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A new and facile route for the synthesis of chiral 1,2-diamines
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Abstract—The synthesis of chiral diamines and diamino acids has been achieved from the corresponding N-arylsulfonyl aziridines
through reaction with a chiral isocyanate and subsequent hydrolysis of 2-imidazolidinones. The method appears to be general and of
wide applicability.
� 2004 Elsevier Ltd. All rights reserved.
1,2-Diamines are important1 since they are constituents
of several natural products of biological significance and
are key materials in the preparation of compounds,
which are of value in the field of diagnostic nuclear med-
icine. They are also useful precursors of azamacrocycles
and heterocyclic compounds and are being used increas-
ingly in asymmetric synthesis as chiral auxiliaries and
as ligands for catalysts.1,2 Chiral ethylenediamine
derivatives are of interest in the preparation of cis-platin
analogues, which have been employed in cancer therapy.

2,3-Diaminocarboxylic acids are constituents of several
antibiotics, natural products and biologically active
molecules.1,3 They are also used as building blocks for
peptidomimetics in medicinal chemistry due to their pro-
tease resistance and potential conformational con-
straints. Their metal complexing abilities have been
well documented.

Chiral diamines can be obtained by resolution of race-
mates using optically active dicarboxylic acids such as
mandelic4a or tartaric4b or the recently reported dehy-
droabietic acid.4c Chiral diamines and diamino acids
have been prepared by a variety of other methods. Most
are based on the chirality of amino acids and related
amino alcohols.5a–d Procedures based on chiral di-
ols,6a–c mandelic6d and tartaric acids,6e cyanohydrins,6f

amines,6g hydrazones,6h,i imines6j and bisimines,6k,l azir-
idines,6m oxazolines6n and oxazolidinones6o and sulfil-
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imines6p are also known. Syntheses in which the
chirality originates from the catalyst have also been
reported.7a,b

Although several methods for preparing chiral diamines
and diamino acids are known, most of them suffer from
one or more drawbacks including lack of generality,
inaccessibility of starting materials and cumbersome
procedures.8 There is thus a need for developing im-
proved and more general procedures.

In our ongoing programme of studying the ring opening
reactions of N-arylsulfonylaziridines,9 we have investi-
gated their reaction with isocyanates in the presence of
iodide ions to give 2-imidazolidinones.10a The regio-
and stereochemical course of these reactions has been
clearly delineated.10b In the present communication we
report the use of this reaction for obtaining chiral di-
amines and diamino acids. The synthetic rationale is
depicted in Scheme 1.

It was proposed that the reaction of aziridines with com-
mercially available R-(+)-a-methylbenzyl isocyanate 2
would give a mixture of diastereomeric 2-imidazolid-
inones, which on subsequent reduction and treatment
with acid would yield both enantiomers of the diamines.
The question of regiochemistry had already been settled
since 2-alkylaziridines have been shown to undergo
iodide attack at the unsubstituted carbon whereas
with 2-phenylaziridines the nucleophile opened the ring
at C-2.10b

Accordingly, aziridines 1a,b were prepared as previously
reported11 and reacted with isocyanate 2. The two

mailto:ukn@netearth.iitd.ac.in


Figure 1. X-ray structure of compound 3a.
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Scheme 1. Synthesis of diamines via hydrolysis of 2-imidazolidinones.

Table 1. Synthesis of diastereomeric 2-imidazolidinones from

N-arylsulfonylaziridines

Entry Aziridines Diastereomeric

mixture of

2-imidazol-

idinones

Yield (%)

mixture

of diastereo-

mers

Diastereo-

meric ratioa

1 1a 3a, 4a 90 60:40

2 1b 3b, 4b 88 50:50

3 7a 8a, 9a 85 65:35

4 7b 8b, 9b 87 54:46

a The diastereomeric ratios were not always 50:50. This aspect is being

investigated.
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Scheme 2. Synthesis of diamino acids via hydrolysis of 2-imidazolidinones.
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diastereoisomers 3 and 412a,b were obtained in excellent
yields (ratio of 3:4 with R = Ph was 60:40 and with
R = Me; 50:50 as determined by 1H NMR), see Table
1. Only one regioisomer was obtained in both cases;
with 1a, the phenyl group was found to be adjacent to
the N-methylbenzyl group whereas for 1b, the methyl
group was adjacent to the N–Ts group. The regio-and
stereochemistry was further confirmed by single crystal
X-ray diffraction data of compound 3a (Fig. 1). The dia-
stereomers could be separated by crystallization and/or
column chromatography and on treatment individually
with Mg–MeOH13 followed by conc. HCl furnished
both enantiomers 5a,b and 6a,b.12c,e The dihydrochlo-
ride salts of 5a and 6a were converted into their ditosyl
derivatives to compare their optical rotations12c with
those already reported.12d

The same protocol was used to synthesize diamino acids
(Scheme 2). Aziridine 7a was prepared using our
recently reported14 method and on treatment with 2



Figure 2. X-ray structure of compound 8a.
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furnished the diastereomeric 2-imidazolidinones 8a15a

and 9a15b (65:35 diastereomeric ratio as determined by
1H NMR), Table 1. These were separated by column
chromatography and characterized. In this case also
only one regioisomer was obtained. The regio- and
stereochemistry was further confirmed by single crystal
X-ray diffraction data of compound 8a16 (Fig. 2). Suc-
cessive treatment with Mg–MeOH and conc. HCl then
furnished the corresponding diamino acids 10a and
11a15c,d in 85% overall yield. In the case of 7b, the
imidazolidinones 8b and 9b could not be separated.
However, after reduction with Mg–MeOH, the detosy-
lated imidazolidinones could be separated by column
chromatography and these, on hydrolysis with conc.
HCl, give the dihydrochloride salts of amino acids 10b
and 11b. The resulting dihydrochlorides were heated
with propene oxide to give pure monohydrochlorides
10b and 11b and their optical rotations were then
compared.15c,e

In conclusion we have developed a new methodology for
the synthesis of 1,2-diamines and diamino acids, which
is general and has potential for wide structural
variation.
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