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Cyclopentene Annulations of Alkene Radical Cations with Vinyl 
Diazo Species Using Photocatalysis 
Francisco J. Sarabia,+ Qiankun Li,+ and Eric M. Ferreira* 

 

Abstract: A direct (3+2) cycloaddition between alkenes and vinyl 
diazo reagents using Cr or Ru photocatalysis is described.  The 
intermediacy of a radical cation species enables a nucleophilic 
interception by vinyl diazo compounds, a departure from their 
traditional electrophilic behavior.  A variety of cyclopentenes are 
synthesized using this method, and experimental insights implicate a 
direct cycloaddition instead of a cyclopropanation/rearrangement 
cascade process. 

Cycloadditions represent one of the most widely employed 
strategies for efficient molecule synthesis, emblematic of their 
strengths in convergency and regio- and stereocontrol.  In 
comparison to the venerable Diels-Alder (4+2) cycloaddition for 
cyclohexene construction, the formation of cyclopentenes via 
(3+2) pathways is more limited in prominence.[1]  
Stereochemically and functionally diverse five-membered 
carbocycles are common cores in many bioactive and functional 
molecules (e.g., rocaglamide, chromodorolide B, merrilactone 
A),[2] and developments for their direct and convergent 
construction can be highly enabling.  Vinyl and enol 
diazocarbonyl compounds are one such reagent that can serve 
as the 3-carbon component of a (3+2) cycloaddition.[3]  These 
species have engaged in reactivity generally through metal 
carbene/carbenoid intermediacy.  Here, diazo decomposition 
using Rh, Cu, or Au catalysis generates an electrophilic carbene 
species that can undergo the addition with alkenes.[4,5]  
Consequently, the electrophilic activation has generally 
necessitated the use of nucleophilic C=C partners, such as enol 
ethers, indoles, or vinyl azides (Figure 1a).[6,7]  An alternative 
cyclopentene (3+2) approach would utilize a vinyl diazo reagent 
as a nucleophile.  There have been isolated reports of vinyl 
diazo nucleophilicity with activated C=X and X=Y systems (e.g., 
oxocarbenium, iminium, LA-activated iodosyl).[8,9]  Guerrero and 
coworkers demonstrated cycloaddition reactivity in principle in a 
cyclopentannulation pairing enol diazoacetates with conjugate 
acceptors (Figure 1b).[10]  This net transformation involves a two-
step sequence of TBSOTf-mediated conjugate addition, and 
cyclopropanation/ring opening to access the cyclopentene unit.  
A direct cyclopentene annulation using vinyl diazocarbonyl 
compounds as nucleophiles, however, has not been 
demonstrated.  We hypothesized that generating a more 
reactive electrophilic 2-carbon partner (i.e., a radical cation) may 

engender direct and single-step reactivity with the less 
nucleophilic vinyl diazo species.  Toward this goal of developing 
valuable (3+2) cycloaddition methods, herein we report a novel 
cyclopentene annulation process of vinyl diazo reagents 
mediated by Cr and Ru photoredox catalysis, with evidence 
implicating a direct cycloaddition instead of a 
cyclopropanation/rearrangement cascade. 

 

Figure 1. Cyclopentene formations from vinyl diazo (3+2) cycloadditions. 

The emergence of photoredox catalysis has sparked broad 
interest in their diverse transformations and their intriguing 
mechanistic pathways.[11]  Diazo reagents in these processes 
have seen limited use thus far.[12]  As part of our program toward 
developing earth-abundant metals in photoredox catalysis, we 
recently described a Cr-catalyzed cyclopropanation between 
diazocarbonyl compounds and alkenes.[12c]  This reaction 
proceeds via alkene oxidation to a radical cation intermediate by 
the excited state Cr complex.[13]  We were curious whether vinyl 
diazo species would be able to undergo similar reactions to give 
cyclopentene compounds;[14] the process could be conceived to 
proceed via initial cyclopropanation, followed by 
vinylcyclopropane rearrangement.[15]  Alternative, direct 
processes could also be possible, which would in turn raise 
further questions of regioselectivity in the cyclopentene 
formation (vide infra). 

Our initial study of this reaction is outlined in Scheme 1.  
Using vinyl diazoacetate 2a with trans-anethole (1a) as the 
alkene substrate, we found that our catalytic chromium 
conditions (Cr: [Cr(Ph2phen)3](BF4)3, CH3NO2, 23 W CFL) 
indeed provided cyclopentene 3aa in excellent yield.  Notably, 
this product was observed as a single diastereomer and with 
exclusive regioselectivity.  Some deviations from these 
conditions were relevant, while others had minimal effects.  
Fewer than 2 equiv of the vinyl diazo reagent was detrimental to 
yield.  Near UV irradiation was acceptable, but both blue and 
white LEDs afforded diminished yields.  Both light and the 
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photoredox catalyst were essential to reactivity; the simple CrCl3 
salt did not catalyze the cyclopentene annulation.  Interestingly, 
the highly oxidizing ruthenium photocatalyst Ru 
([Ru(bpz)3](PF6)2) was also effective, with considerably shorter 
reaction times.  Substantially lower catalyst loadings (0.2 mol %) 
were detrimental for Cr, but less so for Ru.  In comparison to the 
photocatalytic systems, reactions that proceed through 
carbene/carbenoid manifolds[3-5] were inferior (0-23% yield).  
Given the previously observed differential behavior of these two 
oxidizing photocatalysts,[16] we decided to pursue both in the 
subsequent reaction scope studies. 

 

Scheme 1. Reaction optimization. 

A variety of cyclopentenes could be synthesized via this 
(3+2) cycloaddition.  We found that 1.5-3 mol % catalyst loading, 
and ~2-4 equiv of the diazo reagent were sufficient for effective 
reactivity across several substrates evaluated (Schemes 2 and 
3).  Alkene variation is presented in Scheme 2.  The main 
requirement is an electron rich substituent to facilitate single 
electron oxidation of the alkene species.  Acyclic disubstituted 
alkenes afforded the trans-substituted cyclopentene compounds.  
Oxygenated arenes were optimal for this requirement, as the 
aromatic group could be substituted with alkyl ethers, silyl ethers, 
and acetals.  An alkyl arene was only modestly reactive with the 
Cr complex and unreactive with the Ru catalyst (3ha).  A 
carbazole-based enamine could engage in the cycloaddition to 
afford nitrogenated cyclopentene 3ja.  Both spirocyclic and 
fused ring systems can also be synthesized via this 
cycloaddition (3ka-3qa).  In both families of ring systems, very 
high diastereoselectivities can be achieved.[17]  Acyclic 
trisubstituted alkenes are also competent reactants (3ra). 

 

Scheme 2. Photocatalyzed (3+2) cycloaddition - Alkene scope. 

Diazo variation was also examined (Scheme 3).  Other 
diazoesters were largely effective to afford cyclopentenoates, 
including activated phenyl ester 3ad.  Ketones were tolerated 
with the Ru system (3ae).  β-Alkyl and β-aryl substitutions on the 
diazo reagent were also tolerated. 

 

Scheme 3. Photocatalyzed (3+2) cycloaddition - Diazo scope. 
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A few additional constraints were noted in our evaluation 
(Scheme 4).  Tetrasubstituted alkene 1s and stilbene (1t) were 
unreactive, likely due to steric hindrance.  Enol diazoacetate 2j 
was not productive, presumably because of competitive enol 
oxidation by the catalyst.  Finally, γ-substitution on the diazo 
reagent was not tolerated.  This limitation could also be due to 
steric considerations, although we also found background 
pyrazole formation mediated by heat/light (eq 1)[18] was 
particularly fast in these cases.[19]  Adding the diazo reagent in 
up to three portions over the course of the reaction was 
generally beneficial to minimize background processes.[20] 

 

Scheme 4. Observed reaction constraints. 

Mechanistic possibilities considered for this transformation 
are depicted in Figure 2, using trans-anethole and ethyl vinyl 
diazoacetate as model reagents.  The excited state catalyst 
oxidizes the alkene to form radical cation 4, consistent with 
measured reduction potentials.[21,22]  At this stage, one scenario 
would involve cyclopropanation on C(α) or C(γ) of the diazo 
reagent, followed by vinylcyclopropane rearrangement and 
isomerization to the enoate.  We have ruled out this possibility 
(vide infra).  Alternatively, the vinyl diazo reagent can attack 
electron deficient intermediate 4 as a nucleophile.[8,23]  Benzylic 
radical stabilization of the resulting intermediate (7) would offer a 
rationale for the observed high regioselectivity.[24,25]  A 5-endo 
radical cyclization generates intermediate 8.  Reduction of this 
species and loss of N2 produces the observed cyclopentene.  
Another possible pathway from intermediate 7 would involve a 4-
exo cyclization to species 9.  Ring expansion with concomitant 
loss of N2, and reduction would afford the observed 
cyclopentene.  If expansion is not immediate, an off-cycle 
reduction of intermediate 9 would yield cyclobutane 11. 

 

Figure 2. Proposed mechanism for cyclopentene annulation. 

Information toward mechanistic elucidation was accrued 
experimentally.  We subjected two vinylcyclopropanes, from 
potential direct (5) or vinylogous (6) addition, to the reaction 
conditions (eq 2).  From either compound, there was no 
formation of the cyclopentene product (3aa), thereby eliminating 
this potential pathway.  When cis-anethole (1acis) is subjected to 
the standard catalytic conditions, the trans product (3aa) is the 
only diastereomer observed (eq 3).  Trans-anethole was not 
recovered when this transformation was run partway, suggestive 
that a bond rotation occurs along the reaction pathway that 
ultimately leads to the single diastereomer.  This observed 
stereoconvergency validates the likely intermediacy of species 7, 
where the second bond forming event then establishes the high 
stereoselectivity.  Figure 3 depicts the favorability of the trans-
substituted product via intermediate 7; in the favored conformer 
the PMP group has only one gauche interaction instead of two.  
Finally, when we subjected independently-synthesized diazo 
cyclobutane 11 to the photocatalytic conditions, cyclopentene 
3aa was formed in essentially quantitative yield (eq 4).[26]  We 
have not observed this cyclobutane compound in reaction 
mixtures, but given the comparatively rapid formation of 3aa 
from 11 it could exist as an off-cycle product.  We presently 
favor the 5-endo pathway due to the formation of a less strained 
intermediate;[27] further experimentation will elucidate whether 
either (or both) of these pathways are indeed viable.[28] 

 

 

Figure 3. Conformational analysis of intermediate 7. 

In general, the cycloaddition reaction times for the ruthenium 
catalyst were shorter than those for the chromium catalyst.  
Reduction potentials for the two metal catalyst excited states 
suggest similar reactivity would be expected.[21]  In the 
previously studied radical cation (4+2) cycloadditions, there have 
been observed mechanistic differences that appear to reflect 
radical chain (Ru) vs. photocatalyst turnover (Cr) processes,[16,29] 
that may extrapolate to observed differences here.  We have 
observed reactivity distinctions between the Cr-catalyzed (4+2) 
and these (3+2) reactions;[30] further studies will seek to 
establish photocatalyst roles in both the Ru and Cr systems. 
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The cycloaddition products can also be readily diversified;  
representative transformations of compound 3aa are shown in 
Scheme 5.  Enoate cyclopropanation and epoxidation both occur 
with excellent diastereoselectivity.  Both allylic 
halogenation/azidation and oxidation[31] functionalize the γ-
methylene.  Michael additions and deconjugative alkylations 
were also successful, both in high diastereoselectivity.  Diol 18 
can be attained in excellent dr, and it can be further transformed 
into piperidine 19 via oxidative cleavage and reductive amination.  
Cycloaddition with TMS-diazomethane[32] works well, and a 
further desilylative elimination yields aminonitrile 21.  Reduction 
to alcohol 22 followed by Johnson orthoester Claisen 
rearrangement affords alkene 23.  Diastereoselective 
hydrogenation affords ester 24;[33] importantly, the electron-rich 
arene can be oxidatively converted to carboxylic acid 25, 
illustrating substrate requirements we observe in radical cation 
formation are ultimately not restrictive in accessing product 
diversity. 

 

Scheme 5. Cycloaddition product diversification. Reagents: a) m-CPBA; b) 
Me3S(O)I, NaH; c) NBS, AIBN, then NaN3; d) Pd(OH)2/C, TBHP, K2CO3; e) 
CH3NO2, DBU; f) KHMDS, BnBr, HMPA; g) OsO4, NMO; h) Pb(OAc)4, then 
NaBH3CN, BnNH2, AcOH; i) Me3SiCHN2, n-BuLi; j) TsOH; k) DIBAL; l) 
MeC(OEt)3, PivOH; m) Pd/C, H2; n) RuCl3·3H2O, NaIO4.  

In summary, we have developed a photocatalyzed (3+2) 
cycloaddition between alkenes and vinyl diazo compounds.  
Both Ru and Cr complexes catalyze this reactivity, and the 
transformation appears to proceed via vinyl diazo nucleophilic 
interception of a radical cation.  High diastereoselectivities are 
obtained in the transformation, and the cycloadducts are readily 
diversified.  To our knowledge, this is the first report of a vinyl 
diazo species reacting with a radical cation electrophile.  We 
anticipate this reaction can serve as an excellent platform for 
accessing an array of cyclopentane-based compounds; further 
mechanistic studies, expansions toward enantioselective 
variants, and applications in chemical synthesis are currently 
underway. 
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