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Abstract A highly selective one-pot synthesis of polysubstituted iso-
flavanes has been developed. The reaction proceeds through the cy-
cloaddition of methyl styryl ethers, derived from phenylacetaldehyde
dimethyl acetals under acidic conditions, with electron-withdrawing or-
tho-quinone methides generated in situ. When phenylacetaldehyde di-
methyl acetals were reacted with salicylaldehydes, the reaction pro-
ceeded smoothly to afford the corresponding isoflavanes
stereoselectively in high yields and with excellent regioselectivities. The
present reaction provides versatile access to functionalized isoflavanes,
and constitutes a useful tool for the synthesis of biologically active mol-
ecules.

Key words isoflavan, ortho-quinone methide, [4+2] cycloaddition,
stereoselective synthesis, regioselective synthesis

Isoflavan is a prevalent structural motif found in nu-
merous natural products and pharmaceuticals, which dis-
play diverse biological activities such as antioxidant and an-
timicrobial action.1 Many biologically active isoflavanes
bear multiple substituents, and, in particular, have various
electron-donating groups such as methoxy groups (Figure
1a and 1b). Based on the structure of these compounds, a
number of research groups have developed methodologies
to synthesize isoflavanes possessing electron-donating
groups (Scheme 1a).2 In contrast, isoflavanes substituted
with electron-withdrawing groups have received little at-
tention in organic synthetic chemistry. Some isoflavanes
having electron-withdrawing substituents are known to ex-
hibit biological activity such as anti-rhinovirus action (Fig-
ure 1c and 1d).3 Despite the reports of these functionalities
of isoflavanes, the synthesis of such electron-withdrawing
compounds has been much less explored. In addition, a few

previous synthetic reports suffered from the requirement
of tedious reaction process;3 therefore, more convenient
synthetic methodology remains desirable.

ortho-Quinone methide (o-QM) is a useful synthetic in-
termediate that is widely implicated in organic synthesis.4
In recent years, catalytic asymmetric reactions using o-QM
are rapidly growing areas and have been examined by sev-
eral research groups.5 Recently, we have been developing
the generation of o-QM from salicylaldehyde in the pres-
ence of acid catalyst and trimethyl orthoformate under
mild conditions.6 In the course of this study, we reported
that salicylaldehyde 1 reacted with unsaturated alcohol 2 in
benzene in the presence of p-TsOH and trimethyl orthofor-
mate to give trans-4 through intramolecular inverse-elec-
tron-demand [4+2] cycloaddition reaction of 3 (Scheme 2,
Equation (1)).7 In this context, when we attempted to use
acetal 5 instead of alcohol 2, which would be converted into
the unsaturated alcohol under acidic conditions, interest-
ingly, isoflavan 6 was obtained in 52% yield, and no flavan 7
was observed (Scheme 2, Equation (2)). It is considered that
the reaction would proceed through intermolecular [4+2]
cycloaddition of ortho-quinone methide with unsaturated

Figure 1  Selected examples of bioactive compounds of isoflavanes
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alcohol. The reaction prompted us to investigate a new
method giving a one-pot synthesis of isoflavanes bearing
electron-withdrawing groups. Herein, we report the highly
selective one-pot synthesis of polysubstituted isoflavanes
using styryl ethers and electron-withdrawing ortho-qui-
none methides generated in situ (Scheme 1b).

We initially investigated the reaction of 5-nitrosalicylal-
dehyde (1a) with 2-(4-methylphenyl)acetaldehyde dimeth-
yl acetal (8a) using Lewis and Brønsted acid catalysts in var-
ious solvents at 40 °C. While a soft Lewis acid catalyst gave
no product (Table 1, entry 1), the use of Sc(OTf)3, a hard
Lewis acid catalyst, afforded the desired cycloadduct 6a
(entry 3). Although p-TsOH·H2O and HBF4·OEt2 gave low
yields (entries 4 and 5), a stronger Brønsted acid, TfOH,
smoothly led to the formation of the corresponding product
in high yield (dr 30:1, entry 6).8 The reaction in a medium
polar solvent such as 1,2-dichloroethane (DCE) and tetrahy-
drofuran (THF), afforded good yields (entries 7 and 8). A

high polar solvent, CH3CN, was also suitable for the reaction
(entry 9). Decreasing the amount of catalyst did not im-
prove the yield (entry 10). Interestingly, the reaction with-
out trimethyl orthoformate also gave the desired product in
63% yield (entry 11). Clearly, an acetal exchange reaction
between salicylaldehyde 1a and acetal 8a proceeded to gen-
erate o-QM and vinyl ether, while trimethyl orthoformate
effectively generated o-QM from salicylaldehyde. The best
yield of the desired product was achieved with 1a (0.25
mmol), 8a (0.75 mmol), CH(OMe)3 (2.0 equiv), TfOH (20
mol%) in toluene at 40 °C (entry 6).

Table 1  Optimization of the Reaction Conditionsa

With the optimal reaction conditions in hand, the gen-
erality of various salicylaldehydes and phenylacetaldehyde
dimethyl acetal was examined (Scheme 3). The phenylacet-
aldehyde dimethyl acetals possessing electron-donating
groups such as methyl, tert-butyl and methoxy groups af-
forded the target products 6a–c in good yields and diastere-
oselectivities. The substrates having halogen groups were
also suitable in the reaction (6d–f). The reaction of the par-
ent substrate phenylacetaldehyde dimethyl acetal proceed-
ed efficiently to give 6g. Fortunately, a good crystal for X-
ray analysis was obtained in this case. The relative stereo-
chemistry of the major diastereomer of isoflavan 6g was
determined by X-ray crystal structure analysis to be

Scheme 1  The synthesis of isoflavanes
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Entry Solvent Catalyst Yield (%)

 1 toluene Pd(OAc)2 N.R.

 2 toluene BF3·OE2 N.R.

 3b toluene Sc(OTf)3 12

 4b toluene p-TsOH·H2O 12

 5b toluene HBF4·OEt2  9

 6 toluene TfOH 84

 7 DCE TfOH 82

 8 THF TfOH 73

 9 CH3CN TfOH 74

10c toluene TfOH 73

11d toluene TfOH 63
a All reactions were carried out with 1a (0.25 mmol), 8a (0.75 mmol), 
CH(OMe)3 (2.0 equiv), catalyst (20 mol%) in solvent (2.5 mL) at 40 °C for 1 h.
b Yield based on 1H NMR spectra.
c The amount of TfOH was 10 mol%
d Without CH(OMe)3
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(2RS,3RS,4SR), as shown in Figure 2.9 When salicylalde-
hydes bearing the strong or medium electron-withdrawing
groups such as 5-tosyloxy, 5-nitrile, 5-methoxycarbonyl
and 5-bromo were used, the corresponding products 6h–k
were obtained in good yields. It is reported that 6-cyanoiso-
flavan exhibits antirhinovirus activity.3a While 4-tosyloxy,
4-bromo and parent salicylaldehydes gave high yields (6l
and 6m), diastereoselectivities were clearly decreased com-
pared with 5-substituted salicylaldehydes. When salicylal-
dehyde having electron-donating groups were used, mod-
erate yields and low diastereoselectivities were observed
(6o and 6p). According to the previous studies,10 4-hy-
droxy- or 4-methoxy-chromanes possessing electron-do-

nating groups usually suffer racemization at the 4-position
under acidic conditions. Therefore, 6o and 6p should be ob-
tained with lower diastereoselectivities through racemiza-
tion at 4-position. The reaction was well suitable for the use
of electron-withdrawing salicylaldehydes and various phe-
nylacetaldehyde dimethyl acetals.

A proposed mechanism for the present reaction is
shown in Scheme 4. o-QM C is generated from salicylalde-
hyde A and trimethyl orthoformate via acetal B under acidic
conditions. Elimination of methanol from dimethyl acetal D
generates methyl styryl ether E. According to previous
studies, [4+2] cycloaddition of vinyl ethers would be
through a concerted reaction mechanism.11 Based on the
above, the electron-rich vinyl ether E would react with o-
QM C through a concerted reaction to give the desired cyclic
product G with excellent regioselectivity.2b,2c As shown in
Scheme 2, high diastereoselectivities were observed when
salicylaldehydes having 5-substituted electron-withdraw-
ing groups were used, and it is considered that the observed
stereochemistry would be achieved via an endo transition-
state intermediate.11

In conclusion, we have developed a highly selective one-
pot synthesis of polysubstituted isoflavanes using styryl
ethers and electron-withdrawing ortho-quinone methides
generated in situ. When phenylacetaldehyde dimethyl ac-
etals were reacted with salicylaldehydes, the highly regio-
selective reaction proceeded to afford the corresponding
isoflavanes in high yields. In particular, a variety of salicyl-

Scheme 3  The reaction of salicylaldehydes 1 with phenylacetaldehyde dimethylacetal 8. The diastereomeric ratio was based on 1H NMR spectroscopic 
analysis. a 24 h, b 2 h, c room temperature
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Figure 2  ORTEP view of isoflavan 6g9
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aldehydes having electron-withdrawing groups with phe-
nylacetaldehyde dimethyl acetals gave good regio- and di-
astereoselectivities. The present reaction provides versatile
access to functionalized isoflavanes, and constitutes a use-
ful tool for the synthesis of biologically active molecules.

Supporting Information

Supporting information for this article is available online at
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