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ABSTRACT: Access to leading olefin metathesis catalysts, including the Grubbs, Hoveyda, and Grela 
catalysts, ultimately rests on the non-scaleable transfer of a benzylidene ligand from an unstable, impure 
aryldiazomethane. The indenylidene ligand can be reliably installed, but to date yields much less reactive 
catalysts. A fast-initiating, dimeric indenylidene complex (Ru-1) is reported, which reconciles high activity 
with scaleable synthesis. Each Ru center in Ru-1 is stabilized by a state-of-the-art cyclic alkyl amino carbene 
(CAAC, C1) and a bridging chloride donor: the lability of the latter elevates the reactivity of Ru-1 to a level 
previously attainable only with benzylidene derivatives. Evaluation of initiation rate constants reveals that 
Ru-1 initiates >250x faster than indenylidene catalyst M2 (RuCl2(H2IMes)(PCy3)(Ind)), and 65x faster than 
UC (RuCl2(C1)2(Ind)). The slow initiation previously regarded as characteristic of indenylidene catalysts is 
hence due to low ligand lability, not inherently slow cycloaddition at the Ru=CRR’ site. In macrocyclization 
and “ethenolysis” of methyl oleate (i.e. transformation into -olefins via cross-metathesis with C2H4), Ru-1 
is comparable or superior to the corresponding, breakthrough CAAC-benzylidene catalyst. In ethenolysis, 
Ru-1 is 5x more robust to standard-grade (99.9%) C2H4 than the top-performing catalyst, probably reflecting 
steric protection at the quaternary CAAC carbon. 

Keywords. olefin metathesis, cyclic alkyl amino carbene, indenylidene, high activity, initiation, catalyst synthesis

Reported herein is a ruthenium metathesis catalyst 
that integrates breakthrough productivity with a 
robust, reliably-installed indenylidene ligand. The 
advent of large-scale olefin metathesis processes in 
pharmaceutical manufacturing,1,2 and the 
associated demand for catalyst supply on scale, 
bring to the fore long-neglected challenges in 
scaleable catalyst synthesis. Chief among these is 
the means by which the critical Ru=CRR’ site is 
introduced. 
Interest extends beyond the important N-
heterocyclic carbene3 (NHC) complexes to new 
cyclic alkyl amino carbene (CAAC)4 catalysts: 
Chart 1. While metathesis in process chemistry1,2 is 
dominated by NHC catalysts (HII, nG),5-7 bench-
scale studies report exceptional productivity for 

CAAC catalysts in macrocyclic ring-closing 
metathesis (mRCM)8 and cross-metathesis (CM) 
routes to -olefins from renewable oils.9-12 The 
CAAC catalysts thus hold significant potential in 
the pharmaceutical and renewable-feedstock 
sectors.1,12-14

Chart 1. Literature Metathesis Catalysts Discussed. 
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A long-standing challenge, however, is the tradeoff 
between metathesis activity, vs. the efficiency of 
catalyst synthesis. Most active are Ru-benzylidene 
catalysts (red; Chart 1).8-10 Despite attempts to 
develop alternative synthetic methodologies,15 
optimal routes to benzylidene catalysts continue to 
rest on the reaction of a Ru precursor with an 
aryldiazomethane, typically PhCHN2.16,17 PhCHN2 
is toxic and unstable (indeed, potentially 
explosive),18 to an extent that prevents purification. 
Its low purity, in turn, limits stoichiometric control 
over benzylidene transfer.17,19 Significant 
limitations to process scaleability result. 
Indenylidene catalysts (blue, Chart 1) enable 
straightforward, convenient, reliable installation of 
the Ru-carbon double bond, via the high-yield 
reaction of Ru precursors with propargyl 
alcohol.20,21 However, study of the NHC 
derivatives, most extensively M2, reveals very 
inefficient initiation.22-32 Slow loss of the stabilizing 
donor (PCy3, for M2) impedes entry into the 
catalytic cycle at room temperature (RT), even for 
the readily-cyclized diene diethyl diallylmalonate 
2.10,28-30 Elevated temperatures are required to elicit 
high activity, promoting catalyst degradation. Here 
we report the novel CAAC-indenylidene catalyst 
Ru-1, a labile chloride-bridged dimer, which 
overturns this long-accepted limitation. Ru-1 
exhibits unprecedented activity in demanding 
metathesis reactions (indeed, at a level comparable 
to the Grela-class catalyst nG-C1), establishing that 
high-performing metathesis catalysts can be 
accessed via simple, safe, scaleable chemistry.
It should be noted that nG-C1 is itself accessible 
without recourse to diazo technology, via CM of 
the commercial indenylidene catalyst UC with the 
chelating -methylstyrene reagent 1, when CuCl is 

added to abstract the “extra” CAAC ligand 
(Scheme 1a).8 Limitations, however, are the <40% 
yield, compounded by the multistep, low-yielding 
synthesis of 1.33,34 We queried whether omitting 1 
might enable access to dimeric Ru-1, in which the 
precatalyst is stabilized by a dative Cl interaction. 
The high lability, and consequently high metathesis 
activity, conferred by dative chloride bonds has 
been recognized since Herrmann’s pioneering 
work on bimetallic metathesis catalysts containing 
one [Ru]=CHR site.35 While bimolecular 
elimination of the alkylidene moiety as RCH=CHR 
is a documented risk for dimers containing two 
[Ru]=CHR sites,19a,36-38 this reaction is highly 
sensitive to alkylidene bulk.37,39 We thus regarded 
the disubstituted indenylidene ligand as a 
potentially key asset in blocking alkylidene 
elimination. 
Accordingly, we treated UC with CuCl (Scheme 
1b) in the absence of additional donors. A C1 
ligand was successfully abstracted at 40 °C, 
enabling transformation of UC into dimeric Ru-1 in 
ca. 80% isolated yield. The structure of Ru-1 is 
supported by X-ray analysis. Consistent with the 
critical role of indenylidene bulk in inhibiting 
bimolecular decomposition, the corresponding 
reaction of CuCl with the second-generation 
Grubbs catalyst RuCl2(H2IMes)(PCy3)(=CHPh) led 
to rapid elimination of stilbene. In the absence of 
CuCl, this reaction requires days at 60 °C.40

Scheme 1. Synthesis of Ru-1.
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The metathesis activity of Ru-1 was benchmarked 
against key CAAC and NHC catalysts in RCM of 
diethyl diallylmalonate 2. Comparison with the 
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state-of-the-art catalyst nG-C18 gives insight into 
the relative reactivity of the indenylidene and 
chelating p-nitrobenzylidene ligands. Comparison 
with UC reports on the impact of replacing a 
CAAC donor with a much more labile dative 
chloride, while comparison of nG-C1 with its 
H2IMes analogue nG probes the impact of the 
carbene. Catalyst loadings were chosen in light of 
prior studies of RCM of 2 via indenylidene catalyst 
M2.10,24-32 We suspected that the reported TONs 
(ca. 20–2,000) might under-report catalyst 
productivity, given near-quantitative conversions. 
Initial catalyst loadings were therefore reduced to 
0.005 mol% (i.e. 50 ppm Ru relative to 2; cf. 5–0.05 
mol% in the literature reports). The resulting data 
are summarized in Figure 1a.

Figure 1. Turnover numbers (TON) at 2 h in RCM of 
2. For numerical values, see Table S1. Catalyst 
loadings are based on 2 active Ru centers in Ru-1.

Unexpectedly, Ru-1 exhibited RCM activity 
comparable to the leading catalyst nG-C1 at RT at 
this loading, and slightly higher activity at 9 ppm 
Ru and 40 °C. The basis for this difference is 
discussed below. Ru-1 also outperformed nG and 
M2, in keeping with the trend established for 
H2IMes vs. CAAC catalysts,9,10 which may arise 
from faster decomposition of the H2IMes 
complexes.41 
A further inhibiting factor for M2 is the low lability 
characteristic of phosphines trans to an NHC 
ligand,42,43 which limits TONs to 2,000 at 50 ppm 
Ru. The higher RT productivity of UC (TON 
12,000) suggests that the C1 ligand in UC is more 
labile than the PCy3 ligand in M2 (confirmed 
below), though catalyst lifetime is almost certainly 
also relevant. Of note, this TON is nearly 60% of 

that measured for nG under the same conditions 
(17,200), despite the higher lability expected for the 
styrenyl ether ligand in nG, vs. a strongly-bound 
CAAC donor.44 
As a metathesis reaction manifold of significant 
current interest, we next turned to 
macrocyclization. Substrates such as prolactone 3 
(Figure 2) are challenging because the ester 
functionality contributes the sole conformational 
bias toward cyclization.45 Oligomers are hence 
typically formed as the kinetic products, but can be 
recycled into macrocycles if catalyst activity and 
longevity permit.46,47 High dilutions (5 mM, in the 
case of 3) are essential to exert an entropic bias 
sufficient to shift the ring-chain equilibrium in 
favour of the macrocyclic rings.46,48 (Carrying out 
mRCM of 3 at 20 mM, for example, yields ca. 40% 
oligomers).8 A catalyst loading of 0.01 mol% thus 
corresponds to sub-micromolar concentrations of 
Ru. Combined with the internal, predominantly 
trans-substituted nature of the oligomeric olefins, 
this offers a stringent test of catalyst performance. 
Notwithstanding these challenges, Ru-1 enabled 
fast, selective mRCM at 0.01 mol% Ru, achieving 
TONs of ca. 9,000 within 10 min at 40 °C (Figure 2). 
nG-C1 and UC exhibited similar, slower, 
performance, while the productivity of H2IMes 
catalyst nG was ca. 30% lower, and M2 failed to 
react. At RT, Ru-1 enabled quantitative mRCM 
within 20 min at 0.05 mol%, where UC reacted 
much more slowly (44% yield at 2 h; Figure S2).
At 0.002 mol% and 40 °C (Figure 2b), a TON of 
27,500 was measured for Ru-1 (the highest yet 
reported for a Ru catalyst at dilutions compatible 
with selective mRCM).49 In comparison, the record 
TON for NHC catalysts in this reaction is 16,000, 
achieved by Kadyrov at 80 °C and 8 mM 3,50 with 
rigorously purified diene and solvent, and 
aggressive removal of ethylene to limit catalyst 
decomposition.51,52  Under standard conditions, 
reported TONs are ≤500.50,52,53
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Figure 2. mRCM of 3 at 40 °C. (a) Rate profiles and (b) 
maximum TONs at 0.01 or (*) 0.002 mol% Ru, shown 
alongside the best reported TONs for UC10 and M2.50 
For the RT plot and numerical data, see SI.

Improved stability to ethylene appears to be an 
important contributor to the exceptional 
productivity of the CAAC catalysts. This tolerance 
opens the door to ethenolysis of unsaturated 
lipids,1,2 a reaction of keen interest for the 
production of -olefins from renewable plant or 
algal oils.1,12-14 Outstanding performance has been 
reported in ethenolysis of methyl oleate (MO) with 
CAAC catalysts,9-11,54 particularly HII-C2.9 
However, HII-C2 may be highly sensitive to 
impurities. Costly, very high grade (99.995%) 
ethylene was required for maximum productivity, 
and a 40–70% drop in TON was reported on using 
99.95 or 99.99% C2H4.9,10 We utilized affordable, 
technical-grade C2H4 (99.9%) to probe the 
robustness of Ru-1 relative to this breakthrough 
catalyst.
Table 1 shows the impact of ethylene pressures on 
cross-metathesis (CM) yields at 40 °C in neat MO. 
A pressure of 200 psi proved optimal (entries 1–4), 
possibly indicating a trade-off between ethylene 
solubility and the cumulative impact of poisons. 
Importantly, however, Ru-1 appears significantly 
more robust than HII-C2, as indicated by TON 
values of 50,000 and 10,000 (respectively) at 200 psi. 
Steric protection may be higher for C1, in which 
the quaternary carbon flanking the carbene site 
bears a methyl and a phenyl group, as compared 
with two methyl groups in C2 (Chart 1).
nG-C1 delivered CM yields similar to Ru-1, though 
higher conversions of MO. The balance was due to 

1,18-dimethyl 9-octadecenoate 6 and 9-octadecene 
7, formed via self-metathesis (SM) of MO or its 
ethenolysis products.
Table 1. Ethenolysis of Methyl Oleate: Cross-
Metathesis (CM) and Self-Metathesis (SM).a

Entry Catalyst
Pressure 

(psi)
% Conv. 
(% Yield)

TON

1 Ru-1 20 16 (3) 6,000

2 Ru-1 110 39 (20) 40,000

3 Ru-1 200 28 (25) 50,000

4 Ru-1 400 18 (8) 16,000

5 nG-C1 200 39 (23) 46,000

6 HII-C2 200 9 (5) 10,000

a5 ppm catalyst = 0.0005 mol% Ru. TON based on 4/5. 
Quantified by 1H NMR analysis (Figure S3).

The impressive activity of Ru-1 documented above 
attests to the lability of the dative chloride donor, 
relative to the stabilizing ligands present in 
indenylidene catalysts such as M2 and UC. It also 
supports the case made by Cavallo, Nolan and co-
workers, on the basis of DFT analysis, that slow 
initiation of M2 and related catalysts is due to slow 
ligand loss, not the resistance of the indenylidene 
moiety to cycloaddition.30b,55,56 
 To examine this key point, we measured initiation 
rate constants (k1) for Ru-1 and selected other 
catalysts, via the irreversible reaction with tert-
butyl vinyl ether (tBVE; Table 2).30b,57 The bulk of 
tBVE retards metathesis to experimentally 
convenient rates.58 
As expected, initiation was fastest with 
benzylidene complex nG-C1 (in which the 
inductive effect of the p-NO2 substituent increases 
the lability of the ether donor),7 and slowest with 
UC and M2. Notable is the 260x faster initiation of 
Ru-1 relative to M2, and 65x relative to UC. 
Indeed, nG-C1 initiates only 3.5x faster than Ru-1, 
despite the steric barrier to metathesis at the 
disubstituted Ru=CRR’ site. Clearly, incorporating 
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a labile dative ligand greatly diminishes the barrier 
to indenylidene initiation, even relative to a 
classically fast-initiating7 benzylidene ligand. 
Also striking is the slightly slower overall rate of 
metathesis for nG-C1 vs. Ru-1 (Figs. 2a, S2), 
despite threefold faster initiation. As the two 
catalysts generate the same active species, the 
lower net activity of nG-C1 suggests recapture of 
free 4-nitro-2-isopropoxystyrene 1’ by the active 
species. The rate difference is maintained even at 
40 °C and sub-micromolar concentrations of Ru 
and 1’ (Figure 2b). While heat and high dilutions 
amplify engagement of nG-C1 in metathesis, they 
are insufficient to inhibit re-uptake of 1’.59

Table 2. Initiation rates in CM with tBVE.a

entry catalyst type ki (s-1) krel vs. M2

1 nG-C1 Ru=CHPh 7.50 x 10-4 903

2 Ru-1 Ru=CRR’ 2.15 x 10-4 259

3 UC Ru=CRR’ 3.33 x 10-6 4

4 M2 Ru=CRR’ 0.83 x 10-6 1

a 30 equiv tBVE; measured in CDCl3, 23 °C.

A tradeoff has long existed between the ease with 
which an alkylidene ligand can be installed at Ru 
centers, and the activity of the resulting catalysts. 
The need for scaleable, high-yield routes to 
metathesis catalysts, which obviate the unreliability 
and risk of diazoalkane methodologies, is 
becoming urgent with the increasing demand for 
catalyst supply on scale. The foregoing overturns 
the long-standing view that the synthetic 
accessibility of Ru-indenylidene catalysts is 
incompatible with high metathesis activity. 
Catalyst Ru-1 exhibits a level of activity previously 
attainable only with benzylidene catalysts, 
indicating that the “fundamental” unreactivity of 
prior indenylidene catalysts merely reflects the low 
lability of the stabilizing ligands. In reconciling 
high metathesis activity with straightforward, 
reliable, safe installation of the alkylidene ligand, 
this advance is anticipated to create new 
opportunities in olefin metathesis. 
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