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A B S T R A C T   

Molecular design of the hole transport type host for mixed host was investigated to improve the lifetime of the 
phosphorescent organic light-emitting diodes. A negative polaron stabilizing hole transport type host design was 
employed and the effect of the negative polaron stabilizing unit was investigated. Dibenzofuran or benzonitrile 
was introduced as the negative polaron stabilizing unit in the bicarbazole backbone structure of the hole 
transport type host. Two host materials were synthesized and the comparison of them proposed that the negative 
polaron stabilizing unit is a key to the lifetime of the phosphorescent organic light-emitting diodes. The 
dibenzofuran and benzonitrile embedded bicarbazole hosts performed better than the mCBP host. The diben
zofuran and benzonitrile modified bicarbazole hosts demonstrated high external quantum efficiency of 18.6 and 
19.1%, respectively and lifetime extension by 30% compared with the conventional host without the negative 
polaron stabilizing unit.   

1. Introduction 

Phosphorescent organic light-emitting diodes (PhOLEDs) employing 
phosphorescent emitters are very popular because of high efficiency 
close to the theoretical maximum quantum efficiency of OLEDs [1–4]. 
The PhOLEDs already reached the upper limit of the maximum quantum 
efficiency. However, the lifetime of the blue PhOLEDs is still far below 
that of the red and green PhOLEDs, which is a big hurdle for the com
mercial use of the blue PhOLEDs [5–8]. 

The short lifetime issues of the blue PhOLEDs can be regarded as the 
combined effect of the organic materials, carrier transport, carrier 
recombination and device structure. One of the key factors from the 
material aspect is the host material. In general, a mixed host consisted of 
hole transport type (p-type) host and electron transport type (n-type) 
host has been widely used due to high efficiency and long lifetime in the 
blue PhOLEDs [9–14]. In particular, the n-type host was a main focus 
because electrons are mostly trapped by the blue phosphor and high 
triplet energy n-type hosts are not common. Several n-type type hosts 
already demonstrated good performances in the blue PhOLEDs [15–18]. 
For example, triphenylsilyl modified triazine type hosts showed high 
external quantum efficiency (EQE) about 20% and moderate lifetime 
[16]. A carbazole and triphenylsilyl co-embedded triazine type host was 
also effective to extend the device lifetime while achieving high EQE 

over 20% [18]. Whereas, the development of the p-type host for blue 
phosphors has not been popular in spite of the importance of the p-type 
host although several p-type hosts have been documented [19–21]. The 
n-type hosts can be damaged by positive polarons during light emission 
process because holes are injected into the host. The electrical burden of 
the n-type host can be relieved by mixing the p-type host with the n-type 
host, which can stabilize the devices. As the common direction in the 
p-type host development was to design strong p-type host, not many 
strategies were tried. Therefore, further concept and strategy of the hole 
transport type host for the blue PhOLEDs is strongly required. 

Herein, we describe the study of the hole transport type host derived 
from bicarbazole backbone structure and negative polaron stabilizing 
unit. The bicarbazole was 9-phenyl-9H,90H-3,40-bicarbazole which has 
linkage between 3 position and 4 position of carbazole. The negative 
polaron stabilizing units were dibenzofuran and benzonitrile. Two hosts, 
9’-(dibenzo[b,d]furan-2-yl)-9-phenyl-9H,90H-3,40-bicarbazole 
(DBFBCz) and 2-(9-phenyl-9H,90H-[3,40-bicarbazol]-90-yl)benzonitrile 
(BNBCz), were synthesized to trace the role and influence of the negative 
polaron stabilizing units. It was demonstrated that the negative polaron 
stabilizing unit is crucial to the device lifetime of the blue PhOLEDs. The 
dibenzofuran and benzonitrile embedded bicarbazole host performed 
better than the mCBP host. The DBFBCz and BNBCz hosts demonstrated 
high EQE of 18.6 and 19.1%, respectively and lifetime extension by 30% 
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relative to the negative polaron stabilizing unit free host. 

2. Results and discussion 

2.1. Synthesis and orbital calculation 

The backbone structure of the host was 9-phenyl-9H,90H-3,40-bicar
bazole which has linkage between two carbazoles through the 3 and 4 
position of the two carbazoles to increase the triplet energy of the host. 
As the well-known 9-phenyl-9H,90H-3,30-bicarbazole is not suitable for 
blue phosphors due to low triplet energy, the 9-phenyl-9H,90H-3,40- 
bicarbazole backbone structure was employed. As the negative polaron 
stabilizing unit, weakly electron accepting dibenzofuran and strongly 
electron accepting benzonitrile units were introduced to correlate the 
electron accepting units of the hosts with the device performances. Two 
hosts, DBFBCz and BNBCz, shared the same backbone structure and had 
different negative polaron stabilizing units. The synthetic process is 
explained in Scheme 1 and details of the synthesis are described in 
Experimental section. 

The photophysical properties and energy levels of the hosts were 

forecast before synthesis to judge the appropriateness of the host design 
for blue device application. The frontier molecular orbital (FMO) 
simulation results of the DBFBCz and BNBCz are displayed in Fig. 1. The 
FMO calculation results were similar in the two hosts in that the HOMO 
was in the bicarbazole backbone structure and the LUMO was found in 
the negative polaron stabilizing unit. The LUMO localization in the 
dibenzofuran or benzonitrile unit suggests that the negative polaron 
related properties would be governed by the negative polaron stabilizing 
units. The calculated highest occupied molecular orbital (HOMO)/ 
lowest unoccupied molecular orbital (LUMO) values of the DBFBCz and 
BNBCz hosts were � 5.11/-1.17 eV and � 5.21/-1.60 eV, respectively. 
The LUMO levels of the two hosts indicate that the BNBCz is a strongly 
electron accepting hole transport type host and the DBFBCz is a weakly 
electron accepting hole transport type host. 

The two hosts were prepared by the similar synthetic pathways 
coupling the negative polaron stabilizing unit to the 9-phenyl-9H,90H- 
3,40-bicarbazole backbone structure produced by Suzuki coupling re
action between (9-phenyl-9H-carbazol-3-yl)boronic acid and 4-chloro- 
9H-carbazole. The synthetic yield of the bicarbazole backbone struc
ture was 60%, while that of the DBFBCz and BNBCz from the bicarbazole 

Scheme 1. Synthetic scheme of DBFBCz and BNBCz.  

Fig. 1. Calculated HOMO and LUMO distributions of DBFBCz and BNBCz.  
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intermediate was 40 and 55%, respectively. Multi-step purification 
processes of column chromatography, recrystallization, and sublimation 
were engaged to afford the final hosts for device lifetime study. The 
identification of the final compounds was conducted using 1H and 13C 
nuclear magnetic resonance (NMR) spectrometer, mass spectrometer 
and elemental analysis. 

2.2. Material characterization 

The basic properties of the hosts were analyzed by photophysical, 
electrochemical, and thermal characterizations. The photophysical 
analysis results of the hosts are presented in Fig. 2. Absorption, fluo
rescence and phosphorescence of the hosts were characterized using 
tetrahydrofuran solution (1.0 � 10� 5 M) of the hosts. The absorption 
behavior in the ultraviolet–visible (UV–vis) region was similar in the 
two hosts because the main UV–vis absorption is from the bicarbazole 
backbone structure which is shared in the two hosts. The fluorescence of 
the hosts collected at room temperature was slightly different in that the 
fluorescence spectrum of the BNBCz was relatively broad and red-shifted 
because of charge transfer (CT) character by the strongly electron 
accepting benzonitrile unit. Bathochromic shift of the fluorescence 
spectrum by 13 nm resulted from the CT character. Whereas, the 
phosphorescence spectra of the two hosts gathered at 77 K after delay 
time of 1 ms agreed each other and provided high triplet energy of 2.90 

eV. The linkage via the 3 and 4 positions of the bicarbazole core allowed 
the high triplet energy in the two hosts. 

The electrochemical characterization data of the two hosts are shown 
in Fig. 3. Both oxidation and reduction of the hosts were detected during 
cyclic voltage scan. The conversion of the oxidation and reduction po
tentials of the hosts into the energy levels using the ferrocene standard 
material provided the HOMO/LUMO levels of � 5.98/-2.59 eV and 
� 6.06/-2.64 eV for the DBFBCz and BNBCz hosts, respectively. The 
strongly electron accepting nature of the benzonitrile slightly deepened 
the HOMO and LUMO levels of the BNBCz host. 

The thermal characterization of the hosts was performed to evaluate 
the potential of the hosts in terms of electrical operation stability and 
thermal evaporation process stability. Glass transition temperature (Tg) 
and thermal decomposition temperature (Td) at 5% weight loss indi
rectly guide the thermal stability of the hosts. The thermal character
ization data in Fig. 4(a) and (b) enabled the determination of the Tg/Td 
as 143/442 and 138/385 �C in the DBFBCz and BNBCz hosts, respec
tively. The high Tg and Td of the two hosts confirmed the thermal sta
bility of them in the operation and fabrication processes. All material 
characterization data explained above proved that the DBFBCz and 
BNBCz hosts would perform as the hosts for the blue phosphors. 

2.3. Device analysis 

Device evaluation of the two hosts was carried out by doping fac-tris 
(3-(1-(2,6-diisopropylphenyl)-1H-imidazole-2-yl)benzonitrile)iridium 
(CNIm) phosphor in the mixed hosts. The CNIm was reported as a blue 
phosphor realizing high EQE and long device lifetime in our previous 
work and was also used in this work for EQE and lifetime study of the 

Fig. 2. UV–vis and PL spectra of DBFBCz and BNBCz.  

Fig. 3. Cyclic voltammetry (CV) data of DBFBCz and BNBCz.  

Fig. 4. (a) DSC (Differential Scanning Calorimetry) and (b) TGA (Thermogra
vimetric analysis) data of DBFBCz and BNBCz at a heating rate of 10 

�

C/min in a 
nitrogen atmosphere. 
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Fig. 5. Energy level diagram of the blue PhOLEDs (a), device structure of hole only device (b) and electron only device (c), and chemical structure of the mate
rials (d). 
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hosts [22]. As the DBFBCz and BNBCz were developed as the p-type 
hosts in the mixed host, they were mixed with a 2-phenyl-4,6-bis(3-(tri
phenylsilyl)phenyl)-1,3,5-triazine (mSiTrz) n-type host reported in our 
previous work [16]. The device structure is schematized in Fig. 5 
including the energy levels and chemical structure of the organic ma
terials. The device evaluation data of the DBFBCz and BNBCz hosts are 
presented in Fig. 6. In the current density and luminance characteriza
tion data according to driving voltage, the current density and lumi
nance of the DBFBCz device were higher than those of the BNBCz device. 
Hole only devices were fabricated to confirm the current density 
discrepancy in the two hosts, which showed that the better hole trans
port properties of the DBFBCz host are responsible for the high current 
density of the DBFBCz device (Fig. 7). The low hole current density of 

the BNBCz device might be due to the strongly electron accepting 
character of the benzonitrile unit. The driving voltages of the DBFBCz 
and BNBCz devices at 1000 cd/m2 were 6.0 and 6.3 V, respectively. 

The EQE of the blue PhOLEDs is presented according to the lumi
nance of the devices. The EQE of the BNBCz device was slightly higher 
than that of the DBFBCz device possibly due to balanced carrier density 
triggered by the low hole carrier density of the BNBCz hole only device 
considering the same triplet energy of the two hosts. As shown Fig. 8, the 
same EL spectra presenting pure CNIm emission in the two devices 
support the exclusion of the energy transfer as the factor for the 
disagreement of the EQE. The maximum EQEs of the DBFBCz and BNBCz 
devices were 18.6 and 19.1%, respectively. The CIE color coordinates of 
the DBFBCz and BNBCz devices were (0.15,0.25) and (0.15,0.26), 
respectively. 

Fig. 6. (a) The current density and luminance according to driving voltage and (b) the external quantum efficiency (EQE) according to luminance of the PhOLEDs.  

Fig. 7. Hole current density of non-doped DBFBCz and BNBCz hole 
only devices. 

Fig. 8. EL spectra of DBFBCz, BNBCz, and mCBP device at 1000 cd/m2.  

Fig. 9. Lifetime data of CNIm doped DBFBCz, BNBCz, and mCBP devices.  

Fig. 10. The change of driving voltage according to time in electron only de
vices of DBFBCz, BNBCz and mCBP. 
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The device lifetime of the DBFBCz and BNBCz devices was evaluated 
at a constant current driving condition. A conventional p-type host 
without the negative polaron stabilizing unit, mCBP, was a standard 
material to validate the host design strategy. The device lifetime data are 
presented in Fig. 9. The device lifetime of the DBFBCz and BNBCz de
vices was longer than that of the mCBP control device. The lifetime 
values of the DBFBCz, BNBCz, and mCBP devices up to 80% of initial 
luminance were 8.8, 9.3, and 6.8 h, respectively. In order to understand 
the origin of the lifetime extension by the DBFBCz and BNBCz hosts, 
device analysis was carried out by tracing the negative polaron stability 
of the hosts. The stability test of the hosts against the polarons was 
performed by stressing the electron only devices of the hosts. The 
negative polaron stability of the DBFBCz and BNBCz hosts was 
compared with that of the mCBP host. The data of polaron stability test 
are presented in Fig. 10. In the negative polaron stability test using 
electron only devices, the change of driving voltage according to time in 
DBFBCz and BNBCz devices was smaller than that of the mCBP device. 
This indicates that DBFBCz and BNBCz have better negative polaron 
stability than mCBP. The benzonitrile and dibenzofuran units made the 
hosts stable under negative polarons because they tend to accept elec
trons and their electron deficiency can stabilize injected electrons. 
Therefore, the DBFBCz and BNBCz hosts showed enhanced negative 
polaron stability and extended the device lifetime. 

3. Conclusions 

The negative polaron stabilizing hole transport type hosts of DBFBCz 
and BNBCz were designed and synthesized as high triplet energy host 
with a triplet energy above 2.90 eV. In blue PhOLEDs, the DBFBCz and 
BNBCz showed high EQE of 18.6 and 19.1%, respectively, and extended 
device lifetime compared with the mCBP. The improved negative 
polaron stability of the hosts by the dibenzofuran and benzonitrile units 
was responsible for the improved device lifetime. This result revealed 
that negative polaron stability of hole transport type hosts play an 
important role in improving the driving lifetime. 
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