GrsA (Table 1) indicate that adenylation is

not the kinetic bottleneck for DKP synthesis: sdV-GrsA has a

kcat of 50 min�1, which exceeds DKP formation rates measured

with TycA/TycB1 or GrsA/GrsB1 (Belshaw et al., 1999; Gruene-

wald et al., 2004; Kries et al., 2014) by more than an order

of magnitude. Hence, DKP formation in sdV-GrsA/GrsB1 is
Ltd All rights reserved



probably limited by one of the partial reactions following

adenylation.

Even though catalysis in the chimeras we studied was either

impaired to some extent or completely destroyed, repair of these

constructs might be relatively straightforward. A subdomain

swap is expected to perturb only a limited number of residues

at the hydrophobic interface between the subdomain and the

peripheral structure. Consequently, computational modeling,

coupled with laboratory evolution, might be exploited to identify

and remove inadvertently created voids and clashes (Evans

et al., 2011; Fischbach et al., 2007; Villiers and Hollfelder, 2011).

More detailed guidelines describing the individual strengths

and weaknesses of binding pocket, subdomain, domain, and

module swap for NRPS engineering should be established in

the future based on comprehensive and quantitative data. We

speculate that binding pocket mutagenesis will be the preferred

instrument to achieve small structural changes in substrate pref-

erence (Eppelmann et al., 2002; Evans et al., 2011; Kries et al.,

2014; Thirlway et al., 2012) since this approach is least likely

towreak havoc on the structural integrity of the synthetase. How-

ever, second-shell and long-range interactions that may be

crucial for larger changes in specificity are ignored by this

approach. If longer fragments are swapped, more profound

changes of the NRPS become feasible albeit at the expense of

possible disruptions of the surrounding machinery. Subdomain

swapping represents a compromise that allows transplantation

of virtually all the selectivity determining residues and minimiza-

tion of larger disturbances to the enzymatic machinery, but activ-

ity loss is still a significant risk. Selectivity filters in downstream

domains, for instance the C domain, may cause additional

problems.

Further information will be required to ascertain why some

swaps yield active enzymes and others do not. The best predic-

tor of success might be sequence identity of the donor and

acceptor A domains (Table S1). Structural similarity of the donor

and acceptor substrate likely plays a role as well (Figure 2). An

interesting question is whether subdomain swaps also transfer

binding elements for MbtH-like proteins, which often copurify

with A domains and are, in certain cases, required for activity

(Felnagle et al., 2010; Zhang et al., 2010). Structural analysis of

an A domain bound to an MbtH-like protein shows that the sub-

domain is far away from the binding interface (Herbst et al.,

2013). If binding subdomains do not participate in MbtH binding,

their transplantation might be more successful than domain or

module exchanges.

SIGNIFICANCE

Our results suggest that a design strategy inspired by the

fold architecture of A domains can be a viable alternative

to previous NRPS design approaches focusing on domains,

modules, and binding pocket mutagenesis. Since binding

subdomains are considerably shorter than domains or

modules, subdomain swapping could pave the way for

NRPS engineering based on bioinformatic searches and

gene synthesis. A simplified procedure for combinatorial

biosynthesis of nonribosomal peptides based on subdomain

swaps may accelerate the development of new peptide

drugs in the future.
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EXPERIMENTAL PROCEDURES

General Cloning

Procedures for cloning and media preparation were adapted from standard

protocols (Russell and Sambrook, 2001). General cloning was carried out in

Escherichia coli strain XL1-Blue (Stratagene). Microsynth AG synthesized the

custom oligonucleotides that were used as PCR primer (Table S2) and per-

formed Sanger sequencing of all inserts amplified by PCR. Restriction en-

zymes and DNA polymerases were purchased from New England BioLabs

Inc. Detailed protocols for plasmid isolation, gel electrophoresis, transforma-

tion, PCR, and ligation can be found in the Supplemental Information.

pSU18_grsB2_AT

For the cloning of expression plasmid pSU18_grsB2_AT encoding the AT bido-

main of the internal module GrsB2 (Table S3), the gene was amplified by PCR

from Aneurinibacillus migulanus genomic DNA in two fragments a and b.

Fragment awasamplifiedwith primer pair grsb2_a_f/grsb2_EcoRI_del_r. Frag-

ment b was amplified with primer pair grsb2_EcoRI_del_f/grsb2_b_r. The

primer grsb2_EcoRI_del_f introduces a silent mutation in order to delete an

EcoRI site inside the gene. Fragments a and b were assembled by PCR

using primer pair grsb2_a_f/grsb2_b_r. The full-length gene was ligated into

the pSU18 vector via the EcoRI and BamHI restriction sites. The resulting

plasmid encodes residues K1549 to G2083 of GrsB2 (UniProt: P0C063), an

additional N-terminal methionine and a C-terminal –GSRSH6 tag.

Subdomain-Swapped pSU18_mgrsA Constructs

Construction of plasmids pMG211_mgrsAA0, pSU18_mgrsA, and pTrc99a_

grsB1 has been described previously (Kries et al., 2014). In plasmids

pMG211_mgrsAA0 and pSU18_mgrsA, the subdomain stretch of grsAA is

flanked by restriction sites that can be harnessed for exchanging the subdo-

main. The subdomain encoding sequences of grsB were amplified from

A. migulanus genomic DNA by PCR using primers mXbeg_f and mXend_r,

where X indicates the specificity of the subdomain in grsB in one-letter amino

acid code (X = V, L, O, P). At the 50-end of the subdomain, the mXbeg_f primer

spans the EcoRI restriction site and the beginning of the subdomain. In order

to append a stretch between the 30-end of the subdomain and the SacI

restriction site, a second fragment was amplified with primers mend_f and

T7TR. The overlapping fragments were assembled by PCR and cloned into

pMG211_mgrsAA0 via the EcoRI and SacI sites. From pMG211_mXgrsAA0

constructs, AflII/SacI fragments encoding the subdomain were cut out and

cloned into pSU18_mgrsA.

A second generation of subdomain swap variants was constructedwith syn-

thetic, codon-optimized gene fragments ordered from ATG:biosynthetics

GmbH that encode subdomains for the substrates Phe, Trp, Leu, Gln, and

Arg (Table S4). Sequences of these subdomains were retrieved from data-

bases (Table S3).

Protein Production, Purification and Mass Spectrometry

Phosphopantetheinylated proteins were expressed in E. coli HM0079 (Grue-

newald et al., 2004) and purified by affinity chromatography on NiNTA similar

to a previously described procedure (Kries et al., 2014). Bacterial cultures

were grown in LB medium containing 20 mg/ml chloramphenicol for pSU18

constructs and 150 mg/ml ampicillin for pTrc99a_grsB1. Protein production

was induced by adding 250 mM isopropyl b-D-1-thiogalactopyranoside to

500 ml of culture incubated in a rotary shaker at 37�C and 250 rpm. Cells

were harvested by centrifugation after 16–20 hr at 18�C and lysed by sonicat-

ion in 50 mM Tris-HCl (pH 7.4), 0.5 M NaCl supplemented with 1 mg/ml

chicken egg white lysozyme, 1 mM tris(2-carboxyethyl)phosphine (TCEP),

and protease inhibitor (Sigma, P8849). The cleared lysate was applied to

NiNTA columns. The columns were washed with 50 mM Tris-HCl (pH 7.4),

0.5 M NaCl containing 20 mM imidazole, and 1 mM TCEP and eluted with

the same buffer containing 300 mM imidazole. Protein was washed with

assay buffer in Amicon Ultra-15 centrifugal filters (30 kDa cut-off, Millipore).

Concentrations were measured spectrophotometrically using predicted

extinction coefficients at 280 nm. For determining Michaelis-Menten param-

eters, protein was additionally purified by anion exchange chromatography

on Mono Q HR 10/10 columns connected to a Biologic Duo Flow fast protein

liquid chromatography system (Bio-Rad Laboratories Inc.). Protein was
640–648, May 21, 2015 ª2015 Elsevier Ltd All rights reserved 645



eluted with a gradient of 20–400 mM NaCl in 20 mM Tris-HCl (pH 8). The

molecular mass of sdV-GrsA was determined after extensive washing with

0.1% acetic acid by ESI-MS on a Bruker maXis ESI-Qq-TOF-MS. For

MALDI-MS/MS, the sample was precipitated with 10% trichloroacetic acid,

washed with cold acetone, dissolved in 10 mM Tris (pH 8.2) buffer supple-

mented with 2 mM CaCl2, and digested with 500 ng of trypsin for 34 min at

60�C in a microwave. The resulting peptide fragments were measured on a

Bruker Ultraflextreme.

Adenylation Kinetics

Adenylation kinetics were recorded with a 96-well pyrophosphate exchange

assay as described previously (Kries et al., 2014; Otten et al., 2007). Reactions

were conducted at room temperature (22–24�C) in B&W Isoplate-96 plates

(Perkin Elmer) in a volume of 60 ml of buffer (50 mM Tris-HCl [pH 7.4],

10 mM MgCl2, 1 mM TCEP, 0.1 mg/ml BSA) in the presence of 0.1 mM inor-

ganic pyrophosphate (PPi) labeled with ca. 0.02 mCi 32P-PPi (Perkin Elmer),

2 mM ATP (Sigma A7699), and varying enzyme and substrate concentrations.

In the activity screen (Figure 2), higher concentrations of PPi (1 mM) and ATP

(5 mM) were employed. Reactions were quenched with 60 ml of a 1.6% char-

coal suspension in an aqueous solution of 3.5% HClO4 and 3.5% Na4P2O7.

The charcoal was pelleted by centrifugation and washed twice with 200 ml

of water. After resuspending the charcoal in 150 ml of scintillation mix

(Optiphase Supermix, Perkin Elmer), scintillation was measured in a Micro-

plate Scintillation & Luminescence Counter TopCount NXT (Perkin Elmer).

Steady-state parameters were determined by fitting initial velocities of 32P-

PPi incorporation to the Michaelis-Menten equation in Kaleidagraph (Synergy

Software).

CD Spectroscopy

CD of the protein samples was measured on a JASCO J-715 spectropolarim-

eter from 200 to 260 nm in 0.5-nm steps at a scanning speed of 20 nm/min and

a response time of 2 s. Samples were kept at 25�C in a quartz cuvette with a

pathlength of 0.2 cm. Protein was diluted in low-salt phosphate buffer

(10 mM Na2HPO4 [pH 7.5], 10 mM NaCl). A buffer blank was subtracted and

curves were smoothed by averaging ellipticities from four wavelengths.

Mean residual ellipticities (MRE) were calculated according to the following

equation: MRE =Qobs/(10 3 lcn), where Qobs is the ellipticity measured in de-

grees, l the optical pathlength in cm, c is the molar enzyme concentration, and

n is the number of protein residues.

DKP Formation Assay

Module sdV-GrsA was tested for DKP formation in combination with GrsB1 at

5 mMconcentration of each protein in 50mMHEPES buffer supplementedwith

10 mM MgCl2, 100 mM NaCl, 5 mM ATP, 1 mM TCEP, and 1 mM L-Val and

L-Pro. HEPES buffer, MgCl2, and NaCl were added from a 20-fold stock solu-

tion adjusted to pH 8.0. Reactions were conducted at 37�C in a volume of

500 ml. Aliquots of 100 ml were removed at the indicated time points and

quenched by heat denaturation for 3 min at 95�C. For LC-MS analysis,

protein was removed by centrifugation for 5 min at 16,000 g. Samples were

analyzed on an Agilent HPLC system (1200) equippedwith a 33 30mmAgilent

RP-C18 column (3.5 mm particle size) connected to a Bruker maXis ESI-Qq-

TOF mass spectrometer. Comparison of peak areas in extracted ion chro-

matograms to a linear regression curve obtained with an authentic standard

allowed quantification of the DKP product (Figure 4C). Diastereomers of Val-

Pro DKP were separated on an Xbridge C18 column with 3.5-mm particle

size (Figure 4B).

DKP Standards

L-Val-L-Pro DKP was purchased from Bachem (G-4730) as a standard for LC-

MS. D-Val-L-Pro DKP was synthesized by standard Boc solid-phase peptide

synthesis on a Merrifield resin according to published protocols (Gisin and

Merrifield, 1972). All synthesis steps were conducted at room temperature in

a 15-ml reaction vessel equipped with a glass frit and a nitrogen inlet for agita-

tion. Boc-protected L-Pro precoupled to Merrifield resin (Bachem, 0.9 mmol/g,

200–400 mesh) was deprotected with trifluoroacetic acid (TFA) in CH2Cl2
(1:1, v/v) (23 5ml for 15min), washed with CH2Cl2 (33 5ml for 2 min), neutral-

ized with diisopropylethyl amine (DIPEA) in CH2Cl2 (1:19, v/v; 2 3 5 ml for

3 min), and washed again with CH2Cl2 (3 3 5 ml for 2 min). Boc-protected
646 Chemistry & Biology 22, 640–648, May 21, 2015 ª2015 Elsevier
D-Val (Bachem) was activated with N,N0-diisopropylcarbodiimide (1.1 eq.)

and DIPEA (3 eq.) for 2 min and coupled to the deprotected L-Pro resin for

4 hr. After alternating washing with CH2Cl2 and dimethylformamide (each

3 3 5 ml for 2 min), the coupling step was repeated overnight. The resulting

Boc-protected dipeptide was deprotected with TFA in CH2Cl2 (1:1, v/v) and

washed with CH2Cl2 (3 3 5 ml for 2 min). The deprotected dipeptide was

cleaved from the resin by cyclization with acetic acid in CH2Cl2 (0.1 M) for

1 hr and the resin was washed with CH2Cl2. Evaporation of solvent in vacuo

yielded pure D-Val-L-Pro DKP as a white solid (88% yield) without further puri-

fication. The 1H-NMR spectrumwas in good agreement with a published refer-

ence (Hendea et al., 2006). 1H-NMR (300 MHz, CD3OD): d 4.14 (dd, J = 9.9,

6.5 Hz, 1H), 3.50 (dd, J = 6.1, 0.8 Hz, 1H), 3.59–3.32 (m, 2H), 2.32–2.16

(m, 1H), 2.04 (dq, J = 13.6, 6.8 Hz, 1H), 1.96–1.68 (m, 3H), 0.91 (dd, J = 9.8,

6.8 Hz, 6H). LC-MS, 197.13 m/z (M + H+, 197.12 m/z).

SUPPLEMENTAL INFORMATION

Supplemental Information includes supplemental protocols, two figures, and

four tables and can be found with this article online at http://dx.doi.org/10.
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