

Stereoselective Synthesis of Cytotoxic Anhydrophytosphingosine Pachastrissamine (Jaspine B) from D-Xylose

Yuguo Du,*,† Jun Liu,† and Robert J. Linhardt*,‡

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China, and Departments of Chemistry, Biology, and Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180

duyuguo@mail.rcees.ac.cn

Received August 5, 2005

The first naturally occurring anhydrophytosphingosine, pachastrissamine (jaspine B), a marine compound cytotoxic toward P388, A549, HT29, and MEL28 cell lines at $IC_{50} =$ 0.01 µg/mL level, has been stereoselectively synthesized from D-xylose in 10 linear steps with 25.7% overall yield.

Pachastrissamine (1, Figure 1) is a natural occurring anhydrophytosphingosine derivative, first isolated in 2002 by Higa and co-workers¹ from the Okinawa marine sponge Pachastrissa sp. (family Calthropellidae). Bioassay-guided separation of the sponge crude oil led to pure 1, which exhibited a significant cytotoxicity of 0.01 µg/mL against P388, A549, HT29, and MEL28 cell lines. Almost at the same time, Debitus and coworkers² investigated the cytotoxicity of ethanolic extract (IC₉₅ = 10 μ g/mL, KB cell line) from a new species of Jaspis, a marine sponge collected in Vanuatu, and the bioguided fractionation of this extract using a brine shrimp bioassay led to two cytotoxic compounds, named as jaspine A (2, Figure 1) and jaspine B (1, Figure 1). Jaspine B hydrochloride displayed remarkable bioactivity (IC₅₀ = 0.24 μ M) against the A549 human lung carcinoma cell line using the ATPlite assay and represented the most potent anticancer agent on this cell line yet isolated from the Jaspis genus. High-resolution NMR, mass spectral analysis, and chemical derivatization studies suggested that the structure of pachastrissamine and jaspine B were identical, i.e., an all-syn trisubstituted tetrahedrofuran framework and the (2S,3S,4S) absolute configuration.

FIGURE 1. Structure of natural anhydrophytosphingosine pachastrissamine (jaspine B).

SCHEME 1. Retrosynthetic Analysis of Pachastrissamine (1)

It has been reported that sphingosine 1-phosphate induces a rapid and relevant release of arachidonic acid and increases phospholipase D activity in A549 cells.³ To improve our understanding of this anhydrosphingosine targeting to tumor cells and explore more potent analogues based on this novel structure, we launched a stereoselective total synthesis of natural pachastrissamine (jaspine B). During our efforts, two synthetic communications^{4,5} aimed to the total synthesis of pachastrissamine (jaspine B) using L-serine as starting material were published. In Rao's work,⁴ a diastereoisomeric mixture of **1** was formed, using a standard asymmetric synthesis, in 10 steps and 15.4% overall yield. In Datta's letter,⁵ enantiopure **1** was prepared through a bicyclic lactone intermediate in 14 steps and 15.5% overall yield from L-serine. Here, we report the stereo-selective total synthesis of pachastrissamine (jaspine B).

Pachastrissamine **1** can be retrosynthetically disconnected into a formylfuran derivative **3** and a commercially available alkyl Wittig reagent. The furan structure of **3** can be derived from 2,5-ring closure of an acyclic intermediate **4**, which can be easily prepared from natural D-xylose through suitable functional group transformations (Scheme 1).

D-Xylose treated with concentrated H_2SO_4 in acetone⁶ gave 1,2-acetal **5** in 82% yield (Scheme 2). Regioselective tosylation of **5** on the primary alcohol with tosylimidazolide, MeOTf, and *N*-methylimidazole in THF at 0 °C afforded **6** in excellent yield.⁷

[†] Chinese Academy of Sciences.

[‡] Rensselaer Polytechnic Institute.

Kuroda, I.; Musman, M.; Ohtani, I. I.; Ichiba, T.; Tanaka, J.; Cravalos,
 C.; Higa, T. J. Nat. Prod. 2002, 65, 1505–1506.

⁽²⁾ Ledroit, V.; Debitus, C.; Lavaud, C.; Massiot, G. Tetrahedron Lett. 2003, 44, 225-228.

^{(3) (}a) Vasta, V.; Meacci, E.; Catarzi, S.; Donati, C.; Farnararo, M.; Bruni, P. *Biochim. Biophys. Acta* **2000**, *1483*, 154–160. (b) Meacci, E.; Vasta, V.; Moorman, J. P.; Bobak, D. A.; Bruni, P.; Moss, J.; Vaughan, M. J. *Biol. Chem.* **1999**, *274*, 18605–18612.

⁽⁴⁾ Sudhakar, N.; Kumar, A. R.; Prabhakar, A.; Jagadeesh, B.; Rao, B. V. *Tetrahedron Lett.* **2005**, *46*, 325–327.

^{(5) (}a) Bhaket, P.; Morris, K.; Stauffer, C. S.; Datta, A. *Org. Lett.* **2005**, 7, 875–876. (b) Bhaket, P.; Stauffer, C. S.; Datta, A. *J. Org. Chem.* **2004**, 69, 8594–8601.

⁽⁶⁾ Moravcova, J.; Capkova, J.; Stanek, J. Carbohydr. Res. 1994, 263, 61–66.

⁽⁷⁾ Gerspacher, M.; Rapoport, H. J. Org. Chem. 1991, 56, 3700-3706.

SCHEME 2. Attempted Synthesis toward Pachastrissamine $(1)^a$

^{*a*} Reagents and conditions: (a) concd H_2SO_4 , acetone, then Na_2CO_3 , 82%; (b) tosylimidazolide, MeOTf, *N*-methylimidazole, THF, 93%; (c) BzCl, pyridine, rt, 5 h, 96%; (d) 5% hydrochloric acid in ethanol (v/v), reflux, 3 h, 90%; (e) MsCl, pyridine, rt, 4 h, 99.4%; (f) NaN₃, NH₄Cl, dry DMF, 60–120 °C, 5–15 h.

Benzoylation of $6 \rightarrow 7$, followed by acid-catalyzed furan ring reconstruction in ethanol under reflux conditions, afforded the key intermediate, 2,5-anhydro-3-O-benzoylxylose diethylacetal (8), in 81% yield over three steps. The structure of 8 was confirmed by FABMS $[m/z 311 (M + H)^+]$ and its ${}^{1}H^{-1}H$ COSY spectrum (chemical shift of H-1 moved upfield from 5.85 to 4.76 ppm). Derivatization of 8 with acetic anhydride in pyridine resulted in the downfield movement of the peak corresponding to H-4 (δ : 4.33 ppm \rightarrow 5.22 ppm) in the ¹H NMR spectrum, further confirming the structure of 8 (see the Supporting Information). To obtain the S-configuration required for the 4-amino group, the 4-OH of 8 was mesylated with methanesulfonyl chloride in pyridine (\rightarrow 9), followed by an S_N2 substitution using NaN₃ in DMF. Unfortunately, extensive efforts failed to produce a good yield of desired compound 10, affording instead a rather complex mixture based on NMR analysis. A literature survey suggested that the 3,4-acyloxonium ion might be formed in our experiments leading to an inseparable mixture of 3*R*-, 4*R*-, and 4*S*-azido-displaced products.⁸

A high yield of C-4 azido-displacement can be accomplished by protecting the hydroxyl group at C-3 through alkylation (Scheme 3) as in **11**, instead of through acylation (Scheme 2) as in 9. The xylose derivative 6 was benzylated with benzyl trichloroacetimidate in the presence of TMSOTf (\rightarrow 11).⁹ Acidcatalyzed furan ring reconstruction afforded 2,5-anhydro compound 12 in a yield of 89%. Mesylation (\rightarrow 13) and azido substitution using sodium azide afforded the key enantiopure acetal 14 in 71% isolated yield over two steps. The acetal protection of 14 was removed with aqueous trifluroacetic acid to afford aldehyde 15.10 Standard Wittig olefination of 15 with a C-13 alkyl donor resulted in the incorporation of an inseparable mixture of E- and Z-isomers of the corresponding C-14 olefinic side chain. The Z/E ratio was determined to be greater than 10:1 on the basis of ¹H NMR but both could be further reduced to the desired alkyl side chain (Scheme 3). In a single step, hydrogenation of azido, benzyl, and the side chain double bond furnished target molecule 1 in an excellent yield of 92%.

In conclusion, the stereoselective total synthesis of a structurally unique bioactive anhydrosphingosine natural product has been achieved in 10 linear steps and 25.7% overall yield from an inexpensive natural product, D-xylose. This synthesis took advantage of D-xylose, a carbohydrate having a chiral template SCHEME 3. Total Synthesis of Pachastrissamine (1)^a

^{*a*} Reagents and conditions: (a) benzyl trichloroacetimidate, 1 mol % of TMSOTf, dry CH₂Cl₂, -40 °C, 75%; (b) 5% hydrochloric acid in ethanol (v/v), reflux, 3 h, 89%; (c) MsCl, pyridine, rt, 4 h; (d) NaN₃, NH₄Cl, dry DMF, 120 °C, 20 h, 71% for two steps; (e) aqueous 50% trifluroacetic acid, CH₂Cl₂, room temperature, 30 min, 90%; (f) C₁₃H₂₇Ph₃P+Br⁻, BuLi, dry THF, -40 °C, 86%, Z/E > 10/1; (g) Pd(OH)₂/C, H₂, MeOH/EtOAc, 5 h, 92%.

that could be modified through an acid-catalyzed 2,5-cyclization and C-3 azido-substitution to fit the required (2*S*,3*S*,4*S*) configuration of the pachastrissamine target. As exemplified in this study, carbohydrate moieties provide versatile synthons in asymmetric synthesis of natural products.¹¹ The present study should provide a valuable strategy for the preparation of other functionalized tetrahydrofuran derivatives, acyclic sphingosine analogues, carbasugars, and heterocyclic enzyme inhibitors.^{2,12}

Experimental Section

3-O-Benzyl-1,2-*O*-isopropylidene-5-*O*-*p*-toluenesulfonyl-α-Dxylofuranose (11). To a solution of compound **6** (104 mg, 0.3 mmol) and benzyl trichloroacetimidate (142 mg, 0.6 mmol) in dry CH₂Cl₂ (2 mL) at -40 °C was added TMSOTf (1.1 μL, 0.003 mmol) under N₂ protection. The reaction was monitored by TLC (2:1 EtOAc-petroleum ether) until all starting material was consumed and then quenched with Et₃N and concentrated to dryness. The residue was subjected to silica gel column chromatography (3:1 petroleum ether–EtOAc) to give **11** (97 mg, 75%) as a syrup: $[\alpha]^{25}_{D} - 21$ (*c* 1.0, CHCl₃); ¹H NMR (400 MHz,

⁽⁸⁾ Hill, J.; Hough, L.; Richardson, A. C. *Carbohydr. Res.* 1968, *8*, 7–18.
(9) Nakajima, N.; Horita, K.; Abe, R.; Yonemitsu, O. *Tetrahedron Lett.* 1988, 29, 4139–4142.

⁽¹⁰⁾ Ellison, R. A.; Lukenbach, E. R.; Chiu, C. W. Tetrahedron Lett. 1975, 29, 499–502.

^{(11) (}a) Boons, G.-J.; Hale, K. J. Organic Synthesis with Carbohydrates;
Sheffield Academic Press: Sheffield, England, 2000. (b) Elliott, M. C.;
Williams, E. J. Chem. Soc., Perkin Trans. 1 2001, 2303–2340. (c) Elliott,
M. C. J. Chem. Soc., Perkin Trans. 1 2002, 2301–2323. (d) Harmange, J.
C.; Figadere, B. Tetrahedron: Asymmetry 1993, 4, 1711–1754. (e) Ziegler,
F. E.; Wang, Y. J. Org. Chem. 1998, 63, 426–427. (f) Carda, M.; Rodriguez,
S.; Segovia, B.; Marco, J. A. J. Org. Chem. 2002, 67, 6560–6563.

^{(12) (}a) Muralidhar, P.; Radhika, P.; Krishna, N.; Rao, D. V.; Rao, C.
B. Nat. Prod. Sci. 2003, 9, 117–142. (b) O'Connell, P. W.; Tsien, S. H.
Arch. Biochem. Biophys. 1959, 80, 289–294. (c) Sugiyama, S.; Honda,
M.; Komori, T. Liebigs Ann. Chem. 1988, 619–625. (d) Birk, R.; Sandhoff,
K.; Schnidt, R. R. Liebigs Ann. Chem. 1993, 71–75. (e) Jo, S. Y.; Kim,
H. C.; Jeon, D. J.; Kim, H. R. Heterocycles 2001, 55, 1127–1132. (f) Bols,
M. Acc. Chem. Res. 1998, 31, 1–8. (g) Asano, N.; Nash, R. J.; Molyneux,
R. J.; Fleet, G. W. J. Tetrahedron: Asymmetry 2000, 11, 1645–1680. (h)
Callam, C. S.; Lowary, T. L. J. Org. Chem. 2001, 66, 8961–8972. (i)
Bleriot, Y.; Giroult, A.; Mallet, J.-M.; Rodriguez, E.; Vogel, P.; Sinay, P.
Tetrahedron: Asymmetry 2002, 13, 2553–2565.

CDCl₃) δ 1.25, 1.43 (2s, 2 × 3H), 2.41 (s, 3H), 3.95 (d, 1H, J = 3.3 Hz), 4.18 (dd, 1H, J = 6.1, 9.9 Hz), 4.30 (dd, 1H, J = 6.1, 9.9 Hz), 4.35 (dt, 1H, J = 3.3, 6.1 Hz), 4.45 (d, 1H, J = 11.8 Hz), 4.56 (d, 1H, J = 3.7 Hz), 4.60 (d, 1H, J = 11.8 Hz), 5.85 (d, 1H, J = 3.7 Hz), 7.23–7.25 (m, 2H), 7.28–7.35 (m, 5H), 7.76–7.78 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 26.1, 26.6, 66.9, 71.8, 77.4, 81.0, 81.8, 105.0, 111.9, 127.5, 127.8, 127.9, 128.3, 129.7, 132.5, 136.9, 144.8. Anal. Calcd for C₂₂H₂₆O₇S: C, 60.81; H, 6.03. Found: C, 61.09; H, 5.97.

2,5-Anhydro-3-O-benzyl-a-D-xylose Diethyl Acetal (12). Compound 11 (217 mg, 0.5 mmol) was dissolved in anhydrous ethanol (10 mL) containing concentrated hydrochloric acid (0.5 mL). The mixture was stirred under reflux for 3 h and then neutralized with saturated aqueous sodium carbonate. The aqueous layer was extracted with EtOAc (3×20 mL), and the combined organic phase was washed with brine, dried over Na2SO4, and concentrated under vacuum. Purification of the residue by silica gel column chromatography (1:1 petroleum ether-EtOAc) gave 12 as a syrup (131 mg, 89%): $[\alpha]^{25}_{D}$ + 77 (c 0.7, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.18 (t, 3H, J = 7.0 Hz), 1.24 (t, 3H, J = 7.0 Hz), 1.67 (br s, 1H), 3.50–3.55 (m, 1H), 3.67–3.80 (m, 4H), 3.94 (d, 1H, J = 3.6 Hz), 4.12 (dd, 1H, J = 3.7, 7.7 Hz), 4.20 (dd, 1H, J = 4.0, 9.9 Hz), 4.33 (br d, 1H, *J* = 3.9 Hz), 4.60, 4.62 (2d, 2H, *J* = 11.8 Hz), 4.76 (d, 1H, J = 7.7 Hz), 7.26–7.37 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 15.2, 15.3, 61.5, 63.0, 72.2, 74.2, 74.4, 79.7, 84.2, 100.5, 127.4, 127.6, 128.3, 137.9. Anal. Calcd for C₁₆H₂₄O₅: C, 64.84; H, 8.16. Found: C, 65.09; H, 8.11.

2,5-Anhydro-3-O-benzyl-4-O-methanesulfonyl-a-d-xylose Diethyl Acetal (13). To a solution of 12 (70 mg, 0.24 mmol) in pyridine (2 mL) was added methanesulfonyl chloride (37 μ L, 0.48 mmol). The mixture was stirred at room temperature for 4 h and then coevaporated with toluene. The crude mesylate 13 was directly used in the next step without further purification. A small sample was purified on a silica gel column to get the physical data of 13: $[\alpha]^{25}_{D}$ + 80 (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.16 (t, 3H, J = 7.0 Hz), 1.25 (t, 3H, J = 7.0 Hz), 2.97 (s, 3H), 3.46–3.52 (m, 1H), 3.67-3.79 (m, 3H), 3.98 (d, 1H, J = 11.0 Hz), 4.05 (dd, 1H, J = 3.7, 7.6 Hz), 4.25 (d, 1H, J = 3.6 Hz), 4.30 (dd, 1H, J = 4.4, 11.0 Hz), 4.62, 4.68 (d, 2H, J = 11.8 Hz), 4.75 (d, 1H, J =7.6 Hz), 5.12 (d, 1H, J = 4.3 Hz), 7.31–7.38 (m, 5H); ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3) \delta 15.1, 15.2, 38.3, 61.5, 63.0, 71.4, 72.5, 79.9,$ 81.1, 81.8, 100.0, 127.7, 127.9, 128.3, 137.1. Anal. Calcd for C₁₇H₂₆O₇S: C, 54.53; H, 7.00. Found: C, 54.76; H, 6.91.

2,5-Anhydro-4-azido-3-O-benzyl-4-deoxy-α-L-arabinose Diethyl Acetal (14). To a solution of crude mesylate 13 (88 mg, 0.23 mmol) in dry DMF (3 mL) were added NaN₃ (91 mg, 1.41 mmol) and anhydrous NH₄Cl (23 mg, 0.44 mmol). The mixture was heated to 120 °C and stirred at these conditions for about 20 h in a dark room. The reaction was monitored by TLC (3:1 petroleum ether-EtOAc) until all starting material disappeared, and then the mixture was diluted with water and extracted with EtOAc (4 \times 10 mL). The organic phase was dried over anhydrous Na₂SO₄ and concentrated. Purification of the residue by silica gel column chromatography (3:1 petroleum ether-EtOAc) gave 14 (54 mg, 71% for two steps) as a syrup: $[\alpha]^{25}_{D}$ + 106 (c 1.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.18 (t, 3H, J = 7.0 Hz), 1.24 (t, 3H, J = 7.0 Hz), 3.41-3.45 (m, 1H), 3.66-3.77 (m, 3H), 3.83 (dd, 1H, J = 4.5, 7.8Hz), 3.90 (dd, 1H, J = 4.0, 7.7 Hz), 3.98 (dd, 1H, J = 7.7, 8.5 Hz), 4.04 (dd, 1H, J = 4.3, 8.5 Hz), 4.19 (t, 1H, J = 4.3 Hz), 4.66 (d, 1H, J = 11.2 Hz), 4.76 (d, 1H, J = 7.7 Hz), 4.82 (d, 1H, J =11.2 Hz), 7.31–7.41 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 15.2, 15.3, 61.4, 62.0, 62.8, 68.4, 74.2, 79.7, 80.7, 100.4, 127.6, 127.7, 128.2, 137.6. HRFABMS calcd for C₁₆H₂₃N₃O₄ 321.1689, found 322.1660 (M + H)⁺. Anal. Calcd for $C_{16}H_{23}N_3O_4$: C, 59.80; H, 7.21. Found: C, 59.57; H, 7.29.

2,5-Anhydro-4-azido-3-*O***-benzyl-4-deoxy-\alpha-L-arabinose (15).** The acetal **14** (310 mg, 0.96 mmol) was dissolved in CH₂Cl₂ (3 mL), and aqueous 50% trifluroacetic acid (1 mL) was added. The reaction progress was monitored by TLC (2:1 petroleum ether-EtOAc) until all 14 was consumed, the mixture was neutralized with saturated aqueous sodium carbonate and further extracted with CH_2Cl_2 (3 × 20 mL), and the combined organic layer was washed with brine, dried over Na2SO4, and concentrated to dryness. Purification of the residue by silica gel column chromatography (2:1 petroleum ether-EtOAc) gave aldehyde 15 (215 mg, 90%) as a syrup: $[\alpha]^{25}_{D} + 25$ (c 0.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 3.99–4.08 (m, 3H), 4.30 (dd, 1H, J = 2.5, 7.1 Hz), 4.50 (dd, 1H, J = 4.5, 7.1 Hz), 4.66, 4.70 (2d, 2H, J = 11.6 Hz), 7.31-7.39 (m, 5 H), 9.66 (br d, 1H, J = 4.5 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 60.9, 70.4, 73.6, 81.4, 82.3, 127.9, 128.2, 128.5, 136.5, 200.4; HRFABMS calcd for C₁₂H₁₃N₃O₃ 247.0957; found 248.0931 (M $(+ H)^+$. Anal. Calcd for $C_{12}H_{13}N_3O_3$: C, 58.29; H, 5.30. Found: C, 58.51; H, 5.23.

Synthesis of Olefin 16. To a precooled (- 40 °C) solution of Wittig salt $C_{13}H_{27}Ph_3P^+Br^-$ (61 mg, 0.11 mmol) in THF (1.5 mL) was slowly added *n*-BuLi (2.5 M in hexane, 50 μ L, 0.12 mmol) under N₂ protection. The orange solution was stirred at these conditions for about 20 min, at the end of which time, a solution of 15 (25 mg, 0.1 mmol) in dry THF (3 mL) was dropwise added under N₂ protection. The mixture was stirred at this temperature for another 30 min, then allowed to warm to room temperature and quenched by saturated NH₄Cl (0.2 mL). The mixture was diluted with water and extracted with EtOAc (3 \times 20 mL). The combined organic phase was dried over anhydrous Na₂SO₄ and concentrated to dryness. Purification of the residue by silica gel column chromatography (9:1 petroleum ether-EtOAc) gave 16 (36 mg, 86%, Z/E > 10:1) as a syrup. Selected Z-isomer: ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, 3H, J = 7.1 Hz), 1.20 (br s, 20H), 2.07-2.09 (m, 2H), 3.88-3.97 (m, 3H), 4.11 (t, 1H, J = 5.0 Hz), 4.62, 4.70 (2d, 2H, J = 11.8 Hz), 4.71–4.72 (m, 1H), 5.65–5.73 (m, 2H, J = 11.0 Hz), 7.29–7.37 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 22.6, 27.7, 29.2, 29.3, 29.4, 29.5, 29.6, 31.8, 61.5, 68.6, 73.3, 75.8, 80.4, 124.9, 127.7, 127.8, 128.3, 135.0, 137.4; HRFABMS calcd for C₂₅H₃₉N₃O₂ 413.3042, found 414.3068 (M $(+ H)^+$. Anal. Calcd for $C_{25}H_{39}N_3O_2$: C, 72.60; H, 9.50. Found: C, 72.35; H, 9.42.

Synthesis of Pachastrissamine (Jaspine B) 1. A mixture of olefin 16 (42 mg, 0.1 mmol) and Pd(OH)₂/C (10% content, 10 mg) in MeOH/EtOAc (1:1 v/v, 6 mL) was bubbled into H₂ at a flow rate of 100 mL/min at room temperature and 1 atm pressure. The hydrogenation was kept at these conditions for about 5 h, at the end of which time TLC (4:1 EtOAc/methanol) showed only one product generated. The Pd(OH)₂/C was filtered, and the filtrate was concentrated. The residue was purified on a short silica gel column, which was pre-eluted with methanol containing 2% Et₃N (v/v) using 4:1 EtOAc/methanol as eluent to furnish target compound 1 (28 mg, 92%) as a white solid: $[\alpha]^{25}_{D}$ +7 (c 0.2, CHCl₃); ¹H NMR (400 MHz, CD₃OD) δ 0.89 (t, 3H, J = 7.0 Hz), 1.26–1.45 (m, 24H), 1.60-1.65 (m, 2H), 3.70 (dt, 1H, J = 3.5, 6.8 Hz), 3.79 (dd, 1H, J = 4.8, 7.9 Hz), 3.82–3.93 (m, 2H), 4.23 (dd, 1H, J = 3.5, 4.8 Hz); ¹³C NMR (100 MHz, CD₃OD) δ 14.5, 23.7, 27.2, 29.7, 30.5, 30.7, 30.8, 30.9, 33.1, 54.3, 68.9, 70.9, 84.4. HRFABMS calcd for $C_{18}H_{37}NO_2$ 299.2824, found 300.2856 (M + H)⁺.

Acknowledgment. This work was supported by National Basic Research Program of China (2003CB415001), NNSF of China (30330690), and NIH of the US (HL62244).

Supporting Information Available: Detailed experimental procedures and spectral data for compounds 1, 7–9, and 11–16. This material is available free of charge via the Internet at http://pubs.acs.org.

JO051644Y