Bioorganic & Medicinal Chemistry Letters 21 (2011) 3041-3045

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Non-competitive and selective dipeptidyl peptidase IV inhibitors with phenethylphenylphthalimide skeleton derived from thalidomide-related α -glucosidase inhibitors and liver X receptor antagonists

Kazunori Motoshima, Kazuyuki Sugita, Yuichi Hashimoto*, Minoru Ishikawa

Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan

ARTICLE INFO

Article history: Received 17 February 2011 Revised 8 March 2011 Accepted 9 March 2011 Available online 16 March 2011

Keywords: Dipeptidyl peptidase IV Enzyme inhibitor Phthalimide Non-competitive inhibition Subtype selectivity

ABSTRACT

Novel dipeptidyl peptidase IV (DPP-IV) inhibitors with a phenethylphenylphthalimide skeleton were prepared based on α -glucosidase inhibitors and liver X receptor (LXR) antagonists derived from thalidomide. Representative compounds showed non-competitive inhibition of DPP-IV and **28a** exhibited 10-fold selectivity for DPP-IV over DPP-8. Compound **28a** is the first non-competitive, selective DPP-IV inhibitor. © 2011 Elsevier Ltd. All rights reserved.

Dipeptidyl peptidase IV (DPP-IV; E.C. 3.4.14.5) is a 220-240 kDa homodimeric type II transmembrane glycoprotein catalyzing the cleavage of Xaa-Pro or Xaa-Ala dipeptides preferentially from the N-terminus of polypeptides (where Xaa is any amino acid except for Pro).¹⁻⁴ DPP-IV is identical with the CD26 T-cell activating antigen found in almost all human organs and tissues.⁵ It is anchored to the plasma membrane of endothelia of almost all organs examined, and is also found in a soluble form in body fluids, such as blood plasma and cerebrospinal fluid.⁶ In vivo, this enzyme cleaves various polypeptides, including chemokines and peptide hormones.^{4,7} Glucagon-like peptide-1 (GLP-1), an insulin-releasing hormone, is also cleaved and inactivated by DPP-IV.⁸ GLP-1 is secreted in response to ingestion of food and stimulates insulin secretion.⁹ It has been suggested that potentiation and extension of the action of GLP-1 by DPP-IV inhibition would stimulate insulin secretion only after a meal,¹⁰ and DPP-IV inhibitors have therefore come to be seen as a potential new type of antidiabetic agent free of side effects such as hypoglycemia. Some DPP-IV inhibitors such as alogliptin (1) and sitagliptin (2) are already on the market (Fig. 1).¹¹ Almost all of the currently known inhibitors show competitive inhibition.12,13

We have been engaged in the creation of bioactive compounds based on the multi-template approach utilizing thalidomide $(\mathbf{3})$.¹⁴⁻¹⁹ The concept underlying the multi-template approach is

* Corresponding author. E-mail address: hashimot@iam.u-tokyo.ac.jp (Y. Hashimoto).

Figure 1. Chemical structures of currently available DPP-IV inhibitors (1 and 2).

that the number of three-dimensional spatial structures (fold structures) of human proteins is only approximately 1000, which is much smaller than the number of human proteins, estimated to be 50,000–70,000.^{20–22} Therefore, ignoring physical/chemical interactions, a template/scaffold structure which is spatially complementary to one fold structure might serve as a multi-template for structural development of ligands that would interact specifically with 50–70 or more different human proteins. We have focused on thalidomide (**3**) as a candidate multi-template structure. Thalidomide (**3**) is a hypnotic/sedative drug, which was launched in the 1950's, but was withdrawn from the market in the 1960's because of its severe teratogenicity. In spite of this, thalidomide (**3**) has been established to be useful for the treatment of Hansen's disease and multiple myeloma. Additionally, many reports have appeared on its therapeutic potential for the treatment of a range of diseases,

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter \odot 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2011.03.026

including cancers, rheumatoid arthritis and diabetes.^{14–19,23} We have developed many biological response modifiers, including tumor necrosis factor- α (TNF- α) production regulators,^{24,25} nitric oxide synthase (NOS) inhibitors,^{26,27} cyclooxygenase (COX) inhibitors,^{28–30},liver X receptor (LXR) antagonists,^{31–34} α -glucosidase inhibitors³⁴⁻³⁷ and glycogen phosphorylase inhibitors,³⁸ by employing the multi-template approach. During these studies, we also discovered novel DPP-IV inhibitors, including PPS-33 (4) and 5APP-33 (5) (Fig. 2).³⁹ However, these compounds possess only weak inhibitory activity (**4**: IC_{50} = 57.8 µM, **5**: IC_{50} = 65.9 µM), and they also show LXR-antagonistic and α -glucosidase-inhibitory activity, as well as DPP-IV-inhibitory activity.³³ Recently, we have developed various phenethylphenylphthalimide derivatives, including an α -glucosidase inhibitor (6), an LXR antagonist (7) and an LXR α selective antagonist (8) (Fig. 2).³⁴ The above considerations led us to speculate that phenethylphenylphthalimide derivatives might possess DPP-IV-inhibitory activity. Thus, we carried out a screening assay to search for novel DPP-IV inhibitors among our derivatives.

A classical DPP-IV inhibitor, diprotin A (9) (Fig. 2),⁴⁰ was adopted as a positive control; the extent of inhibition by 9 at 10 μ M was 14% under our experimental conditions. In the initial screening of phenethylphenylphthalimide derivatives reported previously,³⁴ compound 22 showed the most potent DPP-IV-inhibitory activity (Table 1). Among dimethoxy and dihydroxyl derivatives, dihydroxyl derivatives seem to be more potent than dimethoxy derivatives [12 > 11, 15 > 14, 18 > 17, 21 > 20, 24 > 23, 26 > 6].

Next, we tried to improve the inhibitory activity of compound **22**. Introduction of two methoxy (**23**) or hydroxyl groups (**24**) into compound **22** resulted in decreased DPP-IV-inhibitory activity (Table 1). Based on the above structure–activity information, analogs of **22** which possess electron-withdrawing groups were designed as candidates for more potent DPP-IV inhibitors. An analog of **22** bearing a methyl group was also designed, for comparison with the analog bearing the CF_3 group.

These analogs were synthesized as shown in Scheme 1. Various benzyl halides were reacted with triphenylphosphine to generate triphenylphosphonium salts **30a–d**. Diphenylethene derivatives **31a–d** were prepared as *E*/*Z* mixtures by Wittig reaction of 3-nitrobenzaldehyde with **30a–d**. After reduction of the nitro group and olefin moiety of compounds **31a–d**, phenethylphenylphthalimides **27a–d** were obtained by condensation with tetrachlorophthalic anhydride.

Table 1

DPP-IV-inhibitory activity of phenethylphenylphthalimides (6,9–26)

Compound	Х	Position	R	Inhibition ratio at 10 μM (%)
9	_	_	_	14
10	Н	2′	Н	0
11	Н	2′	OMe	0
12	Н	2′	OH	4
13	Н	3′	Н	2
14	Н	3′	OMe	0
15	Н	3′	OH	7
16	Н	4′	Н	6
17	Н	4′	OMe	0
18	Н	4′	OH	7
19	Cl	2′	Н	7
20	Cl	2′	OMe	2
21	Cl	2′	OH	12
22	Cl	3′	Н	26
23	Cl	3′	OMe	0
24	Cl	3′	OH	5
25	Cl	4′	Н	12
6	Cl	4′	OMe	3
26	Cl	4′	OH	11

Introduction of a CF₃ group at the 4" position of **22** afforded compound **27b**, in which exhibited increased DPP-IV-inhibitory activity (Table 2). On the other hand, the potency of analogs substituted with fluorine, that is, compounds **27a** and **27c**, or a methyl group, that is, compound **27d**, was similar to that of **22** (Table 2). Hence, there does not seem to be a clear relationship between electronic character of substituents (electron-donating or -withdrawing) and DPP-IV-inhibitory activity.

Subsequently, we designed $2^{"}$ - and $3^{"}$ -CF₃ analogs in order to examine the effect of the position of the CF₃ group on DPP-IV-inhibitory activity. The analogs were synthesized as shown in Scheme 2, using a route nearly identical to that in Scheme 1.

Surprisingly, a positional shift of the CF₃ group of **27b** from the 4"-position to the 3"- (**28a**) or 2"-position (**28b**) resulted in a dras-

Figure 2. Chemical structures of thalidomide (3), PPS-33 (4), 5APP-33 (5), α-glucosidase inhibitor (6), LXR antagonist (7), LXRα-selective antagonist (8), diprotin A (9) and non-competitive DPP-IV inhibitor (29).

Scheme 1. Synthesis of phenethylphenylphthalimide analogs with electron-withdrawing substituents 27a–d. Reagents and conditions: (a) triphenylphosphine, toluene, reflux; (b) K₂CO₃, 18-crown-6, CH₂Cl₂, reflux; (c) H₂, 10% Pd/C, EtOAc, rt; (d) tetrachlorophthalic anhydride, neat, 160 °C.

Table 2

DPP-IV-inhibitory activity of phenethylphenylphthalimides with electron-withdrawing groups $(\mathbf{27a-d})$

tic increase of DPP-IV-inhibitory activity; **28a** and **28b** showed IC₅₀ values of 3.1 μ M and 4.0 μ M, respectively (Table 3).

As mentioned above, almost all currently known DPP-IV inhibitors, including alogliptin (1) and sitagliptin (2), show competitive inhibition^{12,13} and share similar pharmacophores, that is, they possess cyano and/or free amino groups. In terms of chemical structure, compounds **28a** and **28b** are quite different from the known competitive DPP-IV inhibitors. In particular, these phenethylphenylphthalimide derivatives do not possess a cyano or free amino group, unlike the known inhibitors. Therefore, we speculated that the mode of DPP-IV inhibition elicited by **28a** and **28b** might be different from that of the known competitive inhibitors. Indeed, Lineweaver–Burk plot analysis showed that **28a** and **28b** are non-competitive inhibitors (Fig. 3 and data not shown, respectively).

There exist many types of dipeptidylpeptidases with similar substrate selectivity. Among them, DPP-8, which is a cytoplasmic aminopeptidase like DPP-IV,41 possesses an almost identical active-site amino acid sequence to DPP-4.41,42 The administration of selective DPP-8 inhibitors to animals results in severe toxic reactions, including alopecia, thrombocytopenia, anemia, enlarged spleen, multiple histological pathologies and increased mortality.43 Hence, DPP-IV selectivity over DPP-8 would be an advantage to eliminate side effects. Alogliptin (1) and sitagliptin (2) show very weak DPP-8-inhibitory activity. That is to say, they are DPP-IVselective inhibitors.^{12,13} Interestingly, although the amino acid sequences of DPP-IV and DPP-8 in the active sites are almost identical, as mentioned above, these proteins show only 51% amino acid sequence homology overall.⁴¹ Therefore, we speculated that noncompetitive DPP-IV inhibitors might show selectivity between the two enzymes. As far as we know, compound 29 (Fig. 2) is the only non-competitive DPP-IV inhibitor reported so far, but its activity against DPP-8 was not evaluated.44 Our phenethylphenylphthalimide derivatives show non-competitive DPP-IV inhibition (vide supra), so we next evaluated their DPP-8-inhibitory activity. We found that compound 28a possessed 10-fold selectivity for DPP-IV over DPP-8 (Table 4). Compound 28b also showed three-fold selectivity for DPP-IV. On the other hand, compounds 22 and 27b showed no selectivity for DPP-IV over DPP-8. These results suggest that the binding site for phenethylphenylphthalimide derivatives in DPP-IV might be similar to that in DPP-8. But, since a positional shift of the CF₃ group in phenethylphenylphthalimide derivatives affected the selectivity for DPP-IV over DPP-8, we speculated that the CF₃ group might interact with some hydrophobic amino acids in DPP-IV and/or DPP-8, and therefore differences in hydrophobic amino acid residues between DPP-IV and DPP-8 might be important for selectivity.

In conclusion, we discovered novel DPP-IV inhibitors among our α -glucosidase inhibitors/LXR antagonists derived from thalidomide (**3**). Structural development led to compound **28a**, which is the first non-competitive and selective DPP-IV inhibitor. Further investigation of the structure–activity relationships aiming at the development of superior DPP-IV inhibitors is in progress.

Scheme 2. Synthesis of phenethylphenylphthalimide analogs with CF₃ groups, 28a, b. Reagents and conditions: (a) triphenylphosphine, toluene, reflux; (b) K₂CO₃, 18-crown-6, CH₂Cl₂, reflux; (c) H₂, 10% Pd/C, EtOAc, rt; (d) tetrachlorophthalic anhydride, neat, 160 °C.

DPP-IV-inhibitory activity of phenethylphenylphthalimides with CF₃ groups (**28a,b**)

Compound	Position	Inhibition ratio at 10 μ M (IC ₅₀ (μ M))		
5 27b 28a 28b		14% 38% 87% (3.1 μM) 86% (4.0 μM)		

Table 4

DPP-IV- and DPP-8-inhibitory activities of phenethylphenylphthalimides (9, 22, 27b, 28a and 28b)

Compound	Position	R	Inhibition ratio at 10 mM (IC_{50} (μ M))	
			DPP-IV	DPP-8
9	_	_	14%	10%
22	_	Н	26%	15% (21 μM)
27b	4″	CF ₃	38%	21% (21 µM)
28a	3″	CF ₃	87% (3.1 μM)	23% (>30 μM)
28b	2″	CF ₃	86% (4.0 µM)	43% (11 µM)

Figure 3. Lineweaver-Burk plot analysis of the inhibition of DPP-IV by 28b.

Acknowledgments

The work described in this paper was partially supported by Grants-in-Aid for Scientific Research from The Ministry of Education, Culture, Sports, Science and Technology, Japan, and the Japan Society for the Promotion of Science.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmcl.2011.03.026.

References and notes

- 1. Fleischer, B. Immunol. Today 1994, 15, 180.
- 2. Sedo, A.; Malík, R. Biochim. Biophys. Acta 2001, 1550, 107.
- Kahne, T.; Lendeckel, U.; Wrenger, S.; Neubert, K.; Ansorge, S.; Reinhold, D. Int. J. Mol. Med. 1999, 4, 3.
- De Meester, I.; Korom, S.; Van Damme, J.; Scharpé, S. Immunol. Today 1999, 20, 367.
- 5. Mentlein, R. Regul. Pept. 1999, 85, 9.
- 6. Gorrell, M. D.; Gysbers, V.; McCaughan, G. W. Scand. J. Immunol. 2001, 54, 249.
- Augustyns, K.; Bal, G.; Thonus, G.; Belyaev, A.; Zhang, X. M.; Bollaert, W.; Lambeir, A. M.; Durinx, C.; Goossens, F.; Haemers, A. Curr. Med. Chem. 1999, 6, 311.
- 8. Mentlein, R.; Gallwitz, B.; Schmidt, W. E. Eur. J. Biochem. 1993, 214, 829.
- 9. Orskov, C. Diabetologia 1992, 35, 701.
- 10. Holst, J. J.; Deacon, C. F. Diabetes 1998, 47, 1663.
- 11. Kirby, M.; Yu, D. M.; O'Connor, S.; Gorrell, M. D. Clin. Sci. 2010, 118, 31.
- Feng, J.; Zhang, Z.; Wallace, M. B.; Stafford, J. A.; Kaldor, S. W.; Kassel, D. B.; Navre, M.; Shi, L.; Skene, R. J.; Asakawa, T.; Takeuchi, K.; Xu, R.; Webb, D. R.; Gwaltney, S. L., II *J. Med. Chem.* **2007**, *50*, 2297.
- Kim, D.; Wang, L.; Beconi, M.; Eiermann, G. J.; Fisher, M. H.; He, H.; Hickey, G. J.; Kowalchick, J. E.; Leiting, B.; Lyons, K.; Marsilio, F.; McCann, M. E.; Patel, R. A.;

Petrov, A.; Scapin, G.; Patel, S. B.; Roy, R. S.; Wu, J. K.; Wyvratt, M. J.; Zhang, B. B.; Zhu, L.; Thornberry, N. A.; Weber, A. E. *J. Med. Chem.* **2005**, 48, 141.

- 14. Hashimoto, Y. Arch. Pharm. Chem. Life. Sci. 2008, 341, 536.
- 15. Hashimoto, Y. Bioorg. Med. Chem. 2002, 10, 461.
- 16. Hashimoto, Y. Cancer Chemother. Pharmacol. 2003, 52, S16.
- 17. Hashimoto, Y.; Tanatani, A.; Nagasawa, K.; Miyachi, H. Drugs Future 2004, 29, 383.
- 18. Hashimoto, Y. Curr. Med. Chem. 1998, 5, 163.
- 19. Hashimoto, Y. Mini-Rev. Med. Chem. 2002, 2, 543.
- 20. Koonin, E. V.; Wolf, Y. I.; Karev, G. P. Nature 2002, 420, 218.
- 21. Grishin, N. V. J. Struct. Biol. 2001, 134, 167.
- Koch, M. A.; Wittenberg, L.-O.; Basu, S.; Jeyaraj, D. A.; Gourzoulidou, E.; Reinecke, K.; Odermatt, A.; Waldmann, H. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 16721.
- 23. Bartlett, J. B.; Dredge, K.; Dalgleish, A. G. Nat. Rev. Cancer 2004, 4, 314.
- Miyachi, H.; Azuma, A.; Ogasawara, A.; Uchimura, E.; Watanabe, N.; Kobayashi, Y.; Kato, F.; Kato, M.; Hashimoto, Y. J. Med. Chem. 1997, 40, 2858.
- 25. Miyachi, H.; Ogasawara, A.; Azuma, A.; Hashimoto, Y. *Bioorg. Med. Chem.* **1997**, 5, 2095.
- Shimazawa, R.; Sano, H.; Tanatani, A.; Miyachi, H.; Hashimoto, Y. Chem. Pharm. Bull. 2004, 52, 498.
- 27. Noguchi, T.; Sano, H.; Shimazawa, R.; Tanatani, A.; Miyachi, H.; Hashimoto, Y. Bioorg. Med. Chem. Lett. 2004, 14, 4141.
- Noguchi, T.; Shimazawa, R.; Nagasawa, K.; Hashimoto, Y. Bioorg. Med. Chem. Lett. 2002, 12, 1043.
- 29. Sano, H.; Noguchi, T.; Tanatani, A.; Miyachi, H.; Hashimoto, Y. Chem. Pharm. Bull. 2004, 52, 1021.
- Sano, H.; Noguchi, T.; Tanatani, A.; Hashimoto, Y.; Miyachi, H. Bioorg. Med. Chem. 2005, 13, 3079.

- Noguchi-Yachide, T.; Aoyama, A.; Makishima, M.; Miyachi, H.; Hashimoto, Y. Bioorg. Med. Chem. Lett. 2007, 17, 3957.
- Noguchi-Yachide, T.; Miyachi, H.; Aoyama, H.; Aoyama, A.; Makishima, M.; Hashimoto, Y. Chem. Pharm. Bull. 2007, 55, 1750.
- Dodo, K.; Aoyama, A.; Noguchi-Yachide, T.; Makishima, M.; Miyachi, H.; Hashimoto, Y. Bioorg. Med. Chem. 2008, 16, 4272.
- Motoshima, K.; Noguchi-Yachide, T.; Sugita, K.; Hashimoto, Y.; Ishikawa, M. Bioorg. Med. Chem. 2009, 17, 5001.
- Sou, S.; Mayumi, S.; Takahashi, H.; Yamasaki, R.; Kadoya, S.; Sodeoka, M.; Hashimoto, Y. Bioorg. Med. Chem. Lett. 2000, 10, 1081.
- Sou, S.; Takahashi, H.; Yamasaki, R.; Kagechika, H.; Endo, Y.; Hashimoto, Y. Chem. Pharm. Bull. 2001, 49, 791.
- Takahashi, H.; Sou, S.; Yamasaki, R.; Sodeoka, M.; Hashimoto, Y. Chem. Pharm. Bull. 2000, 48, 1494.
- Motoshima, K.; Ishikawa, M.; Sugita, K.; Hashimoto, Y. Biol. Pharm. Bull. 2009, 32, 1618.
- Shimazawa, R.; Takayama, H.; Kato, F.; Kato, M.; Hashimoto, Y. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 559.
- Umezawa, H.; Aoyagi, T.; Ogawa, K.; Naganawa, H.; Hamada, M.; Takeuchi, T. J. Antibiot. 1984, 37, 422.
- Abbott, C. A.; Yu, D. M.; Woollatt, E.; Sutherland, G. R.; McCaughan, G. W.; Gorrell, M. D. Eur. J. Biochem. 2000, 267, 6140.
- Lankas, G.; Leiting, B.; Roy, R. S.; Eiermann, G.; Biftu, T.; Kim, D.; Ok, H.; Weber, A.; Thornberry, N. A. *Abstracts*, 7-OR, 63rd Annual American Diabetes Association meeting, Orlando, FL, Jun 2004; American Diabetes Association.
- Bjelke, J. R.; Christensen, J.; Nielsen, P. F.; Branner, S.; Kanstrup, A. B.; Wagtmann, N.; Rasmussen, H. B. Biochem. J. 2006, 396, 391.
- 44. Yamada, M.; Okagaki, C.; Higashijima, T.; Tanaka, S.; Ohnuki, T.; Sugita, T. Bioorg. Med. Chem. Lett. **1998**, 8, 1537.