Intermolecular Cobalt-Mediated Pauson–Khand Reactions in Ionic Liquids

Armand Becheanu,^{a,1} Sabine Laschat^{*a,1}

Institut für Organische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany Fax +49(531)3915388; E-mail: s.laschat@tu-bs.de *Received 26 August 2002*

Abstract: Intermolecular Pauson–Khand reactions of strained alkenes **1a–d** with alkynes **2**, **4**, **6** and $Co_2(CO)_8$ were performed in [bmim]PF₆ either thermally or in the presence of NMO. For comparison thermal reactions were done in toluene and NMO-promoted reactions in CH₂Cl₂. The results show that the ionic liquid is a suitable substitute for CH₂Cl₂. Yields of the NMO-promoted reaction could be improved by using a two-phase system [bmim]PF₆/methylcyclohexane.

Keywords: Pauson-Khand reaction, ionic liquids, amine N-oxides

The use of room temperature ionic liquids as environmentally benign solvents in organic synthesis and organometallic catalysis has dramatically increased during the last couple of years. Particularly attractive features of ionic liquids are their non-volatility, easy recycling and their miscibility properties with water or organic solvents, which can be adjusted by proper choice of anion or cation.² However, despite worldwide research efforts the applicability of ionic liquids in many metal-catalyzed reactions remains unexplored.³ Among those is the Pauson-Khand reaction, a cobalt-catalyzed [2+2+1] cocyclization of an alkene, an alkyne and carbon monoxide to give cyclopentenones.⁴ We were thus interested whether intermolecular Pauson-Khand reactions could be performed either thermally or NMO-promoted in ionic liquids.⁵ The results towards this goal are reported below.

As a neutral ionic liquid with a non-coordinating anion N-butyl-N-methylimidazolium hexafluorophosphate [bmim]PF₆ was chosen, which was prepared according to a procedure by Wasserscheid and Driessen-Hölscher.⁶ Pauson-Khand reactions of various alkynes 1a-d with phenylacetylene 2 were performed with stoichiometric amounts of Co₂(CO)₈ (Scheme 1, Table 1). For comparison the reactions were run in (a) toluene at 110 °C, (b) [bmim]PF₆ at 50 °C,⁷ (c) CH₂Cl₂ in the presence of 6 equivalents of N-methylmorpholine N-oxide (NMO) at room temperature, and (d) $[\text{bmim}]PF_6$ in the presence of 6 equivalents of NMO at room temperature. After extraction with Et_2O^8 the crude cyclopentenones **3a**–**d** were purified by flash chromatography. The results in Table 1 show that indeed both thermally induced and NMOpromoted Pauson-Khand reactions are possible in $[bmim]PF_6$, giving the desired cyclopentenones 3 in moderate to good yields. The only exception is cyclopentene

Synlett 2002, No. 11, Print: 29 10 2002.

Art Id.1437-2096,E;2002,0,11,1865,1867,ftx,en;G24802ST.pdf. © Georg Thieme Verlag Stuttgart · New York

ISSN 0936-5214

1d, which gaves less than 1% conversion in [bmim] PF_6 (entry 14). Direct comparison between thermal and NMOpromoted reactions in $[bmim]PF_6$ reveals that the ionic liquid gives higher yields in the presence of NMO for norbornene 1a and norbornadiene 1b (entries 2, 4, 6, 8). The use of an ionic liquid results in somewhat decreased yields as compared to conventional solvents such as toluene or CH₂Cl₂ (entries 1–4). However, upon monitoring the reactions by capillary GC good conversions were obtained in most cases (except for entries 6, 12, 14). Probably the product is partially lost during the workup procedure. This is particularly true for polar cyclopentenone 3c derived from norbornene ester 1c, which was isolated from the ionic liquid in only 30-32% (entries 10, 12). However, Pauson-Khand reactions were not limited to phenyl acetylene 2. Upon treatment of 1-heptyne 4 and norbornene 1a with $Co_2(CO)_8$ and 6 equivalents of NMO in [bmim]PF₆ for 30 minutes, the desired cyclopentenone 5a could be isolated in 64% yield (entry 16).

We wanted to address the workup problems and thus different protocols were tested. First a continuous extraction of the reaction mixture with Et_2O or EtOH was studied. Whereas Et_2O was not sufficiently polar to remove all cyclopentenone **3a** from the ionic liquid phase, EtOH as extracting solvent resulted in leaching of the ionic liquid into the organic layer. Next, the NMO-promoted reaction of norbornene **1a** and phenylacetylene **2** was performed in a two-phase system containing [bmim]PF₆ (bottom layer) and methylcyclohexane (top layer).⁹ Simple extraction of the ionic liquid phase and combination of the extract with the methylcyclohexane layer allowed easy removal of the

Table 1Pauson-Khand Reaction of Various Alkenes 1a-d with Phenylacetylene 2 or 1-heptyne 4 to the Cyclopentenones 3a-d, 5a^a

Entry	Alkene	Alkyne	Additive	Solvent ^b	Temp.[°C]	Time [h]	Product	Conv. [%]	Yield[%]
(1)	1a	2	_	toluene	110	5	3a	96	81
(2)	1a	2	_	[bmim]PF ₆	50	5	3a	94	40
(3)	1a	2	NMO	CH ₂ Cl ₂	20	0.5	3a	97	92
(4)	1a	2	NMO	[bmim]PF ₆	20	0.5	3a	96	71
(5)	1b	2	_	toluene	110	5	3b	90	87
(6)	1b	2	_	[bmim]PF ₆	50	5	3b	62	54
(7)	1b	2	NMO	CH_2Cl_2	20	0.5	3b	94	81
(8)	1b	2	NMO	[bmim]PF ₆	20	0.5	3b	76	73
(9)	1c	2	_	toluene	110	5	3c	82	59
(10)	1c	2	_	[bmim]PF ₆	50	5	3c	84	32
(11)	1c	2	NMO	CH ₂ Cl ₂	20	0.5	3c	81	76
(12)	1c	2	NMO	[bmim]PF ₆	20	0.5	3c	35	30
(13)	1d	2	NMO	CH_2Cl_2	20	0.5	3d	96	40
(14)	1d	2	NMO	[bmim]PF ₆	20	0.5	3d	1	<1
(15)	1a	4	NMO	CH ₂ Cl ₂	20	0.5	5a	90	82
(16)	1a	4	NMO	[bmim]PF ₆	20	0.5	5a	81	64
(17)	1a	2	NMO	[bmim]PF ₆ /MCH	20	0.5	3a	91	85
(18)	1b	2	NMO	[bmim]PF ₆ /MCH	20	0.5	3b	93	81
(19)	1 a	2	NMO	[bmim]BF ₄ /MCH	20	0.5	3a	86	53

^a Reaction conditions: alkene 1 (1.2 equiv), alkyne 2 or 4 (1.0 equiv), $Co_2(CO)_8$ (1.0 equiv), solvent, additive (6 equiv). The reactions were monitored by capillary GC. Yields refer to isolated yields.

^b MCH refers to methylcyclohexane.

cobalt residues and yielded 85% of the desired product **3a** (entry 17). Similar results were obtained for the norbornadiene-derived product **3b** (entry 18). Unfortunately, the two-phase protocol was not successful for polar alkene **1c**. When [bmim]BF₄ instead of [bmim]PF₆ was used in the two-phase reaction of **1a** and **2**, the isolated yield of the corresponding cyclopentenone **3a** dropped down to 53% (entry 19).

In order to investigate the effect of the ionic liquid on the regioselectivity, alkenes **1a**,**b** and phenylpropyne **6** were converted in the presence of 6 equivalents of NMO either in CH_2Cl_2 or in [bmim]PF₆ to the regioisomeric cyclopen-

Scheme 2

tenones **7**, **8** (Scheme 2, Table 2). As shown in Table 2, the regioisomeric ratio is not effected by the ionic liquid. In conclusion, ionic liquids such as $[bmim]PF_6$ are useful substitutes for CH₂Cl₂ in NMO-promoted Pauson–Khand

Table 2Pauson-Khand Reaction of Norbornene 1a and Norborna-
diene 1b with Phenylpropyne 6 to the Regioisomeric Cyclopenten-
ones 7, 8^a

Entry	Alkene	Solvent	Products	Conv. [%]	Yield [%]	Regioiso- meric ratio 7 : 8
(1)	1a	CH ₂ Cl ₂	7a, 8a	99	78	96:4
(2)	1a	[bmim]PF ₆	7a, 8a	95	63	94:6
(3)	1b	CH ₂ Cl ₂	7b, 8b	89	88	92:8
(4)	1b	[bmim]PF ₆	7b, 8b	83	46	95:5

^a Reaction conditions: alkene **1** (1.2 equiv), alkyne **6** (1.0 equiv), $Co_2(CO)_8(1.0 \text{ equiv})$, solvent, NMO (6 equiv), 20 °C, 30 min. The conversions and regioisomeric ratios were determined by capillary GC. Yields refer to isolated yields.

Synlett 2002, No. 11, 1865-1867 ISSN 0936-5214 © Thieme Stuttgart · New York

Thermal Pauson–Khand reactions in toluene and NMO-promoted reactions in CH_2Cl_2 were performed as described in ref.¹⁰

General Procedure for Thermal Pauson–Khand Reactions in Ionic Liquids:

To a solution of $Co_2(CO)_8$ (342 mg, 1.0 mmol) in [bmim]PF₆ (5 mL) was added alkyne **2**, **4** or **6** (1.00 mmol) and the resulting mixture was stirred for 40 min at r.t. Then alkene **1** (1.20 mmol) was added und the mixture was heated at 50 °C for 5 h. After cooling to r.t. the mixture was extracted with Et₂O (5 × 20 mL).⁸ The combined Et₂O layers were dried over MgSO₄, evaporated and the crude product was purified by flash chromatography (SiO₂, hexane/ethyl acetate 4:1).

General Procedure for NMO-Promoted Pauson–Khand Reactions in Ionic Liquids:

To a solution of $\text{Co}_2(\text{CO})_8$ (342 mg, 1.0 mmol) in [bmim]PF₆ (5 mL) were sequentially added alkyne **2**, **4** or **6** (1.00 mmol), alkene **1** (1.20 mmol) and *N*-methylmorpholine *N*-oxide (705 mg, 6.00 mmol) and the resulting mixture was stirred for 30 min at r.t. The mixture was extracted with Et₂O (5 × 20 mL).⁸ The combined Et₂O layers were dried over MgSO₄, evaporated and the crude product was purified by flash chromatography (SiO₂, hexane/EtOAc 4:1).

General Procedure for NMO-Promoted Pauson–Khand Reactions in Ionic Liquid/Methylcyclohexane Two-Phase System:

To a solution of $Co_2(CO)_8$ (342 mg, 1.0 mmol) in [bmim]PF₆ (5 mL) and methylcyclohexane (5 mL) were sequentially added alkyne **2** (1.00 mmol), alkene **1** (1.20 mmol) and *N*-methylmorpholine *N*-oxide (705 mg, 6.00 mmol) and the resulting mixture was stirred for 30 min at r.t. The mixture was diluted with methylcyclohexane (80 mL) and the layers were separated. The ionic liquid layer was extracted with Et₂O (5 × 20 mL) and EtOH (5 × 20 mL) and the combined organic layers (including the methylcyclohexane layer) were combined, dried over MgSO₄, evaporated.

Acknowledgement

Generous financial support by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie and the Deutscher Akademischer Austauschdienst is gratefully acknowledged. We would like to thank Prof. Kenneth R. Seddon and Jennifer Hamill, Queens University of Belfast, for valuable suggestions. We are grateful to Dr. Heinrich Luftmann, Universität Münster for carrying out GC-MS experiments.

References

- (1) New address: Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
- (2) Reviews: (a) Sheldon, R. Chem. Commun. 2001, 2399.
 (b) Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. 2000, 39, 3772; Angew. Chem. 2000, 112, 3926. (c) Weldon, T. Chem. Rev. 1999, 99, 2071. (d) Seddon, K. R. Chem. Technol. Biotechnol. 1997, 68, 351.
- (3) Some recent examples: (a) Dell'Anna, M. M.; Gallo, V.; Mastrovilli, P.; Nobile, C. F.; Romanazzi, G.; Suranna, G. P.

Chem. Commun. 2002, 434. (b) Buijsman, R. C.; van Vuuren, E.; Sterrenburg, J. G. Org. Lett. 2001, 3, 3785. (c) Brown, R. A.; Polett, P.; McKoon, E.; Eckert, C. A.; Liotta, C. L.; Jessop, P. G. J. Am. Chem. Soc. 2001, 123, 1254. (d) Mathews, C. J.; Smith, P. J.; Xu, L.; Chen, W.; Ross, J.; Xiao, J. Org. Lett. 2001, 3, 295. (e) Wasserscheid, P.; Waffenschmidt, H.; Machnitzki, P.; Kottsieper, K. W.; Stelzer, O. Chem. Commun. 2001, 451. (f) Handy, S. T.; Zhang, X. Org. Lett. 2001, 3, 233. (g) Owens, G. S.; Abbu-Omar, M. M. Chem. Commun. 2000, 1165. (h) Song, C. E.; Roh, E. J. Chem. Commun. 2000, 837. (i) Song, C. E.; Rim, O. C.; Roh, E. J.; Choo, D. J. Chem. Commun. 2000, 1743. (j) Howarth, J.; James, P.; Dai, J. Tetrahedron Lett. 2000, 41, 10319. (k) Sirieix, J.; Ossberger, M.; Betzemeier, B.; Knochel, P. Synlett 2000, 1613. (1) Toma, S.; Kmentova, I.; Solcaniova, E. Green Chem. 2000, 149. (m) Carmichael, A. J.; Earle, M. J.; Holbrey, J. D.; McCormac, P. B.; Seddon, K. R. Org. Lett. 1999, 1, 977. (n) Chen, W.; Xu, L.; Chatterton, C.; Xiao, J. Chem. Commun. 1999, 1247. (o) Kaufmann, D. E.; Nouzoorian, M.; Henze, H. Synlett 1996, 1091. (p) Suarez, P. A. Z.; Dullius, J. E. L.; Einloft, S.; De Souza, R. F.; Dupont, J. Polyhedron 1996, 15, 1217. (q) Chauvin, Y.; Mussmann, L.; Olivier, H. Angew. Chem., Int. Ed. Engl. 1995, 34, 2968; Angew. Chem. 1995, 107, 2941.

- (4) Reviews: (a) Brummond, K. M.; Kent, J. L. Tetrahedron 2000, 56, 1657. (b) Fletcher, A. J.; Christie, S. D. R. J. Chem. Soc., Perkin Trans. 1 2000, 1657. (c) Chung, Y. K. Coord. Chem. Rev. 1999, 188, 297. (d) Jeong, N. In Transition Metals in Organic Chemistry, Vol. 1; Beller, M.; Bolm, C., Eds.; Wiley-VCH: Weinheim, 1998, 560. (e) Geis, O.; Schmalz, H.-G. Angew. Chem. Int. Ed. 1998, 37, 911; Angew. Chem. 1998, 110, 955. (f) Ingate, S. T.; Marco-Contelles, J. Org. Prep. Proced. Int. 1998, 30, 121. (g) Buchwald, S. L.; Hicks, F. A. In Comprehensive Asymmetric Catalysis, Vol. 2; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Eds.; Springer: Berlin, 1999, 491. (h) Schore, N. E. In Comprehensive Organometallic Chemistry II, Vol. 12; Abel, E. W.; Stone, F. G. A.; Wilkinson, G., Eds.; Pergamon Press: Oxford, 1995, 703. (i) Schore, N. E. In Comprehensive Organic Synthesis, Vol. 5; Trost, B. M., Ed.; Pergamon Press: Oxford, 1991, 1037. (j) Schore, N. E. Org. React. 1991, 40, 1. (k) Pauson, P. L. Tetrahedron 1985, 41, 5855.
- (5) (a) Jeong, N.; Chung, Y. K.; Lee, B. Y.; Lee, H. L.; Yoo, S. E. Synlett 1991, 204. (b) Shambayati, S.; Crowe, W. E.; Schreiber, S. L. Tetrahedron Lett. 1990, 31, 5289.
- (6) Steines, S.; Wasserscheid, P.; Driessen-Hölscher, B. J. Prakt. Chem. 2000, 342, 348.
- (7) Due to HF elimination [bmim]PF₆ should not be heated above 50 °C: Seddon K. R., personal communication. See also ref.^{2c}
- (8) Further extraction of the ionic liquid layer with CHCl₃ (3 × 20 mL) resulted in a slight improvement of the yields, particularly for ester-substituted cyclopentenone 3c. However, when CHCl₃ was directly used for the extraction procedure without previous treatment with Et₂O, separation of the layers was very tedious.
- (9) Müller has shown, that the hydroamination in a two-phase system containing heptane and 1-ethyl-3-methylimidazolium trifluoromethane sulfonate takes place mainly in the phase boundary. For details see: Neff, V.; Müller, T. E.; Lercher, J. A. *Chem. Commun.* **2002**, 906.
- (10) Derdau, V.; Laschat, S.; Jones, P. G. Eur. J. Org. Chem. 2000, 681.