Dyes and Pigments 86 (2010) 266-270

Contents lists available at ScienceDirect

Dyes and Pigments

journal homepage: www.elsevier.com/locate/dyepig

The synthesis of highly fluorescent heterocyclic compounds: Pyrido[2',1':2,3] imidazo[4,5-*b*]quinoline-12-yl cyanides

Mohammad Rahimizadeh*, Mehdi Pordel, Mehdi Bakavoli, Hossein Eshghi

Department of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad 91775-1436, Iran

ARTICLE INFO

Article history: Received 27 September 2009 Received in revised form 11 January 2010 Accepted 13 January 2010 Available online 1 February 2010

Keywords: Quinolines Imidazo[1,2-a]pyridine Dye Absorption Emission Fluorescence

1. Introduction

Fluorescent heterocyclic compounds are of interest in many disciplines such as emitters for electroluminescence devices [1], molecular probes for biochemical research [2], in traditional textile and polymer fields [3], fluorescent whitening agents [4] and photo conducting materials [5]. Quinolines are well-known fluorescent compounds of high quantum yield and have attracted much attention owing to their potential high technology applications [6–9] including fluorescence probes in chemosensors [10,11]. Quinolines are, in general, comparatively easy to prepare, and numerous derivatives have been described for potential use as biologically active materials [12,13]. Several classical synthetic methods can be used to prepare quinolines, including the Skraup synthesis that involves heating aniline with glycerol and nitrobenzene in the presence of sulfuric acid [14], the Combes quinoline synthesis [15], Friedländer synthesis [16] and other methods [17–19]. Imidazo[1,2-*a*]pyridine derivatives are also well-known fluorescent compounds, as exemplified by imidazo[1,2-a]pyridinium salts, which are used to prepare styryl dyes [20] and imidazopyridine-7-nitrofurazan conjugates which have been utilized as fluorescent probes for the localization and function of the

ABSTRACT

The syntheses and fluorescence properties of novel derivatives of pyrido[2',1':2,3]imidazo[4,5-b]quinoline are described. The key intermediates (4-substituted)(3-hydroxyimino-2,3-dihydroimidazo[1,2-*a*] pyridin-2-yliden)methyl cyanides were synthesized by reacting the imidazo[1,2-*a*]pyridine with arylacetonitriles via nucleophilic substitution of hydrogen. The compounds were deep violet in colour. Acylation of hydroxyl group led to heterocyclization and gave highly fluorescent pyrido[2',1':2,3]imidazo [4,5-*b*]quinoline.

© 2010 Elsevier Ltd. All rights reserved.

PIGMENTS

peripheral benzodiazepine receptor (PBR) [21]. Based on these aspects, it was decided to synthesize a heterocyclic system that contained both imidazo[1,2-*a*]pyridine and quinoline rings and to study their fluorescence properties. Continuing the authors' study of the nucleophilic substitution reactions of hydrogen [22–25], it was decided to use these reactions in the synthesis of novel derivatives of (3-hydroxyimino-2,3-dihydroimidazo[1,2-*a*]pyridin-2-yliden)-2-phenylacetonitrile **3a–e** as key intermediates. In this paper, a new method for the synthesis of several novel, highly fluorescent derivatives of pyrido[2',1':2,3]imidazo[4,5-*b*]quinolines **4a–e**, is described.

2. Experimental

2.1. Equipment and materials

Melting points were recorded on an Electrothermal type 9100 melting point apparatus. The IR spectra were obtained on a 4300 Shimadzu spectrometer and only noteworthy absorptions are listed. The ¹H NMR (500 MHz) and the ¹³C NMR (125 MHz) spectra were recorded on a Bruker Avance DRX-500 Fourier transformer spectrometer. Chemical shifts are reported in ppm downfield from TMS as internal standard; coupling constance *J* are given in Hertz. The mass spectra were scanned on a Varian Mat CH-7 at 70 eV. Elemental analyses were performed on a Thermo Finnigan Flash EA microanalyzer. Absorption spectra were recorded on an Agilent

^{*} Corresponding author. Tel.: +98 511 879 7022; fax: +98 511 879 6416. *E-mail address*: rahimizh@yahoo.com (M. Rahimizadeh).

^{0143-7208/\$ –} see front matter \odot 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.dyepig.2010.01.013

Fig. 1. Synthesis of new dyes 3a-e.

8453 spectrophotometer. Fluorescence spectra were recorded using Shimadzu RF-1501 spectrofluorophotometer. UV–vis and fluorescence scans were recorded from 350 to 700 nm. The fluorescence quantum yields (Φ_F) of compounds **4a–e** were determined *via* comparison methods, using fluorescein as a standard sample in 0.1 M NaOH and MeOH solution [26]. All measurements were carried out at room temperature. Compound **1** was obtained according to the published methods [27]. Other reagents were commercially available.

2.2. General procedure for the synthesis of 3a - e from 1 to 2a - e

Compounds 1 (10 mmol) and 2a-e (12 mmol) were added with stirring to a solution of KOH (20 g, 357 mmol) in methanol (80 mL). The mixture was refluxed with stirring for 4 h, and then poured into water. After neutralization with dilute HCl solution, the precipitate was collected by filtration, washed with water, followed by EtOH and acetone, and then air dried to give pure 3a-e.

2.2.1. 2-(3-Hydroxyimino-2,3-dihydroimidazo[1,2-a]pyridin-2-yliden)-2-phenylacetonitrile (**3a**)

Compound **3a** was obtained as dark red powder, yield (2.41 g, 92%), mp 195–197 °C; ¹H NMR (DMSO- d_6) δ 6.58 (dd, J = 8.6 Hz, J' = 7.0 Hz, 1H), 7.03 (d, J = 9.2 Hz, 1H), 7.13–7.72 (m, 4H), 8.13 (d, J = 8.4 Hz, 2H), 9.03 (d, J = 7.0 Hz, 1H), 13.35 (br s, 1H); IR (KBr): 3450 cm⁻¹ (OH), 2196 cm⁻¹ (CN). MS (m/z) 262 (M⁺). Anal. Calcd for C₁₅H₁₀N₄O (262.3): C, 68.69; H, 3.84; N, 21.36. Found: C, 68.35; H, 3.70; N, 21.14.

Fig. 2. Proposed reaction mechanism for the synthesis of prepared dyes 3a-e.

Fig. 3. A resonance from hydroxyl to cyanide group.

2.2.2. (4-Chlorophenyl)(3-hydroxyimino-2,3-dihydroimidazo[1,2a]pyridin-2-yliden)methyl cyanide (**3b**)

Compound **3b** was obtained as dark red powder, yield (2.66 g, 90%), mp 217–219 °C; ¹H NMR (DMSO- d_6) δ 6.58 (dd, J = 8.6 Hz, J' = 6.8 Hz, 1H), 7.08 (d, J = 8.9 Hz, 1H), 7.44 (d, J = 8.7 Hz, 2H), 7.62 (dd, J = 8.9 Hz, J' = 8.6 Hz, 1H), 8.16 (d, J = 8.7 Hz, 2H), 9.01 (d, J = 6.8 Hz, 1H), 13.51 (br s, 1H); IR (KBr): 3455 cm⁻¹ (OH), 2195 cm⁻¹ (CN). MS (m/z) 296 (M⁺), 298 (M⁺ + 2). Anal. Calcd for C₁₅H₉ClN₄O (296.7): C, 60.72; H, 3.06; N, 18.88. Found: C, 60.41; H, 2.91; N, 18.63.

2.2.3. (4-Bromophenyl)(3-hydroxyimino-2,3-dihydroimidazo[1,2-a] pyridin-2-yliden)methyl cyanide (**3c**)

Compound **3c** was obtained as dark red powder, yield (3.17 g, 93%), mp 219–220 °C; ¹H NMR (DMSO- d_6) δ 6.60 (dd, J = 8.6 Hz, J' = 6.9 Hz, 1H), 7.08 (d, J = 9.1 Hz, 1H), 7.55–7.70 (m, 3H), 8.10 (d, J = 8.7 Hz, 2H), 9.01 (d, J = 6.9 Hz, 1H), 13.51 (br s, 1H); IR (KBr): 3455 cm⁻¹ (OH), 2195 cm⁻¹ (CN). MS (m/z) 341 (M⁺), 343 (M⁺ + 2). Anal. Calcd for C₁₅H₉BrN₄O (341.1): C, 52.81; H, 2.66; N, 16.42. Found: C, 52.53; H, 2.51; N, 16.69.

2.2.4. (3-Hydroxyimino-2,3-dihydroimidazo[1,2-a]pyridin-2-yliden)(4-methoxyphenyl)methyl cyanide (**3d**)

Compound **3d** was obtained as dark red powder, yield (2.39 g, 82%), mp 175–177 °C; ¹H NMR (DMSO- d_6) δ 3.76 (s, 3H), 6.50 (dd, J = 8.6 Hz, J' = 6.8 Hz, 1H), 7.02 (d, J = 8.8 Hz, 2H), 7.12 (d, J = 9.2 Hz, 1H), 7.52 (dd, J = 9.2 Hz, J' = 8.6 Hz, 1H), 8.07 (d, J = 8.8 Hz, 2H), 8.95 (d, J = 6.8 Hz, 1H), 13.27 (br s, 1H); IR (KBr): 3450 cm⁻¹ (OH), 2197 cm⁻¹ (CN). MS (m/z) 292 (M⁺). Anal. Calcd for C₁₆H₁₂N₄O₂ (292.3): C, 65.75; H, 4.14; N, 19.17. Found: C, 65.40; H, 3.99; N, 18.86.

2.2.5. (3-Hydroxyimino-2,3-dihydroimidazo[1,2-a]pyridin-2yliden)(4-methylphenyl)methyl cyanide (**3e**)

Compound **3e** was obtained as dark red powder, yield (2.40 g, 87%), mp 173–175 °C; ¹H NMR (DMSO- d_6) δ 2.31 (s, 3H), 6.54 (dd, J = 8.6 Hz, J' = 6.9 Hz, 1H), 7.06 (d, J = 9.2 Hz, 1H), 7.23 (d, J = 8.2 Hz, 2H), 7.58 (dd, J = 9.2 Hz, J' = 8.6 Hz, 1H), 8.03 (d, J = 8.2 Hz, 2H), 8.97 (d, J = 6.9 Hz, 1H), 13.34 (br s, 1H); IR (KBr): 3450 cm⁻¹ (OH), 2197 cm⁻¹ (CN). MS (m/z) 276 (M⁺). Anal. Calcd for C₁₆H₁₂N₄O

Fig. 4. Visible absorption spectrum of compounds 3a-e in dilute $(3\times 10^{-5}\,M)$ ethanol solution.

Table	1
-------	---

	Sr	pectroscop	c pro	perties	of c	lves	3a-	e in	EtOH	solven	ıt.
--	----	------------	-------	---------	------	------	-----	------	-------------	--------	-----

				50
$ \begin{array}{ll} \lambda_{\max} (nm)^a & 52 \\ \varepsilon \times 10^{-3} (M^{-1} cm^{-1})^b & 10 \end{array} $	5 527	528	530	527
	.35 9.85	5 9.35	7.65	15.60

^a Wavelengths of maximum absorbance (λ_{max}).

^b Extinction coefficient.

(276.3): C, 69.55; H, 4.38; N, 20.28. Found: C, 69.21; H, 4.23; N, 20.19.

2.3. General procedure for the synthesis of 4a - e from 3a - e

Acetyl chloride (0.55 g, 7 mmol) was added with stirring to a solution of $3\mathbf{a}-\mathbf{e}$ (5 mmol) in dry pyridine (50 mL). After the addition was completed, the mixture was refluxed for 4 h. The pyridine was evaporated under reduced pressure. The resulting solid residue was boiled in EtOH for 5 min. The precipitated solid product was collected by filtration and washed well with water and acetone to give pure compounds $4\mathbf{a}-\mathbf{e}$.

2.3.1. Pyrido[2',1':2,3]imidazo[4,5-b]quinolin-12-yl cyanide (4a)

Compound **4a** was obtained as shiny yellow needles (pyridine), yield (1.09 g, 90%), mp 280–282 °C; ¹H NMR (CDCl₃) δ 6.92–7.12 (m, 1H), 7.62–7.92 (m, 4H), 8.18–8.55 (m, 2H), 8.97 (d, *J* = 6.8 Hz, 1H) ppm; ¹³C NMR (CDCl₃): δ 102.53, 107.34, 109.35, 118.25, 120.59, 122.34, 129.47, 135.43, 136.75, 137.50, 145.33, 146.34, 147.90, 148.51, 149.12 ppm; IR (KBr): 2198 cm⁻¹ (CN). MS (m/z) 244 (M⁺). Anal. Calcd for C₁₅H₈N₄ (244.3): C, 73.76; H, 3.30; N, 22.94. Found: C, 73.41; H, 3.20; N, 22.71.

2.3.2. 3-Chloropyrido[2',1':2,3]imidazo[4,5-b]quinolin-12-yl cyanide (**4b**)

Compound **4b** was obtained as shiny yellow needles (pyridine), yield (1.28 g, 92%), mp 325–327 °C; ¹H NMR (CDCl₃) δ 6.98–7.22 (m, 1H), 7.72–7.93 (m, 3H), 8.28 (d, *J* = 8.8 Hz, 1H), 8.53 (d, *J* = 1.9 Hz, 1H), 8.96 (d, *J* = 6.9 Hz, 1H) ppm; ¹³C NMR (CDCl₃): δ 102.31, 107.21, 109.41, 118.40, 121.39, 122.21, 131.18, 133.01, 135.27, 136.83, 137.91, 146.02, 147.21, 148.09, 149.20 ppm; IR (KBr): 2199 cm⁻¹ (CN). MS (m/z) 278 (M⁺), 280 (M⁺ + 2). Anal. Calcd for C₁₅H₇ClN₄ (278.7): C, 64.64; H, 2.53; N, 20.10. Found: C, 64.29; H, 2.41; N, 19.88.

2.3.3. 3-Bromopyrido[2',1':2,3]imidazo[4,5-b]quinolin-12-yl cyanide (**4c**)

Compound **4c** was obtained as shiny yellow needles (pyridine), yield (1.50 g, 93%), mp 331–332°C; ¹H NMR (CDCl₃) δ 7.02–7.19 (m, 1H), 7.65–7.89 (m, 3H), 8.30 (d, *J* = 8.8 Hz, 1H), 8.51 (d, *J* = 1.9 Hz, 1H), 8.95 (d, *J* = 6.9 Hz, 1H) ppm; ¹³C NMR (CDCl₃): δ 103.50, 109.11, 109.63, 118.31, 119.81, 121.70, 133.91, 133.99, 136.14, 137.61, 139.32, 146.09, 147.00, 148.56, 149.35 ppm; IR (KBr): 2199 cm⁻¹ (CN). MS (m/z) 323 (M⁺), 325 (M⁺ + 2). Anal. Calcd for C₁₅H₇BrN₄ (323.1): C, 55.75; H, 2.18; N, 17.34. Found: C, 55.43; H, 2.03; N, 17.16.

Fig. 5. Synthesis of new fluorescent compounds 4a-e.

Fig. 6. Proposed reaction mechanism for the synthesis of prepared compounds 4a-e.

2.3.4. 3-Methoxypyrido[2',1':2,3]imidazo[4,5-b]quinolin-12-yl cyanide (**4d**)

Compound **4d** was obtained as shiny orange needles (pyridine), yield (1.31 g, 96%), mp 305–307 °C; ¹H NMR (CDCl₃) δ 4.04 (s, 3H), 6.93–7.12 (m, 1H), 7.47 (dd, *J* = 9.4 Hz, *J'* = 2.4 Hz, 1H), 7.60 (d, *J* = 2.4 Hz, 1H), 7.66–7.8 (m, 2H), 8.31 (d, *J* = 9.4 Hz, 1H), 8.91 (d, *J* = 6.9 Hz, 1H); ¹³C NMR (CDCl₃): δ 56.54, 103.81, 109.69, 110.74, 113.51, 118.91, 123.12, 133.02, 133.90, 137.69, 139.00, 143.57, 146.65, 147.50, 149.14, 160.30 ppm; IR (KBr): 2198 cm⁻¹ (CN). MS (m/z) 274 (M⁺). Anal. Calcd for C₁₆H₁₀N₄O (274.3): C, 70.07; H, 3.67; N, 20.43. Found: C, 69.71; H, 3.50; N, 20.19.

2.3.5. 3-Methylpyrido[2',1':2,3]imidazo[4,5-b]quinolin-12-yl cyanide (**4e**)

Compound **4e** was obtained as shiny yellow needles (pyridine), yield (1.16 g, 90%), mp 300–301 °C; ¹H NMR (CDCl₃) δ 2.64 (s, 3H), 6.88–7.07 (m, 1H), 7.48–7.73 (m, 3H), 8.06 (d, *J* = 1.9 Hz, 1H), 8.28 (d, *J* = 8.6 Hz, 1H), 8.91 (d, *J* = 6.4 Hz, 1H); ¹³C NMR (CDCl₃): δ 22.23, 102.91, 109.50, 110.11, 117.34, 127.45, 131.54, 133.26, 133.35, 136.54, 137.19, 142.56, 143.50, 146.13, 147.12, 149.07 ppm; IR (KBr): 2197 cm⁻¹ (CN). MS (m/z) 258 (M⁺). Anal. Calcd for C₁₆H₁₀N₄ (258.3): C, 74.41; H, 3.90; N, 21.69. Found: C, 74.23; H, 3.79; N, 21.43.

3. Results and discussion

The new (4-substituted)(3-hydroxyimino-2,3-dihydroimidazo [1,2-*a*]pyridin-2-yliden)methyl cyanides **3a**–**e** were synthesized via the nucleophilic substitution of hydrogen of 3-nitro-imiadazo [1,2-*a*]pyridine **1** with arylacetonitriles **2a**–**e** in basic MeOH solution [28] in excellent yields (Fig. 1). When *R* is an electron withdrawing group such as NO₂ group, the yield of the reaction is very low, since the corresponding conjugated base is a weak

Fig. 7. The resonance structures of compounds 4a-e.

Fig. 8. Visible absorption spectrum of compounds 4a-e in dilute $(1\times 10^{-6}\,M)$ chloroform solution.

nucleophile. A proposed mechanism to explain the formation of compounds 3a-e is shown in Fig. 2.

In spectral data of compounds **3a–e**, the presence of one exchangeable peak at ranging 13.39–13.51 ppm in the ¹H NMR spectrum, a weak absorption band at ranging 2195–2198 cm⁻¹ and a broad absorption band at ranging 3450–3455 cm⁻¹ assignable to CN and OH group in the IR spectrum together with microanalytical data strongly support the uncyclized structure of compounds **3a–e**.

As depicted in Fig. 3, in these compounds, there is a strong resonance from OH (electron-donor) to CN (electron-acceptor) group which can be witnessed in their absorption spectra in visible (violet) area. Formation of two aromatic rings (in form B) is the driving force for this fully extended conjugation.

Fig. 4 shows the visible absorption spectrum of compounds **3a–e** in dilute $(3 \times 10^{-5} \text{ M})$ ethanol solution. Characteristics of absorption spectra for **3a–e** in ethanol are presented in Table 1. Values of extinction coefficient (ε) were calculated as the slope of the plot of absorbance *vs* concentration, and have a precision of the order of 5%. Absorbance intensity and extinction coefficient (ε) in compound **3e**, with a methyl group attached to the *para* position of the benzene ring, were the biggest values.

Acylation of compounds $3\mathbf{a} - \mathbf{e}$ with acetyl chloride gave the new pyrido[2',1':2,3]imidazo[4,5-b]quinolines $4\mathbf{a} - \mathbf{e}$, in excellent yields, *via* the intramolecular electrophilic aromatic substitution (Fig. 5). The possible mechanism for this transformation is shown in Fig. 6. Other reagent such as SOCl₂ and POCl₃ act in same way but the yield of reaction is not as good as acetyl chloride.

The structural assignments of compounds **4a**–**e** were based on the analytical and spectral data. For example, the ¹H NMR spectrum

Fig. 9. Emission spectrum of compounds $4a{-}e$ in dilute $(1\times 10^{-6}\,\text{M})$ chloroform solution.

Table 2

Photophysical data fo	or absorption	(abs) and	fluorescence	(flu) of 4a -	e
-----------------------	---------------	-----------	--------------	----------------------	---

Dye	4a	4b	4c	4d	4e
$\begin{array}{l} \lambda_{max} \left(nm \right) \\ \epsilon \times 10^{-4} \left(M^{-1} \ cm^{-1} \right) \\ \lambda_{flu} \left(nm \right) \\ \Phi_{F}^{a} \end{array}$	443	446	447	448	445
	13.50	6.00	19.30	26.50	27.40
	480	485	485	495	485
	0.57	0.90	0.87	0.61	0.70

^a Quantum yield.

of **4d** revealed the absence of the signal at δ 13.27 ppm assignable to one exchangeable proton (OH group) and two doublet signals at δ 7.02 ppm and δ 8.07 ppm attributed to four aromatic protons of *p*methoxyphenyl ring of compound **3d** and presence of the doublet of doublet signal at δ 7.47 ppm (I = 9.4 Hz and I' = 2.4 Hz), the doublet signal at δ 7.60 ppm with meta *I* (2.4 Hz) and the doublet signal at δ 8.31 ppm with ortho *I* (9.4 Hz) assignable to three aromatic protons of methoxyphenyl ring. Moreover, the FT-IR spectrum of 4d in KBr did not show the absorption band at 3450 cm⁻¹ corresponding to OH group. Furthermore, the mass spectrum of this product shows the molecular ion m/z 274 (M⁺), confirming its presumed structure. Analytical data are also in accordance with the proposed structure for compound 4d. These compounds were highly fluorescent. When a heteronitrogen is singly bonded to carbon atoms in a heterocycle, as in pyrrole rings (e.g. indole, carbazole), the transitions involving the non-bonding electrons have properties similar to those of $\pi - \pi^*$ transitions. In fact, the non-bonding orbital is perpendicular to the plane of the ring, which allows it to overlap the p orbitals on the adjacent carbon atoms. The relatively high fluorescence quantum yield of the synthetic compounds $4\mathbf{a} - \mathbf{e}$ can be explained in the same way (Fig. 7).

The fluorescence absorption and emission spectra of compounds **4a**–**e** were recorded at the concentration of 10^{-6} M in chloroform as the solvent. The fluorescence excitation (λ_{ex}) wavelength at 271 nm (λ_{ex}/nm) was used for all compounds **4a**–**e**. Figs. 8 and 9 show the visible absorption and emission spectra of compounds **4a**–**e**. The λ_{max} , λ_{flu} and fluorescence quantum yield (Φ_F) data are presented in Table 2.

4. Conclusion

In conclusion, we have described a new and efficient synthetic method for the synthesis of new tetracyclic ring systems containing a quinoline nucleus which have strong fluorescence emission. The precursors of these compounds, (3-hydroxyimino-2,3-dihydroimidazo[1,2-*a*]pyridin-2-yliden)-2-phenylacetonitrile derivatives **3a**–**e** were prepared *via* nucleophilic substitution of hydrogen on 3-nitro-imidazo[1,2-*a*]pyridine.

References

- Hunger K. Industrial dyes. Weinheim, Germany: WILEY-VCH Verlag, Gmbh & Co. KGaA 2003; p.569–572.
- [2] Dmitry A, Pavel A. Dipyrrolyl quinoxalines with extended chromophores are efficient fluorimetric sensors for pyrophosphate. Chemical Communication 2003;12:1394–5.
- [3] Gold H. In the chemistry of synthetic dyes. In: Venkataraman H, editor. Pergamon. New York, USA: Academic Press; 1971. p. 535–42.
- [4] Belgodere E, Bossio R, Chimichi S, Passini V, Pepino R. Synthesis and fluorescence of some thiazole and benzothiazole derivatives. Dyes and Pigments 1985;4(1):59-71.
- [5] Kalle AG. British Patent 1962;895(001).
- [6] Ramasamy SM, Hurtubise RJ. Effects of temperature on the solid-surface luminescence properties of benzo[f]quinoline adsorbed on filter paper. Applied Spectroscopy 1989;43(4):616–21.
- [7] Nolan EM, Jaworski J, Okamoto KI, Hayashi Y, Sheng M, Lippard SJ. QZ1 and QZ2: rapid, reversible quinoline-derivatized fluoresceins for sensing biological Zn (II). Journal of the American Chemical Society 2005;127(48):16812–23.

- [8] Hranjec M, Kralj M, Piantanida I, Sedić M, Šuman L, Pavelić K, et al. Novel cyano- and amidino-substituted derivatives of styryl-2-benzimidazoles and benzimidazo[1,2-a]quinolines. Synthesis, photochemical synthesis, DNA binding, and antitumor evaluation, part 3. Journal of Medicinal Chemistry 2007;50(23):5696–711.
- [9] Zhang N, Zhao Y-Z, Zhang H-S, Wang H. Sensitive determination of aliphatic amines by high-performance liquid chromatography with a new fluorogenic probe 3-(4-fluorinebenzoyl)-2-quinoline carboxaldehyde. Journal of Separation Science 2008;31(1):38–46.
- [10] Shiraishi Y, Ichimura C, Hirai T. A quinoline-polyamine conjugate as a fluorescent chemosensor for quantitative detection of Zn(II) in water. Tetrahedron Letters 2007;48(44):7769–73.
- [11] Ou S, Lin Z, Duan C, Zhang H, Bai Z. A sugar-quinoline fluorescent chemosensor for selective detection of Hg²⁺ ion in natural water. Chemical Communications 2006;42:4392–4.
- [12] Musiol R, Tabak D, Niedbala H, Podeszwa B, Jampilek J, Kralova K, et al. Investigating biological activity spectrum for novel quinoline analogues 2: hydroxyquinolinecarboxamides with photosynthesis-inhibiting activity. Bioorganic and Medicinal Chemistry 2008;16(8):4490–9.
- [13] Tseng C-H, Chen Y-L, Lu P-J, Yang C-N, Tzeng C-C. Synthesis and antiproliferative evaluation of certain indeno[1,2-c]quinoline derivatives. Bioorganic and Medicinal Chemistry 2008;16(6):3153-62.
- [14] Clarke HT, Davis AW. Quinoline. Organic Syntheses 1922;2:79-83.
- [15] Combes A. Quinoline synthesis. Bulletin de la Societe Chimique de France 1888;49:89–94.
- [16] Friedländer P. Quinoline synthesis. Chemische Berichte 1882;15:2572–5.
- [17] Kobayashi K, Takanohashi A, Himei Y, Sano T, Fukamachi S, Morikawa O, et al. A new method for the synthesis of pyrrolo[1,2-a]quinolines based on boron trifluoride-mediated cyclization of 1-(2-oxiranylphenyl)pyrroles. Heterocycles 2007;71(12):2717–20.
- [18] D'yachenko EV, Glukhareva TV, Nikolaenko EF, Tkachev AV, YuYu Morzherin. Synthesis of hydrogenated spiro derivatives of quinolines. Russian Chemical Bulletin 2004;53(6):124012–47.

- [19] Makosza M, Wojciechowski K. Nucleophilic aromatic substitution of hydrogen as a tool for the synthesis of indole and quinoline derivatives. Heterocycles 2001;54(1):445–74.
- [20] Kovalska VB, Losytskyy MY, Kryvorotenko DV, Balanda AO, Tokar VP, Yarmoluk SM. Synthesis of novel fluorescent styryl dyes based on the imidazo [1,2-*a*]pyridinium chromophore and their spectral-fluorescent properties in the presence of nucleic acids and proteins. Dyes and Pigments 2006;68 (1):39–45.
- [21] Laquintana V, Denora N, Lopedota A, Suzuki H, Sawada M, Serra M, et al. N-benzyl-2-(6,8-dichloro-2-(4-chlorophenyl))imidazo[1,2-a]pyridin-3-yl)-N-(6-(7-nitrobenzo[c][1,2,5]oxadiazol-4-ylamino)hexyl)acetamide as a new fluorescent probe for peripheral benzodiazepine receptor and microglial cell visualization. Bioconjugate Chemistry 2007;18(5):1397–407.
- [22] Rahimizadeh M, Pordel M, Bakavoli M, Bakhtiarpoor Z, Orafaie A. Synthesis of imidazo[4,5-a]acridones and imidazo[4,5-a]acridines as potential antibacterial agents. Monatshefte fur Chemie 2009;140(6):633–8.
- [23] Rahimizadeh M, Pordel M, Bakavoli M, Rezaeian Sh. Synthesis of a new heterocyclic system – Fluoreno[1,2-d]imidazol-10-one. Canadian Journal of Chemistry 2009;87(6):724–8.
- [24] Rahimizadeh M, Pordel M, Bakavoli M, Eshghi H, Shiri A. Vicarious nucleophilic substitution in nitro derivatives of imidazo[1,2-a]pyridine. Mendeleev Communications 2009;19(3):161–2.
- [25] Bakavoli M, Pordel M, Rahimizadeh M, Jahandari P, Seresht ER. Sulfuric acid mediated heterocyclization of Ortho-cyanomethylnitroarenes to benzo[C] isoxazoles and fused benzo[C]isoxazoles. Heterocycles 2008;75(1):165–71.
 [26] Umberger JQ, LaMer VV. The kinetics of diffusion controlled molecular and
- [26] Umberger JQ, LaMer VV. The kinetics of diffusion controlled molecular and ionic reactions in solution as determined by measurements of the quenching of fluorescence. Journal of the American Chemical Society 1945;67(7): 1099–109.
- [27] Paolini JP, Robins RK. Substitution reactions of imidazo[1,2-a]pyridine and related methyl derivatives. Journal of Organic Chemistry 1965;30(12):4085–90.
- [28] Davis RB, Pizzini LC. Condensation of aromatic nitro compounds with acrylacetonitriles. Journal of Organic Chemistry 1960;25(11):1884–8.