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ABSTRACT: Mycophenolic acid (MPA) and its morpholino ester prodrug mycophenolate mofetil (MMF) are widely used in solid
organ transplantation. These drugs prevent rejection due to their potent inhibition of inosine-5′-monophosphate dehydrogenase
(IMPDH), an enzyme vital for lymphocyte proliferation. As a strategy to provide localized immunosuppression in cell
transplantation, four mycophenolic acid prodrugs designed to release MPA by two distinct mechanisms were synthesized and
characterized. A nitrobenzyl ether prodrug was effectively converted to MPA upon exposure to bacterial nitroreductase, while a
propargyl ether was converted to the active drug by immobilized Pd0 nanoparticles. In vitro, both prodrugs were inactive against
IMPDH and exhibited reduced toxicity relative to the active drug, suggesting their potential for providing localized
immunosuppression.
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The transplantation of hepatocytes or pancreatic islet cell-
clusters are two promising approaches to address

impaired/missing liver function or Type-1 diabetes, respec-
tively. However, these cellular transplants encounter significant
challenges due to the challenging tissue isolation procedures
and the complete exposure of donor cells to host tissues and
blood. Our group is exploring strategies to protect these
transplants by the local delivery of potent small-molecule
immunomodulators. We recently demonstrated that a prodrug
of the potent toll-like receptor 4 (TLR4) inhibitor TAK-2421,2

can be covalently immobilized on islet surfaces without adverse
impact on the tissue viability or function. Slow post-transplant
release of the active drug from the transplant tissue can
suppress innate inflammation and significantly improved
outcomes in a murine model of islet transplantation.3 More
recently, we have envisioned a second strategy for localized
drug delivery, wherein immobilized catalysts are cotrans-
planted with graft tissue in order to activate reactive prodrugs
(Figure 1). In that regard, we recently reported TAK-242
prodrugs that are activated by either Pd0 nanoparticles or
nitroreductase.4

Subsequent to the acute innate inflammation during the
early peri-transplant period, transplanted tissue is also subject
to rejection by the innate and adaptive immune system.
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Figure 1. Two strategies for transplant-localized drug delivery. (A)
Covalently modified tissue slowly releases active drug. (B) Systemi-
cally administered prodrug is activated by localized catalysts.
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Mycophenolic acid (MPA, 1), and its morpholino ester
prodrug mycophenolate mofetil (MMF, 2, CellCept) (Figure
2) are widely used in solid organ transplantion to prevent

rejection,5,6 as they reduce lymphocyte proliferation by the
inhibition of inosine-5′-monophosphate dehydrogenase
(IMPDH).7 We now report the synthesis and characterization
of mycophenolic acid prodrugs for localized immunosuppres-
sion in cell transplantation.
Prodrug derivatives of MPA have been previously reported.

The ester prodrug mycophenolate mofetil (2) is rapidly
converted to MPA (1) by serum and liver esterases, and while
it provides improved oral bioavailability it does not afford
opportunity for localized delivery.8 More recently, a clickable,
acid labile MPA prodrug was reported for the modification of
hydrogels, which could be implanted to provide a localized
release of the active drug upon exposure to a lower pH at a site
of inflammation.9 In contrast, our strategy for localized delivery
involves the systemic administration of prodrug and its
localized activation at a target site. We chose to evaluate two
complementary approaches for prodrug activation - bioorthog-
onal organometallic (BOOM) chemistry,10−13 where metal
catalysts reveal the active drug, and directed enzyme prodrug
therapy (DEPT),14−20 which utilizes exogenous enzymes for
prodrug activation.
For the preparation of BOOM-reactive prodrugs we chose to

explore propargyl derivatives of MPA, which were anticipated
to release the parent drug (and hydroxyacetone) upon
exposure to Pd nanoparticles embedded in TentaGel
resin.21−24 Accordingly, MPA was reacted with propargyl
bromide and DBU, readily affording the bis-propargyl prodrug
3 (Scheme 1). Aqueous hydrolysis of ester 3 then gave the
monopropargyl derivative 4 in good yield. We also prepared p-

nitrobenzyl (pNB) protected prodrugs, which could be
converted to the active compound by nitroreductase, a
bacterial enzyme commonly used in DEPT.25,26 For these
derivatives, enzymatic reduction of the prodrug nitro group is
followed by a 1,6-elimination, releasing the active com-
pound.27,28 Reaction of MPA with p-nitrobenzyl chloride and
triethyl amine provided the bis-pNB prodrug 5 (Scheme 1),
which was readily hydrolyzed, yielding mono-pNB derivative 6
in good yield.
With MPA derivatives 3−6 in hand, their suitability as

prodrugs was first examined. First, these compounds were
evaluated for residual IMPDH2 activity (MPA inhibits both
isoforms of IMPDH) using a standard in vitro assay. In this
assay, while 10 μMMPA completely inhibits the enzyme, none
of the derivatives showed significant activity at this
concentration (Figure 3).

The acute toxicity of the new compounds was evaluated in
vitro in a pancreatic β-cell model (MIN6 cell line29) and in
primary human hepatocytes (Figure 4). Briefly, cells were
cultured in the presence of the various new compounds or
MPA for 48 h and then dehydrogenase activity was determined
with a colorimetric assay (CCK8). In the β-cell model MPA
was relatively toxic (EC50 = 0.6 μM), while prodrug 6 was the
lone prodrug exhibiting toxicity, albeit at a 40-fold higher
concentration (EC50 = 24.0 μM). In human hepatocytes, the

Figure 2. Structures of mycophenolic acid 1 and ester prodrug 2.

Scheme 1. Synthesis of MPA Prodrugs 3−6

Figure 3. IMPDH2 activity assay. IMPDH2 was treated with MPA
(1) and derivatives 3−6 and stimulated with inosine-5′-mono-
phosphate and nicotinamide adenine dinucleotide (NAD+). Con-
version of NAD+ to NADH was monitored at 340 nm.
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two acid prodrugs (4 and 6) were the least toxic (EC50 values
of 20.1 and 14.4 μM, respectively). The toxicity of the two
ester prodrugs 3 and 5 (EC50 values of 6.7 and 8.3 μM,
respectively) were more similar to the parent drug (EC50 = 5.9
μM).
Before characterizing the conversion of the prodrugs to

MPA we evaluated the aqueous stability of these compounds in
the absence of the activating catalysts. Not surprisingly, the
disubstituted esters 3 and 5 slowly hydrolyzed in neutral
phosphate buffered saline (PBS), while the monosubstituted
ethers 4 and 6 were stable under these conditions (Figure 5).
Due to the instability of the disubstituted compounds, coupled

with their poor aqueous solubility, ethers 4 and 6 were selected
for further evaluation as catalyst activated prodrugs.
We then evaluated the release of active MPA from prodrugs

4 and 6 using catalysts immobilized on functionalized 30 μm
polystyrene beads. For the activation of propargyl ether 4 we
utilized the same Pd0-modifiedTentaGel resins13 as in our
previous studies on propargyl-substituted TAK-242 prodrugs.3

For activating the nitrobenzyl ether 6 we conjugated
nitroreductase to amino terminated polystyrene beads via a
simple reductive amination procedure,30 Using Pd0-modified
beads (1 mg/mL, PBS w/5% DMSO, 37 °C), propargyl
prodrug 4 underwent clean conversion to the parent drug
MPA (1) over ∼2 days (Figure 6). Likewise, enzymatic

activation of nitrobenzyl prodrug 6 with nitroreductase beads
(2 mg/mL, PBS, 5% DMSO, 37 °C) in the presence of the
reducing cofactor β-nicotinamide adenine dinuclotide
(NADH, 1 mg/mL) led to the efficient production of free
MPA (1). The reduced amine intermediate was not observed,
suggesting that the 1,6-elimination was rapid. We found that
the resins could be reused, and quantified the MPA release
from 4, showing that the conversion was clean and quantitative
(see Supporting Information). Nitrobenzyl prodrug 6 was not
unmasked by treatment with Pd0-modified beads, demonstrat-
ing the specificity of the activation chemistry.
In summary, we have synthesized four mycophenolic acid

derivatives and characterized the two most promising
compounds as prodrugs for localized immunosuppression.
The prodrugs do not exhibit IMPDH2 activity characteristic of
the parent drug, show less in vitro toxicity than the parent drug
in two relevant cell lines, and are stable in buffer but rapidly
converted to MPA by treatment with the appropriate solid-
supported catalyst. We are presently evaluating the use of these
prodrugs for the protection of islet and hepatocyte31 grafts.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge on the
ACS Publications Web site. The Supporting Information is
available free of charge at https://pubs.acs.org/doi/10.1021/
acsmedchemlett.1c00079.

Full experimental details for the synthesis of prodrugs
3−6, HPLC measurement of prodrug hydrolysis,

Figure 4. Toxicity was assessed for the five compounds by using
CCK-8 assay on (a) MIN6 cells and (b) human hepatocytes.

Figure 5. Aqueous stability of prodrugs 3−6 assessed via incubation
in PBS (pH 7.4, 5% DMSO) at 37 °C in the absence of catalyst.

Figure 6. Catalyzed release of mycophenolic acid (1) was determined
by incubating 4 and 6 in PBS (pH 7.4, 5% DMSO) with the
appropriate solid supported catalyst: (a) prodrug 4 with Pd0; (b)
prodrug 6 with nitroreductase and NADH.
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catalytic activation and release of parent drug, nitro-
reductase immobilization, IMPDH2 activity assay, and
cell toxicity assays (PDF)
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