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Synthetic approach towards nakadomarin A: efficient synthesis
of the central tetracyclic core
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Abstract—An efficient synthesis of the tetracyclic core of nakadomarin A was accomplished starting from methyl 4-oxo-3-pipe-
ridinecarboxylate. The key steps were intramolecular cyclization of furan to N-acyliminium ions to construct the strained central
cyclopentene ring. © 2001 Elsevier Science Ltd. All rights reserved.

Figure 1.

Nakadomarin A was first isolated from the Okinawan
marine sponge Amphimedon sp. by Kobayashi in 1997,1

and was found to be biogenetically closely related to
manzamine alkaloids, such as manzamine A and ircinal
A (Fig. 1). Its structure was elucidated spectroscopically
and consists of an unprecedented hexacyclic ring system
(8/5/5/5/15/6) that includes a furan ring. An interesting
biogenetic transformation of ircinal A to nakadomarin
A has been proposed.1 Although some biological activ-
ities of nakadomarin A, such as cytotoxicity against
murine lymphoma L1210 cells, inhibitory activity
against Cdk4, and anti-microbial activity, have been
reported,1 its limited availability (1.8×10−3%, wet
weight) has prevented a complete survey of its biologi-
cal activity. In connection with our ongoing project on
the total synthesis of manzamine alkaloids,2 we were
interested in nakadomarin A because of its unique
structure and began a synthetic study. We report here
an efficient synthesis of the ABCD ring system of
nakadomarin A.3,4

Recent advances in ring-closing metathesis (RCM)5

have facilitated access to unsaturated carbocycles or
heterocycles with medium-sized to large rings. Consid-
ering both RCM and a cyclization methodology at the
late stage of synthesis for constructing the 15-mem-
bered ring, we assumed that the ABCD tetracyclic core
was a key synthetic intermediate for nakadomarin A
(Scheme 1). Synthesis of this ABCD ring system could
be retrosynthetically simplified to a spiro-�-lactam with
a substituted furan. We expected that the B ring could

be synthesized by cyclization of the furan ring to the
iminium ion generated from the spiro-�-lactam. The
spiro-�-lactam could be further simplified to methyl
4-oxo-3-piperidinecarboxylate hydrochloride.6 One
anticipated problem was generation of the iminium ion
because of the poor reactivity of the carbonyl group
due to steric hindrance.7

Methyl 4-oxo-3-piperidinecarboxylate hydrochloride 1
was first converted to allylated 2 in 77% yield in three
steps (Scheme 2). Oxidative cleavage of the double
bond of 2 gave 3. Reductive cyclization of 3 to the
desired spiro-�-lactam 4 proceeded successfully when 3
was treated with 4-methoxybenzylamine followed by
NaBH3CN. Sequential deprotection of both methoxy-
benzyl and ketal groups with CAN and 70% HClO4

gave �-lactam 5, which was acylated by Boc2O to give
6.

The keto group of 6 was converted to the enol triflate 7.
Suzuki–Miyaura coupling8 of 7 with furan-3-boronic
acid, prepared from 3-bromofuran, was performed
under standard conditions using Pd(PPh3)4 to give cou-
pling product 8 in 80% yield. For the critical

Keywords : nakadomarin A; manzamine alkaloid; furan; Suzuki–
Miyaura coupling; N-acyliminium ion.
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Scheme 1.

Scheme 2. Reagents and conditions : (a) PhSO2Cl, NaHCO3; (b) allyl bromide, K2CO3; (c) ethylene glycol, pTsOH; (d) OsO4,
NaIO4, aq. THF; (e) PMB–NH2, MeOH, AcOH, rt, 1 h, then NaBH3CN, reflux, 2 h; (f) CAN, aq. MeCN, rt; (g) 70% HClO4,
CH2Cl2; (h) Boc2O, Et3N, DMAP; (i) LiN(TMS)2, THF, −65°C, then PhNTf2, 3°C; (j) furan-3-boronic acid, Pd(PPh3)4, LiCl,
DME, aq. Na2CO3, 80°C, 3 h; (k) DIBAL, toluene, −65°C to rt; (l) Ac2O, pyridine; (m) pTsOH, CH2Cl2.

intramolecular cyclization, the �-lactam 8 was con-
verted to acetoxypyrrolidine 9 by DIBAL reduction
followed by acetylation. The presence of the Boc group
is essential for selective and efficient reduction of 8. No
over-reduction was observed even when a large excess
of DIBAL was used, probably due to stabilization of
alkoxyaluminum intermediate of the hemiaminal by
complex formation. Cyclization of 9 occurred regiose-
lectively at the 2-position of the furan ring to give the
tetracyclic key intermediate 109 in 76% yield upon
treatment with p-toluenesulfonic acid.10 A mole-
cular model suggested that trans cyclization was not
possible.

We first expected that the stereoselective hydrogenation
of 10 would easily occur to give 13 (Scheme 3). Reduc-
tion from the �-side of 10 was expected according to a
previous result with a related unsaturated spiro-lac-
tam.7 When 10 was hydrogenated under standard con-
ditions, however, only 12, an over-reduced product,
was obtained in 80% yield.11 To determine the presence
of the desired 13, the reduction was stopped before all
of the starting material was consumed. A 1H NMR
study of the product mixture revealed the presence of
11 instead of 13. These results showed that the reduc-
tion of 10 occurred first at the tetra-substituted double
bond in the furan ring. This high reactivity of the

Scheme 3.
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double bond in the furan ring can be explained by the
strained character of 10. Therefore, the hydrogenation
of 8 was investigated next (Scheme 4). As expected,
hydrogenation of 8 proceeded smoothly without reduc-
tion of the furan ring to give 14 in 68% yield as a single
diastereomer. In a careful NMR study of 14,12 observa-
tion of nuclear Overhauser effects (NOE) between the
axial methine proton and a proton of the methylene in
�-lactam suggested that reduction occurred from the
�-side of 8. Compound 14 was converted to 15 as
above, which was subjected to the cyclization reaction
under acidic conditions to give the desired tetracyclic
framework of nakadomarin A 1313 in 34% yield from
14. The cis relationship of the AB rings was confirmed
by an NOE study.

The remaining task was elongation of the side chains to
construct the 15-membered ring F. The required
boronic ester of substituted furan was prepared as
shown in Scheme 5. Wadsworth–Emmons–Horner
reaction of 4-bromo-2-furaldehyde followed by careful
reduction of the double bond using NaBH4 in the
presence of NiCl2 gave 17 in 89% yield.14 Compound 17
was then converted to 18 by the Pd-catalyzed reaction15

with diborane.

Suzuki–Miyaura coupling of 18 with the enol triflate 7,
which was obtained from 6, gave highly substituted
spirolactam 19 in fairly good yield (Scheme 6). Hydro-
genation of the double bond followed by reduction of
the lactam carbonyl and acetylation gave 21. The

Scheme 4. Reagents and conditions : (a) H2, 10% Pd-C; (b) DIBAL, toluene, −65°C to rt; (c) Ac2O, pyridine; (d) pTsOH, CH2Cl2.

Scheme 5.

Scheme 6. Reagents and conditions : (a) LiN(TMS)2, THF, −65°C, then PhNTf2, 3°C; (b) 18, Pd(PPh3)4, LiCl, DME, aq. Na2CO3,
80°C, 7 h; (c) H2, 10% Pd-C; (d) DIBAL, toluene, −65°C to rt; (e) Ac2O, pyridine; (f) pTsOH, CH2Cl2; (g) 1N NaOH, rt, MeOH;
(h) Dess–Martin oxd. rt, CH2Cl2; (i) Ph3P�CH2, THF–toluene; (j) Na, anthracene, DME, −65°C; (k) TsO(CH2)4CH�CH2,
iPr2NEt, THF.
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cyclization of 21 under the above optimal reaction
conditions proceeded smoothly to give 22 in 49% yield
from 20. The acetoxypropyl side chain at the furan ring
was then converted to a 3-butenyl group by conven-
tional transformations. The phenylsulfonyl group on
the A ring was then deprotected by sodium
anthracenide and the resulting secondary amine was
alkylated with hexenyl tosylate to give 23,16 which is a
good substrate for testing the RCM reaction to prepare
the F ring in nakadomarin A. The results of the RCM
reaction of 23 and further transformations for the total
synthesis of nakadomarin A will be reported in due
course.
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