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ABSTRACT: A new strategy was developed for the 

asymmetric total synthesis of (−)-vinigrol. The strategy 

involved a linear sequence of 15 steps from 3-methyl-butanal 

(14 steps from chloro-dihydrocarvone) and did not need 

protecting groups. The synthetically challenging 

1,5-butanodecahydronaphthalene core was constructed 

efficiently via a type II intramolecular [5+2] cycloaddition, 

followed by a unique ring-contraction cascade.  

(−)-Vinigrol (1, Fig. 1), a unique, compact and biologically 

significant diterpene, was isolated by Hashimoto and co-workers 

in 1987 from the fungal strain Virgaria nigra F-5408.1a 

Structurally, (−)-vinigrol has an unprecedented and highly rigid 

1,5-butanodecahydronaphthalene core with eight contiguous 

stereocenters. Notably, the strained bicyclo[5.3.1]undecane ring 

system in 1 is an unusual bridged framework that is also present 

in the well-known terpene taxol.2 Vinigrol synthesis is therefore a 

formidable challenge. Vinigrol displays a number of promising 

biological activities,1 e.g., it inhibits human platelet aggregation 

(IC50 = 52 nM)1b and is an antagonist of tumor necrosis factor 

(TNF-α).1d 

 

 
 

Figure 1. Structural features of (−)-vinigrol (1). 

 

A combination of the complex structure and impressive 

pharmacological properties of vinigrol has prompted significant 

interest from the synthetic community for more than three 

decades.3,4,5 In 2009, Baran and co-workers completed the first 

and most efficient total synthesis of ()-vinigrol, with Diels–

Alder reactions and Grob fragmentation as the key steps.6 This 

work was a landmark achievement in vinigrol synthesis. In 2012, 

Barriault and co-workers reported an elegant formal synthesis of 

()-vinigrol that involved a notable type II intramolecular Diels–

Alder reaction.7a In 2013, Njardarson and co-workers reported 

another elegant total synthesis of ()-vinigrol, with remarkable 

oxidative dearomatization and intramolecular Diels–Alder 

reactions as the key steps.8 Very recently, Luo and co-workers 

reported the first asymmetric total synthesis of (−)-vinigrol via a 

well-designed transannular Diels–Alder reaction as the key step.9 

In all of these noteworthy achievements the Diels–Alder reaction 

was a crucial element in the synthetic strategy of vinigrol. 

However, the development of a new strategy for the synthesis of 1 

and its analogues is still desirable. Herein, we wish to describe the 

asymmetric total synthesis of (−)-vinigrol using a type II 

intramolecular [5+2] cycloaddition as a new strategy.  

Scheme 1 shows the bond disconnections in (−)-vinigrol that 

led to the concise strategy used in our synthetic program. It was 

envisioned that (−)-1 could be generated from the tricyclic core 2 

through a series of functional group transformations. Compound 2, 

which has a 1,5-butanodecahydronaphthalene core, would be 

synthesized from 3 or its derivative by ring-contraction 

reactions.10 In turn, the bridged framework 3 with a strained 

bridgehead double bond11 at C4–C4a (vinigrol numbering 

throughout) could be synthesized diastereoselectively from 4 by a 

type II intramolecular [5+2] cycloaddition.12,13 Compound 4 can 

be derived from 5 through an Achmatowicz reaction. Lastly, 

compound 5 can be prepared from readily available bromide 6 

and commercially available chloro-dihydrocarvone (7) as the 

chiral pool14 via several simple functional group transformations. 

 

Scheme 1. Retrosynthetic analysis of (−)-vinigrol (1) 

 

 
The synthesis began with an asymmetric preparation of 
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compound 5 (Scheme 2). The starting material 7 was treated with 

LiHMDS and 2-chloroacetyl chloride (8) in THF, followed by 

reduction of the resulting furanone with DIBAL to give furan 9 in 

an overall yield of 40% (20 g scale). The bromide 615 was 

produced on a large scale by organocatalytic enantioselective 

‑hydroxymethylation of 3-methyl-butanal,15c followed by Wittig 

olefination and brominating. Treatment of chloride 9 with a 

Grignard reagent formed from bromide 6 in the presence of CuI in 

THF gave compound 10 in 94% yield (30 g scale). 

Hydroxymethylation at the α position of the furan ring in 10 with 

n-BuLi and formaldehyde provided 5 in 82% yield (20 g scale). 

Oxidative rearrangement of 15 with VO(acac)2 and TBHP in 

DCM gave 4 in 92% yield (10 g scale), which was the precursor 

for the type II intramolecular [5+2] cycloaddition. 

 

Scheme 2. Asymmetric Synthesis of 3 

 

 
 

The key step of the type II intramolecular [5+2] cycloaddition 

reaction was developed by our group in 2014.12a The reaction 

involves the oxidopyrylium ylide and a simple alkene such as 4b. 

It enables the efficient, diastereoselective, and direct construction 

of various highly functionalized and synthetically challenging 

bridged skeletons such as 3. However, the presence of the 

additional C9–C18 double bond in the bicyclo[5.4.1]dodecane or 

bicyclo[5.3.1]undecane ring system of 3 (highlighted in red in 

Scheme 2), which has not previously been reported, increases the 

strain in the molecule.12 To the best of our knowledge, there are 

no reports in the literature to date pertaining to intramolecular 

[5+2] cycloaddition reactions (a) of aliphatic ring-fused 

oxidopyrylium ylides such as 4b or (b) to construct 

eight-membered ring systems in natural product synthesis.12,13 

Furthermore, the formation of a C8a quaternary stereogenic 

bridgehead carbon center in a bridged ring system in 3 makes this 

reaction particularly challenging. 

After extensive experimentation (Scheme 2), we found that 

compound 4a with a trifluoroethoxyl group at C8a was a good 

and stable precursor of the oxidopyrylium ylide 4b for the type II 

intramolecular [5+2] cycloaddition. Compound 4a was prepared 

from 4 with Boc anhydride in the presence of DMAP,12b followed 

by trifluoroethoxylation with 2,2,2-trifluoroethanol (TFE) in the 

presence of AgSbF6
16 in one pot (85% yield, 9 g scale). Under 

optimized conditions (see the Supporting Information (SI) for 

details), the type II intramolecular [5+2] cycloaddition of 4a was 

realized using a catalytic amount of hydroquinidine (0.2 equiv.) as 

a base with heating, giving the [6–8–7] tricyclic core-containing 3 

in 40% yield (1 g scale). This was confirmed by X-ray 

crystallography. To the best of our knowledge, this work 

represents the first reported example of the use of a 

trifluoroethoxyl leaving group to generate the oxidopyrylium 

ylide in a [5+2] cycloaddition.13 This route provided facile access 

to a total of 10 g of 3 (see SI for details), which highlights the 

robust nature of the chemistry. It is worth noting that our type II 

intramolecular [5+2] cycloaddition enabled efficient construction 

of the taxol-like bicyclo[5.3.1]undecane framework in 3. 

Furthermore, this reaction enabled the concise, diastereoselective, 

and direct installation of the C8a oxyl and C8 methyl groups, 

which has previously proved to be a difficult task because of their 

cis orientation.3x,4f,6,7a,8a 

With compound 3 in hand, we investigated our proposed 

synthesis of the 1,5-butanodecahydronaphthalene skeleton of 

vinigrol by a ring-contraction reaction (Scheme 3). We initially 

tried a Wolff rearrangement17 to obtain 11c. It was expected that 

selective cleavage of the C3–O bond and installation of a diazo 

group at C3 would give the precursor 11b for the Wolff 

rearrangement. Although a wide variety of conditions were 

screened (i.e., SmI2, Li/NH3, Na/NH3, and Li/EtNH2
12c), none of 

these reactions afforded any of the desired product 11a by 

selective cleavage of the C3–O bond. Extensive experimentation 

suggested that diketone 13 would be a good precursor for the 

preparation of the α-keto diazo compound.17e Therefore, 

chemoselective hydrogenation of the C9–C18 olefin in 3 with 

Wilkinson’s catalyst employing 1000 psi of H2 in PhMe, followed 

by diastereoselective hydroboration–oxidation of the enone with 

BH3•THF in a one-pot sequence, gave diol 12 in an overall yield 

of 71% (1.2 g scale). Subsequent treatment of 12 with 

2-iodoxybenzoic acid (IBX, 2.0 equiv) in DMSO at 80 °C gave 

the unexpected product 14 (30%), a certain amount of 

mono-ketone product S4 (see SI, 30%), the surprising 

ring-contraction product 15 (10%), and some unidentified 

byproducts. However, none of the expected 13 was isolated. We 

reasoned that formation of the 1,5-butanodecahydronaphthalene 

core 15 probably occurred via the following pathway (Scheme 4). 

In the presence of IBX in DMSO at 80 °C, diketone 13, produced 

from 12, was spontaneously oxidized to C4a-hydroxyl diketone 

14. Intramolecular attack of the C4a-hydroxyl group in 14 on the 

less hindered carbonyl group would yield oxetanone18 14a, which 

could undergo rearrangement of the C3 to the C4-carbonyl group 

to give unstable -lactone 14b, which can be isolated and whose 

structure was determined by 2D-NMR, MS and IR (see SI for 

details). Subsequent spontaneous decarboxylation of the 

-lactone19 gave enol 14c, which underwent keto–enol 
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tautomerization to generate the desired product 15 

diastereoselectively. We further optimized the reaction conditions 

and finally identified the following optimum protocol. When 12 

was treated with IBX (5.0 equiv.) in DMSO at 80 °C for 2 h, 

followed by quenching with NaHCO3/Na2S2O3 in one pot, 15 was 

obtained in 72% isolated yield (600 mg scale). Under the similar 

conditions, the isolated 14 or 14b reacted further to give 15 in 

good yield, respectively. 

 

Scheme 3. Asymmetric Total Synthesis of (−)-Vinigrol 

 

 
 

It is worth noting that there are few reports in the literature 

pertaining to this direct ring-contraction reaction of cyclic 

1-hydroxyl-2,3-diones,20 which could also be precursors for 

synthesis of α-keto diazo compounds for the Wolff 

rearrangement.17e This mild reaction could be an alternative 

method for ring contraction in some cases. Further studies of the 

use of this reaction in total synthesis, and a mechanistic study, are 

currently underway in our laboratory. 

Next, treatment of 15 with SmI2 (2.2 equiv.) in THF/H2O 

afforded compound 2 in 85% yield. The ketone 2 was treated with 

LiHDMS and Mander’s reagent (methyl cyanoformate) in Et2O, 

followed by phenylselenylation with PhSeBr and spontaneous 

elimination21 to give enone-ester 16 in 60% yield (77% yield 

based on recovered starting material). This was confirmed by 

X-ray crystallography.22 Then, we tried to reduce the ketone and 

ester groups of 16 diastereoselectively and chemoselectively in 

one step, to obtain (−)-1. However, it was found that this was a 

very challenging task after extensive experimentation. 

Interestingly, treatment of 16 with DIBAL in the presence of 

LDA in THF gave C4-epi-vinigrol 17 (5%) and compound 18 

(63%) (see SI for more details). Finally, a slightly modified 

version of a previous procedure9,23 for the singlet oxygen–ene 

reaction of 18 was used, completing the asymmetric total 

synthesis of (–)-1 in 60% yield.  

 

Scheme 4. Proposed pathway from 13 to 15 
 

 

In summary, we have achieved the concise asymmetric total 

synthesis of (−)-vinigrol (1) via a linear sequence of 15 steps24 

from 3-methyl-butanal (14 steps from chloro-dihydrocarvone), 

without the need for protecting groups.25 Notably, the 

synthetically challenging 1,5-butanodecahydronaphthalene core 

of (−)-1 was synthesized efficiently via a type II intramolecular 

[5+2] cycloaddition of a new precursor, 4a, using a catalytic 

amount of base, followed by a unique IBX-induced 

decarboxylative ring-contraction cascade. To the best of our 

knowledge, this work represents the first example of an 

intramolecular [5+2] cycloaddition to construct eight-membered 

ring systems in natural product synthesis. Furthermore, the eight 

contiguous stereocenters, including the challenging C8a oxyl and 

C8 methyl groups in a cis orientation, were constructed simply 

and diastereoselectively. This new strategy will enable the diverse 

synthesis of vinigrol analogues from various analogues of 6 or 7 

to facilitate further biological research, which is underway and 

will be reported in due course. 
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