Accepted Manuscript

Transition-Metal-Free, Visible-Light-Mediated Regioselective C–H Trifluoromethylation of Imidazo[1,2-a]pyridines

Qiguang Zhou, Song Xu, Ronghua Zhang

PII:	S0040-4039(19)30111-X
DOI:	https://doi.org/10.1016/j.tetlet.2019.02.003
Reference:	TETL 50597
To appear in:	Tetrahedron Letters
Received Date:	22 December 2018
Revised Date:	21 January 2019
Accepted Date:	1 February 2019

Please cite this article as: Zhou, Q., Xu, S., Zhang, R., Transition-Metal-Free, Visible-Light-Mediated Regioselective C–H Trifluoromethylation of Imidazo[1,2-a]pyridines, *Tetrahedron Letters* (2019), doi: https://doi.org/10.1016/j.tetlet.2019.02.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Tetrahedron Letters

journal homepage: www.elsevier.com

Transition-Metal-Free, Visible-Light-Mediated Regioselective C–H Trifluoromethylation of Imidazo[1,2-a]pyridines

Qiguang Zhou^{a, b}, Song Xu^{a, b} and Ronghua Zhang^{a, b, *}

^a School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
 ^b Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China

ARTICLE INFO

Article history: Received Received in revised form Accepted Available online

Keywords: transition-metal-free visible-light trifluoromethylation imidazo[1,2-a]pyridines

ABSTRACT

A transition-metal-free, visible-light-induced trifluoromethylation of imidazo[1,2-a]pyridines has been developed at mild conditions by employing cheap and commercially available anthraquinone-2-carboxylic acid (AQN-2-CO₂H) as the photo-organocatalyst, and Langlois reagent as the trifluoromethylating reagent. A series of 3-(trifluoromethyl)imidazo[1,2-a]pyridine derivatives with broad functionalities could be conveniently and efficiently obtained by direct regioselective functionalization.

2009 Elsevier Ltd. All rights reserved.

1

Introduction

Fluorine-containing organic molecules have gained increasing attentions [1]. Fluorine can alter the physicochemical properties of organic molecules [2], and wide applications in medicinal chemistry, agrichemicals, and materials science [3]. Recently, impressive achievements have been covered about the trifluoromethylation of organic molecules [4], using electrophilic [5], nucleophilic [6], and radical [7] trifluoromethylating reagents. Among the developed methods of radical trifluoromethylation, photoredox-catalyzed radical trifluoromethylations have attracted significant notice [8].

Visible light is an abundant, eco-friendly and accessible energy source [9]. Over the past decade, visible-light photoredoxcatalyzed organic synthesis has achieved great progress [10]. Since 2008, when MacMillan and coworkers reported visible light photoredox catalysis for organic synthesis by $Ru(bpy)_3Cl_2$ [11], numerous photocatalysts have entered this field, such as noble metal polypyridine and phenylpyridyl complexes [12], organic dyes [13]. In recent years, many photo-organocatalysts as inexpensive and nontoxic substitution have gained more favor [14]. In 2013, Itoh reported the direct trifluoromethylation of arenes and heteroarenes under visible light irradiation by using CF_3SO_2Na as the source of trifluoromethyl group and anthraquinone-2-carboxylic acid (AQN-2-CO₂H) as photoredoxcatalyst [15].

Imidazoheterocycles as an important nitrogen-containing compound, are the core of many drug molecules, such as Alpidem, Zolimidine, Saripidem, Zolpidem, and Minodronic Acid, etc [16]. Thus, substantial methods for the synthesis and modification of imidazoheterocycles have been extensively reported [17]. In the midst of them, there are a few reports about

Scheme 1. Trifluoromethylation of imidazo[1,2-a]pyridines

^{*} Corresponding author. E-mail: rhzhang@tongji.edu.cn

2

ACCEPTED MANUSCRIPT

Tetrahedron Letters

the introduction of trifluoromethyl groups into imidazoheterocycles that are very valuable means of modification. In 2015, Hajra reported silver-catalyzed trifluoromethylation regioselective oxidative of imidazoheterocycles with Langlois' reagent as trifluoromethylating reagent [18]. In 2016, Wang reported nickelcatalyzed C-H trifluorometylation of imidazoheterocycles with trifluoromethyl iodide (ICF₃) as trifluoromethylating reagent [19]. In 2016, Rueping reported photo-organocatalysed trifluoromethylation of imidazoheterocycles in batch and continuous flow with UV light [20]. For all we know, there is no method of transition-metal-free direct C-H trifluoromethylation of imidazoheterocycles using photo-organocatalyst in visible light. Herein, we report a direct method for the trifluoromethylation imidazo[1,2-a]pyridines of using anthraquinone-2-carboxylic acid (AQN-2-CO₂H) as photoorganocatalyst in visible light.

Results and discussion

Initially, we chose 2-phenylimidazo[1,2-a]pyridine (1a) and CF_3SO_2Na (Langlois reagent) as the model substrates to optimize the reaction conditions (Table 1). It is gratifying that the desired product was obtained in 74% yield (entry 1) when the reaction was conducted in photo-organocatalyst AQN-2- CO_2H (2 mol%), CF_3SO_2Na (4.0 equiv.), K_2CO_3 (0.5 equiv.) and TFA (trifluoroac-

Table 1. O	ptimization	of reaction	conditions
------------	-------------	-------------	------------

CF ₃ SO ₂ Na (2)							
Photocatalyst							
Base, Additive, Solvent							
\dot{N} Visible light, N ₂ , rt							
1a 3a 3							
Entry	Photocatalyst	Base	Solvent	Yield (%) ^b			
1	AQN-2-CO ₂ H	K ₂ CO ₃	DMSO	74			
2	AQN-2-CH ₃	K_2CO_3	DMSO	54			
3	AQN-2-Cl	K ₂ CO ₃	DMSO	55			
4	Na Eosin Y	K ₂ CO ₃	DMSO	26			
5	$Ru(bpy)_3Cl_2\bullet 6H_2O$	K ₂ CO ₃	DMSO	41			
6		K ₂ CO ₃	DMSO	29			
7 °	AQN-2-CO ₂ H	K ₂ CO ₃	DMSO	0			
8 ^d	AQN-2-CO ₂ H	K ₂ CO ₃	DMSO	55			
9	AQN-2-CO ₂ H		DMSO	30			
10	AQN-2-CO ₂ H	K_2CO_3	DMF	65			
11	AQN-2-CO ₂ H	K_2CO_3	CH3CN	40			
12	AQN-2-CO ₂ H	K_2CO_3	THF	8			
13	AQN-2-CO ₂ H	K_2CO_3	MeOH	46			
14	AQN-2-CO ₂ H	Cs ₂ CO ₃	DMSO	41			
15	AQN-2-CO ₂ H	(i-Pr)2NEt	DMSO	24			
16	AQN-2-CO ₂ H	DBU	DMSO	26			
17 ^e	AQN-2-CO ₂ H	K_2CO_3	DMSO	81			
$18^{\rm f}$	AQN-2-CO ₂ H	K_2CO_3	DMSO	39			

^a Reaction conditions: **1a** (0.2 mmol), **2** (4.0 equiv.), photocatalyst (2 mol%), base (0.5 equiv.), TFA (0.06 equiv.) and solvent (2.5 mL), irradiation with 3 W blue LEDs for 24 h, N_2 balloon, rt.

^b Isolated yield, based on **1a**.

f In oxygen balloon.

etic acid, 0.06 equiv.) in DMSO solvent at room temperature under N_2 balloon atmosphere with 3 W blue LED irradiation. When the photo-organocatalyst AQN-2-CO₂H was replaced with AQN-2-CH₃, a remarkable decline in the yield of 3a was recorded (54%, entry 2). Similarly, when the reaction was carried out by employing AQN-2-Cl (entry 3), Na Eosin Y (entry 4) or Ru(bpy)₃Cl₂•6H₂O (entry 5) instead of AQN-2-CO₂H, the yield of 3a has no improvement. Control experiments demonstrated that the yield was reduced when AQN-2-CO₂H was absent from the reaction mixture (entry 6) and no desired product was observed without light (entry 7). The yield of 3a was also decreased without TFA or K₂CO₃ (entry 8 and 9). Furthermore, various solvents, including DMF, MeCN, THF and MeOH, were also investigated (entries 10-13). However, no higher yield was gained by altering the solvent. In addition, a series of bases, Cs₂CO₃, (i-Pr)₂NEt and DBU (entries 14-16), were screened, but all led to lower product yields. Fortunately, a modicum of improvement of the yield was observed, with double the amount of K_2CO_3 (entry 17). Lastly, the oxygen was adverse to the reaction (entry 18).

With the optimal reaction conditions in hand, we then investigated the scope of substrates, and the results are shown in Table 2. A wide range of substituted imidazo[1,2-a]pyridines reacted with CF₃SO₂Na to generate desired products with satisfactory yields. Imidazopyridines substituted with a methyl group at different positions gave moderate yields (3b-d). Imidazopyridine with another electron-donating group was also successfully trifluoromethylated (3e). The polyphenyl-substituted substrates also performed well under the optimal conditions, and the corresponding trifluoroethylated products (3f-g) were obtained in reasonable yields. Electron-withdrawing groups, such as fluoro, chloro, bromo, trifluoromethyl, on the phenyl ring at different position of imidazopyridines were well tolerated in this 2-(4-bromophenyl)imidazo[1,2-a]pyridine reaction system, especially gave a good yield (81%). The antiulcer drug Zolimidine was also smoothly trifluoromethylated with moderate yield (30). Substrates with methyl or halogen atom on the pyridine ring were compatible under the standard conditions, as well. 2-thienylimidazo[1,2-a]pyridine also reacted well to afford corresponding product (3s). It is delightful that alkenyl, methyl or no group containing imidazopyridines also afforded the desired products in standard conditions.

To further expand the substrate scope of this methodology, other imidazoheterocycles like imidazo[2,1-b]thiazole and benzo[d]imidazo[2,1-b]thiazole were explored, and the results are shown in Table 3. The corresponding trifluoroethylated products (**5a-b**) were nevertheless afforded in moderate to good yields under the developed conditions.

To gain insight into the mechanism of this reaction, a few controlled experiments were carried out. No trifluoroethylated product was observed when the radical scavenger TEMPO was added into the system, and the desired product was detected by GC-MS (see the Supporting information for details), which indicated that a free radical process would be involved. From the experiments and literature reports [15, 18], the probable mechanism of the reaction is described in Scheme 2. At first, the CF3 radical is generated from the photoredox-catalyzed cyclization. The ground and excited redox states of AQN are important for this process. In the cyclization, CF₃SO₂⁻ would transfer electron to the excited state of AQN (AQN*) to generate CF₃SO₂[•] and AQN[•] radical based on their redox potentials. AQN⁻would be facile oxidized by SO₂ produced by cleavage of CF₃SO₂' to regenerated AQN. Subsequently, the CF₃ radical reacted with imidazopyridines to form the radical intermediate A. The intermediate A was oxidized by the CF3 radical to give the carbocation intermediate **B**. Finally, the intermediate **B** afforded the product by eliminating H⁺.

^c In the dark.

^d TFA (0 equiv.) was added.

^e Base (1 equiv.) was added.

Table 2. Substrate Scope of Imidazopyridines a

^a Reaction conditions: 1 (0.2 mmol), 2 (4.0 equiv.), AQN-2-CO₂H (2 mol%), K_2CO_3 (1.0 equiv.), TFA (0.06 equiv.) and DMSO (2.5 mL), irradiation with 3 W blue LEDs, N_2 balloon, rt.

Table 3. Substrate Scope of Imidazoheterocycles ^a

^a Reaction conditions: 4 (0.2 mmol), 2 (4.0 equiv.), AQN-2-CO₂H (2 mol%), K_2CO_3 (1.0 equiv.), TFA (0.06 equiv.) and DMSO (2.5 mL), irradiation with 3 W blue LEDs, N₂ balloon, rt.

Conclusions

In conclusion, we have developed an efficient and mild method for trifluoromethylation of imidazopyridines by employing Langlois reagent as the source of trifluoromethyl group in visible light. This method is a transition-metal-free, dir-

Scheme 2. Plausible reaction mechanism.

ect trifluoromethylation by employing cheap trifluoromethyl-ating agent under visible light irradiation. A series of 3-(trifluoromethyl)imidazo[1,2-a]pyridine derivatives with broad functionalities could be conveniently and efficiently obtained in moderate to good yields. Other imidazoheterocycles like imidazo[2,1-b]thiazole and benzo[d]imidazo-[2,1-b]thiazole were also well tolerated to this protocol. We believe this method is of great value in introducing trifluoromethyl group into imizazopyridine derivatives to strengthen their physiochemical properties.

Acknowledgments

We thank the National Natural Science Foundation of China (No. 20972113/B020502) and the Fundamental Research Funds for the Central Universities for financial support.

Supplementary Material

Supplementary data to this article can be found online at ...

References and notes

- [1] (a) M. Shimizu, T. Hiyama, Angew. Chem. Int. Ed. 44 (2005) 214-231;
 - (b) M.-C. Gagnon, M. Auger, J.-F. Paquin, Org. Biomol. Chem. 16 (2018) 4925-4941;
 - (c) V. Gouverneur, K. Seppelt, Chem. Rev. 115 (2015) 563-565;
 - (d) C. Ni, J. Hu, Chem. Soc. Rev. 45 (2016) 5441–5454;
 - (e) X. Yang, T. Wu, R.J. Phipps, F.D. Toste, Chem. Rev. 115 (2015) 826-870.
- [2] (a) H.-J. Böhm, D. Banner, S. Bendels, M. Kansy, B. Kuhn, K. Müller, U. Obst-Sander, M. Stahl, ChemBioChem 5 (2004) 637–643;
 (b) K. Müller, C. Faeh, F. Diederich, Science 317 (2007) 1881–1886;
 - (c) K. Reichenbächer, H.I. Süss, J. Hulliger, Chem. Soc. Rev. 34 (2005) 22-30;
- (d) A.T. Florence, D. Attwood, Physicochemical Principles of Pharmacy: Pharmaceutical Press, London, 2006;
- (e) C. Yao, C. Peng, Y. Yang, L. Li, M. Bo, J. Wan, J. Mater. Chem. C 6 (2018) 4912-4918.
- [3] (a) R. Berger, G. Resnati, P. Metrangolo, E. Weber, J. Hulliger, Chem. Soc. Rev. 40 (2011) 3496–3508;
- (b) W.K. Hagmann, J. Med. Chem. 51 (2008) 4359-4369;
 - (c) S. Purser, P.R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 37 (2008) 320-330;
 - (d) E.P. Gillis, K.J. Eastman, M.D. Hill, D.J. Donnelly, N.A. Meanwell, J. Med. Chem. 58 (2015) 8315–8359;
 - (e) D.C. Blakemore, L. Castro, I. Churcher, D.C. Rees, A.W. Thomas, D.M. Wilson, A. Wood, Nat. Chem. 10 (2018) 383–394;
 - (f) D.D.Chronopoulos, A. Bakandritsos, M. Pykal, R. Zbořil, M. Otyepka, Applied Materials Today 9 (2017) 60-70.
- [4] (a) W. Zhua, J. Wang, S. Wang, Z. Gu, J.L. Aceña, K. Izawa, H. Liu, V.A. Soloshonok, J. Fluorine Chem. 167 (2014) 37-54;
 - (b) J.-A. Ma, D. Cahard, J. Fluorine Chem. 128 (2007) 975–996;
 - (c) G.-B. Li, C. Zhang, C. Song, Y.-D. Ma, Beilstein J. Org. Chem. 14 (2018) 155-181;
 - (d) C. Zhang, Adv. Synth. Catal. 359 (2017) 372–383;
 - (e) X. Pan, H. Xia, J. Wu, Org. Chem. Front. 3 (2016) 1163–1185;
 - (f) P. Gao, X.-R. Song, X.-Y. Liu, Y.-M. Liang, Chem.Eur.J. 21 (2015) 7648–7661;
 - (g) C. Zhang, Adv. Synth. Catal. 356 (2014) 2895–2906;
- (h) T. Koike, M. Akita, Top. Catal. 57 (2014) 967–974.
- [5] (a) J. Charpentier, N. Früh, A. Togni, Chem. Rev. 115 (2015) 650–682;
 (b) M. Li, H. Zheng, X.-S. Xue, J.-P. Cheng, Tetrahedron Lett. 59 (2018) 1278–1285;

3

Tetrahedron Letters

4

(c) A. Prieto, O. Baudoin, D. Bouyssi, N. Monteiro, Chem. Commun. 52 (2016) 869-881; (d) J. Charpentier, N. Früh, A. Togni, Chem. Rev. 115 (2015) 650-682; (e) I. Kieltsch, P. Eisenberger, A. Togni, Angew. Chem. Int. Ed. 46 (2007) 754-757. [6] (a) Y. Zeng, J. Hu, Synthesis 48 (2016) 2137-2150; (b) X. Liu, C. Xu, M. Wang, Q. Liu, Chem. Rev. 115 (2015) 683-730; (c) R.P. Singh, J.M. Shreeve, Tetrahedron 56 (2000) 7613-7632; (d) L. Chu, F.-L. Qing, Acc. Chem. Res. 47 (2014) 1513-1522; (e) G.K.S. Prakash, M. Mandal, J. Fluorine Chem. 112 (2001) 123-131; (f) G. K.S. Prakash, P.V. Jog, P.T. D. Batamack, G.A. Olah, Science 338 (2012) 1324-1327. [7] (a) A. Studer, Angew. Chem. Int. Ed. 51 (2012) 8950-8958; (b) W. Zeng, F.X. Chen, Chin. J. Appl. Chem. 31 (2014) 627-641; (c) B. Zhang, C. Mück-Lichtenfeld, C.G. Daniliuc, A. Studer, Angew. Chem. Int. Ed. 52 (2013) 10792–10795; (d) Z. Li, Z. Cui, Z.-Q. Liu, Org. Lett. 15 (2013) 406-409; (e) Y. Ye, S.A. Künzi, M.S. Sanford, Org. Lett. 14 (2012) 4979-4981. [8] (a) Y. Ye, M.S. Sanford, J. Am. Chem. Soc. 134 (2012) 9034-9037; (b) Y. Yasu, T. Koike, M. Akita, Angew. Chem. Int. Ed. 51 (2012) 9567-9571; (c) P.V. Pham, D.A. Nagib, D.W.C. MacMillan, Angew. Chem. Int. Ed. 50 (2011) 6119-6122; (d) S. Mizuta, S. Verhoog, K.M. Engle, T. Khotavivattana, M. O'Duill, K. Wheelhouse, G. Rassias, M. Médebielle, V. Gouverneur, J. Am. Chem. Soc. 135 (2013) 2505-2508; (e) P. Xu, J. Xie, Q. Xue, C. Pan, Y. Cheng, C. Zhu, Chem. Eur. J. 19 (2013) 14039–14042; (f) S.P. Pitre, C.D. McTiernan, H. Ismaili, J.C. Scaiano, ACS Catal. 4 (2014) 2530–2535. [9] (a) D.M. Schultz, T.P. Yoon, Science 343 (2014) 1239176; (b) N. Zhang, M.-Q. Yang, S. Liu, Y. Sun, Y.-J. Xu, Chem. Rev. 115 (2015) 10307-10377; (c) T. Bach, J.P. Hehn, Angew. Chem. Int. Ed. 50 (2011) 1000-1045; (d) V. Balzani, A. Credi, M. Venturi, ChemSusChem 1 (2008) 26-58; (e) G. Ciamician, Science 36 (1912) 385-394. [10] (a) D.A. Nagib, D.W.C. MacMillan, Nature 480 (2011) 224-228; (b) D.A. Nagib, M.E. Scott, D.W.C. MacMillan, J. Am. Chem. Soc. 131 (2009) 10875-10877; (c) (d) P. Xu, J. Xie, Q. Xue, C. Pan, Y. Cheng, C. Zhu, Chem. Eur. J. 19 (2013) 14039-14042; (e) N. Iqbal, J. Jung, S. Park, E.J. Cho, Angew. Chem. Int. Ed. 53 (2014) 539-542; (f) R. Tomita, Y. Yasu, T. Koike, M. Akita, Angew. Chem. Int. Ed. 53 (2014) 7144-7148; (g) Y. Yasu, T. Koike, M. Akita, Chem. Commun. 49 (2013) 2037-2039; (h) Y. Xi, H. Yi, A. Lei, Org. Biomol. Chem. 11 (2013) 2387-2403 [11] D.A. Nicewicz, D.W.C. MacMillan, Science 322 (2008) 77-80. [12] (a) M.H. Shaw, J. Twilton, D.W.C. MacMillan, J. Org. Chem. 81 (2016) 6898-6926; (b) H. Huo, X. Shen, C. Wang, L. Zhang, P. Röse, L.-A. Chen, K. Harms, M. Marsch, G. Hilt, E. Meggers, Nature 515 (2014) 100-103; (c) A. Noble, S.J. McCarver, D.W.C. MacMillan, J. Am. Chem. Soc. 137 (2015) 624-627; (d) J.D. Cuthbertson, D.W.C. MacMillan, Nature 519 (2015) 74-77; (e) T. Koike, M. Akita, Inorg. Chem. Front. 1 (2014) 562-576; (f) K. Kalyanasundaram, Coord. Chem. Rev. 46 (1982) 159-244; (g) C.K. Prier, D.A. Rankic, D.W.C. MacMillan, Chem. Rev. 113 (2013) 5322-5363; (h) J.W. Tucker, C.R.J. Stephenson, J. Org. Chem. 77 (2012) 1617–1622.
[13] (a) J.C. Theriot, C.-H. Lim, H. Yang, M.D. Ryan, C.B. Musgrave, G.M. Miyake, Science 352 (2016) 1082–1086; (b) M. Neumann, S. Füldner, B. König, K. Zeitler, Angew. Chem. Int. Ed. 50 (2011) 951-954; (c) D. Ravelli, M. Fagnoni, A. Albini, Chem. Soc. Rev. 42 (2013) 97-113; (d) D.A. Nicewicz, T.M. Nguyen, ACS Catal. 4 (2014) 355-360; (e) D.P. Hari, B. König, Chem. Commun. 50 (2014) 6688-6699; (f) S. Fukuzumi, K. Ohkubo, Org. Biomol. Chem. 12 (2014) 6059-6071. [14] (a) G.G. Pawar, F. Robert, E. Grau, H. Cramail, Y. Landais, Chem. Commun. 54 (2018) 9337-9340; (b) D. Sun, K. Yin, R. Zhang, Chem. Commun. 54 (2018) 1335-1338; (c) M.K. Bogdos, E. Pinard, J.A. Murphy, Beilstein J. Org. Chem. 14 (2018) 2035-2064; (d) X.-Q. Dai, W.-X. Xu, Y.-L. Wen, X.-H. Liu, J.-Q. Weng, Tetrahedron Lett. 59 (2018) 2945–2949; (e) Y. Zhang, D. Riemer, W. Schilling, J. Kollmann, S. Das, ACS Catal. 8 (2018) 6659-6664; (f) J. Zhu, W.-C. Cui, S. Wang, Z.-J. Yao, Org. Lett. 20 (2018) 3174-3178; (g) L. Ren, H. Cong, Org. Lett. 20 (2018) 3225-3228. [15] L. Cui, Y. Matusaki, N. Tada, T. Miura, B. Uno, A. Itoh, Adv. Synth. Catal. 355 (2013) 2203-2207. [16] (a) T. Okubo, R. Yoshikawa, S. Chaki, S. Okuyama, A. Nakazato, Bioorg. Med. Chem. 12 (2004) 423-438; (b) L. Almirante, L. Polo, A. Mugnaini, E. Provinciali, P. Rugarli, A. Biancotti, A. Gamba, W. Murmann, J. Med. Chem. 8 (1965) 305-312; (c) D.J. Sanger, Behav. Pharmacol. 6 (1995) 116-126; (d) T.S. Harrison, G.M. Keating, CNS Drugs 19 (2005) 65-89; (e) H. Mori, M. Tanaka, R. Kayasuga, T. Masuda, Y. Ochi, H. Yamada, K. Kishikawa, M. Ito, T. Nakamura, Bone 43 (2008) 840-848. [17] (a) N. Chernyak, V. Gevorgyan, Angew. Chem. Int. Ed. 49 (2010) 2743 -2746; (b) S.M. Roopan, S.M. Patil, J. Palaniraja, Res. Chem. Intermed. 42 (2016) 2749-2790; (c) A.K. Bagdi, S. Santra, K. Monira, A. Hajra, Chem. Commun. 51 (2015) 1555-1575; (d) K. Pericherla, P. Kaswan, K. Pandey, A. Kumar, Synthesis 47 (2015) 887-912; (e) C. Enguehard-Gueiffier, A. Gueiffier, Mini-Rev. Med. Chem. 7 (2007) 888-899. [18] K. Monir, A.K. Bagdi, M. Ghosh, A. Hajra, J. Org. Chem. 80 (2015) 1332-1337. [19] Y. Wu, H.-R. Zhang, R.-X. Jin, Q. Lan, X.-S. Wang, Adv. Synth. Catal. 358 (2016) 3528-3533. [20] Q. Lefebvre, N. Hoffmann, M. Rueping, Chem. Commun. 52 (2016) 2493-2496.

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

5

Tetrahedron Letters

Highlights

Transition-metal-free visible-light-induced trifluoromethylation of imidazopyridines.

Anthraquinone-2-carboxylic acid as the photo-organocatalyst.

Acceleration