Ligand Design

Single Oxygen-Atom Insertion into P–B Bonds: On- and Off-Metal Transformation of a Borylphosphine into a Borylphosphinite

Jonathan A. Bailey, Hazel A. Sparkes, and Paul G. Pringle*^[a]

Abstract: An oxygen atom is selectively inserted into the P–B bond of a borylphosphine (L₁) by reaction with Me₃NO to afford the corresponding borylphosphinite (L₂). This transformation can also be effected when L₁ is coordinated to rhodium. The v(CO) values for *trans*-[RhCl(CO)(L)₂] reveal very different electronic properties for coordinated L₁ and L₂ which translate into the strikingly different performances of the complexes [RhCl(L)(cod)] (L=L₁ or L₂, cod=1,5-cyclooctadiene) in hydrosilylation and hydroboration catalysis.

The varied chemistry of phosphinoboranes can be rationalised by reference to the P–B bonding, which can be described by the Lewis structures I (phosphinoborane) and II (borylphosphine) shown below. The P–B bond order and its reactivity depend on the stereoelectronic effects of the P- and B-substituents.^[1] Phosphinoboranes have been shown to heterolytically cleave H₂,^[2] dehydrogenate amine-boranes^[3] and react with compounds containing C=N, C=O and C=C functionalities.^[4] Furthermore, they have the capacity to ligate as κ^1 -P^[1a] or η^2 -P=B^[5] and we have shown that they can be ligands for efficient homogeneous alkene hydrogenation catalysis.^[6]

Here we report the insertion of an oxygen atom (from O₂ or *N*-oxides) into a P–B bond to convert a borylphosphine into a borylphosphinite, which have contrasting σ -donor/ π -acceptor ligand properties and show very different performance in catalysis. The insertion of an oxygen atom into single bonds is rare^[7] outside the realm of monoxygenases.^[8] Peroxides will insert O atoms into the C–C bond of ketones to give esters (the Bayer–Villiger reaction^[9]) and amine-oxides^[10] have been used for oxygen insertion into Si–Si,^[11] C–B,^[12] B–B^[13] and B–Ru^[14] bonds. The insertion of S and Se atoms into P–B bonds

Chem. Eur. J. 2015, 21, 5360 - 5363

Wiley Online Library

of 1-phospha-2-bora-acenaphthene has been previously reported^[15] but, in other cases, elemental chalcogens have been shown to react with compounds containing P–B bonds to give P^{V} products.^[16]

The borylphosphine L_1 was prepared in quantitative yield from the chlorosilane elimination reaction^[6, 17] shown in Scheme 1; L_1 has been fully characterised (see the Supporting

Scheme 1. Synthesis of ligands L_1 and L_2 and complexes 1, 2, 4 and 5 via off-metal and on-metal routes. Reagents: i) [RhCl(CO)₂]₂; ii) [RhCl(cod)]₂.

Information for the data), including its ³¹P NMR spectrum, which shows a signal at -48.4 ppm that is broad ($w_{1/2}$ =67 Hz) due to unresolved coupling to quadrupolar ¹¹B. Treatment of L₁ with one equivalent of Me₃NO (TMAO) led to complete conversion to a product assigned structure L₂ on the basis of the following NMR data. The ³¹P NMR signal for L₂ is a sharp singlet (consistent with the loss of ¹J_{PB} coupling) at 134.8 ppm, a chemical shift that is similar to that of the phosphinite *i*Pr₂POPh (149 ppm).^[18] The ¹¹B NMR chemical shift of L₂ is 22.2 ppm (compared with 32.0 for L₁).

Solid TMAO is a convenient reagent for the conversion of L_1 to L_2 because it is easy to control the stoichiometry and the volatile NMe₃ by-product is readily removed, although the

[[]a] J. A. Bailey, Dr. H. A. Sparkes, Prof. Dr. P. G. Pringle School of Chemistry, University of Bristol Cantock's Close, Bristol, BS8 1TS (UK) E-mail: paul.pringle@bristol.ac.uk

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201500378.

CHEMISTRY A European Journal Communication

same transformation was observed in the reaction of \boldsymbol{L}_1 with $\boldsymbol{O}_2\!.$

Thus, when a CH₂Cl₂ solution of L_1 was stirred under 2 atm of O₂ for 2 days, unexpectedly the main species present (ca. 80% according to ³¹P NMR spectroscopy) was unreacted L_1 and, of the several products detected, L_2 was prominent (see the Supporting Information for the ³¹P NMR spectrum of the reaction mixture).

The complexes *trans*-[RhCl(CO)(L)₂] (1, $L = L_1$) and (2, $L = L_2$) were prepared (see Scheme 1) in order to compare the donor characteristics of the two ligands (see Table 1). IR spectroscopy

Table 1. $IR^{[a]}$ and ${}^{31}P NMR^{[b]}$ data for the complexes <i>trans</i> -[RhCl(CO)(L) ₂].							
Complex	Ligand	ν (CO) [cm ⁻¹]	$\delta_{\scriptscriptstyle P}$ [ppm]	¹ J _{PRh} [Hz]			
1	L ₁	1956	-4.9	pprox 110 (br)			
2	L ₂	1977	145.1	125			
3	L ₃	1984	161.8	134			
[RhCl(CO)(<i>i</i> Pr ₂ PPh) ₂] ^[19]	<i>i</i> Pr₂PPh	1965	42.6	124.4			
[a] Measured in CH_2CI_2 . [b] Measured in CD_2CI_2 (for 1 and 2) or $CDCI_3$ (for							

i and *trans*-[RhCl(CO)(iPr_2PPh_2]).

revealed a difference of 21 cm⁻¹ between the v(CO) stretching frequencies for 1 (1956 cm⁻¹) and 2 (1977 cm⁻¹), consistent with L₁ being a much more electron-donating ligand than L₂. Comparison of these values to those for the analogues *trans*-[RhCl(CO)(L)₂] for L=*i*Pr₂PPh (1965 cm⁻¹)^[19] and L=*i*Pr₂POPh (L₃) (**3**, 1984 cm⁻¹; see the Supporting Information for experimental details) shows that, as previously demonstrated,^[17] the naphthalene-derived boryl fragment is more electron donating than phenyl. The ³¹P NMR spectra of **1** and **2** were markedly different: the signal for **1** is a doublet at -4.9 ppm (¹J_{PRh} \approx 110 Hz), which is broad due to the unresolved ¹J_{PB} coupling, whereas the signal for **2** is a sharp doublet at 145.1 ppm (¹J_{PRh} = 125 Hz).

Complexes 1 and 2 have been characterised crystallographically and as is clear from Figure 1, the conformations adopted in the solid state are quite different (B1-P1-P2-B2 and O1-P1-P2-O2 torsion angles of 96.2° and 143.8° in 1 and 2 respectively). The B–O bond lengths in 2 (1.385(3) and 1.379(3) Å) are typical of single bonds with little evidence of B–O π -overlap (cf. the B=O determined in an oxoborane was 1.304(2) Å^[20]).

It is of interest to compare the product of oxidation of secondary phosphines R₂PH with that of the boryl phosphine L₁. Oxidation of secondary phosphines gives P^V secondary phosphine oxides R₂P(=O)H as the major species in prototopic equilibrium with their P^{III} hydroxyphosphine R₂POH tautomers. In the oxidation of L₁ by TMAO, no P^V products were detected. The results of oxidation of coordinated L₁ described below show that a mechanism in which the phosphorus lone pair is not involved in the oxygenation of L₁ to give L₂ is feasible.

Addition of two equivalents of TMAO to a solution of complex 1 in CH_2Cl_2 gave 2 cleanly and in less than 5 min according to ³¹P NMR spectroscopy. The chemoselectivity of this oxidation for the P–B bond was a surprise considering the complex has a low-valent Rh^I centre as well as a coordinated CO,

Figure 1. Thermal ellipsoid (50% probability) plot of **1** (left) and **2** (right), omitting all hydrogen atoms. Selected bond lengths [Å] and angles [°] for complex 1: Rh1–C33 1.7967(15), Rh1–P1 2.3333(4), Rh1–P2 2.3574(4), Rh1–C11 2.3888(3), P1–B1 1.9585(16), P2–B2 1.9533(16), P1–C11 1.8584(14), P1–C14 1.8526(15), P2–C27 1.8634(15), P2–C30 1.8562(15), N1–B1 1.415(2), N2–B1 1.406(2), N3–B2 1.410(2), N4–B2 1.4129(19), O1–C33 1.1548(18), B1-P1-P2-B2 96.2. Complex **2**: Rh1–C33 1.813(2), Rh1–P1 2.3176(6), Rh1–P2 2.3278(6), Rh1–C11 2.3670(6), P1–O1 1.6254(17), P2–O2 1.6183(16), P1–C11 1.827(2), P1–C14 1.837(2), P2–C27 1.838(2), P2–C30 1.827(2), C33–O3 1.1523(3), O1–B1 1.385(3), O2–B2 1.379(3), B1–N1 1.416(3), N2–B1 1.411(3), N3–B2 1.415(3), N4–B2 1.417(3), O1-P1-P2-O2 143.8.

which might be expected to react with TMAO to generate coordinative unsaturation by release of CO_2 .^[21] The facility with which **1** is converted to **2** shows that the P lone pair need not be involved in the oxygenation of the P–B bonds of L_1 and leads to the mechanism suggested in Scheme 2, in which

Scheme 2. Suggested mechanism for the on-metal oxygen insertion into 1 and 4.

a Lewis acid-base adduct is the intermediate; this mechanism is reminiscent of that suggested by Yamashita et al.^[14] for the oxygenation of a B–Ru bond with morpholine-*N*-oxide (NMO).

The consequences of the different ligating properties of borylphosphine L_1 and borylphosphinite L_2 , in catalysis have been investigated by comparing the performance of complexes of the type $[RhCl(L)(cod)]^{[22]}$ (cod = 1,5-cyclooctadiene) in hydrosilylation and hydroboration catalysis (see below). The reaction of L_1 or L_2 with $[RhCl(cod)]_2$ produced [RhCl(L)(cod)] (4, $L = L_1$; 5, $L = L_2$). Complex 5 was also prepared quantitatively by the addition of TMAO to 4 (see Scheme 1 and the Supporting Information for the characterising data). Crystals of 4 and 5 suitable for X-ray diffraction were grown from CH_2Cl_2 /pentane and CH_2Cl_2 /hexane respectively and their crystal structures are

Figure 2. Thermal ellipsoid (50% probability) plot of 4 (left) and 5 (right), omitting all hydrogen atoms. For 5, only one orientation of the disordered *i*Pr groups attached to P are shown for clarity. Selected bond lengths [Å] for complex 4: Rh1–P1 2.3498(9), Rh1–Cl1 2.3775(9), P1–B1 1.962(4), P1–C11 1.874(3), P1–C14 1.873(3), N1–B1 1.404(5), N2–B1 1.407(5). Complex 5: Rh1–P1 2.261(3), Rh1–Cl1 2.397(2), P1–O1 1.624(7), P1–C11 1.841(11), P1–C14 1.865(11), O1–B1 1.373(14), N1–B1 1.413(10), N2–B1 1.417(10).

shown in Figure 2. The ³¹P NMR signal for **4** is a singlet at -16.2 ppm with the expected ¹⁰³Rh coupling subsumed by the broadness of the signal ($w_{1/2} = 285$ Hz), whereas a sharp doublet at 152.3 ppm (¹J_{PRh} = 174 Hz) was observed for **5** (Figure 3).

Figure 3. ³¹P{¹H} spectra of 4 (bottom) and 5 (top) in CD₂Cl₂.

The catalytic activities of complexes **4** and **5** were measured for the hydrosilylation and hydroboration of 4-methoxystyrene. For the hydrosilylation reactions (Scheme 3), solutions of 4-methoxystyrene (1 eq), Ph_3SiH (1.05 eq) and the catalyst (2 mol%) in C_6D_6 were heated at 60 °C for 6 h and the conversions monitored by ¹H NMR spectroscopy; the results are given in Table 2.

Scheme 3. Hydrosilylation of 4-methoxystyrene with Ph₃SiH.

Chem. Eur. J. 2015, 21, 5360-5363

www.chemeurj.org

5362

Table 2. Hydrosilylation of 4-methoxystyrene with Ph ₃ SiH.					
Pre-catalyst ^[a]	Conversion [%]	А	В	с	
4	8	4	1	3	
5	96	53	20	23	
6	6	5	< 1	1	
[a] Conditions: 60°C C.D. 6h alkono/cilano ratio: 1:105.2 mol % pro cat					

[a] Conditions: 60 °C, $C_6 D_{6'}$ 6 h, alkene/silane ratio: 1:1.05, 2 mol% pre-catalyst. Conversion to products monitored by ¹H NMR spectroscopy.

The conversion obtained with the L_2 complex 5 was 96% compared with only 8% with the L_1 analogue 4. This large difference in activity prompted us to screen the analogous complex [RhCl(*i*Pr₂POPh)(cod)] (6) featuring the ligand *i*Pr₂POPh (L_3) (see the Supporting Information for details). Complex 6 was tested under the same catalysis conditions and just 6% conversion was observed which shows that the boryloxy ligand L_2 has considerable advantages in terms of catalyst activity over both L_1 and L_3 for this reaction.

The Rh-catalysed hydrosilylation of olefins is often accompanied by numerous by-products of isomerisation, oligomerisation, polymerisation, dehydrogenative silylation and hydrogenation of the alkene.^[23] In our case, three major products were obtained: the expected hydrosilylated product **A**, the hydrogenated species **B** and the dehydrogenative silylation product **C**. In each case, the hydrosilylated product **A** was the major product with a selectivity of over 50% with the productive catalyst **5**.

The hydroboration of *p*-methoxystyrene with pinacol borane (HBPin, see Scheme 4) is catalysed by complexes **4–6** (Table 3). Complex **5** is very active and highly selective for the linear product **D** in contrast to the less active and unselective catalyst **4**. The POC catalyst **6** showed similarly high activity to the POB catalyst **5** but interestingly the selectivity is switched to the branched product **E**. It is known that the hydroboration of styrene derivatives can be steered to Markovnikov and anti-

Scheme 4. Hydroboration of 4-methoxystyrene with pinacolborane (HBPin).

Table 3. Hydroboration of 4-methoxystyrene with pinacolborane.						
Pre-catalyst ^[a]	Conversion [%]	D	E	Other ^[b]		
4	53	20	17	16		
5	>99	80	4	15		
6	>99	6	77	16		

[a] Conditions: RT, $C_6 D_{6^{r}}$ 2 h, alkene/borane ratio: 1:1.1, 2 mol% pre-catalyst. Conversion to products monitored by ¹H NMR spectroscopy. [b] Several unidentified by-products (see ¹H NMR spectra in the Supporting Information).

CHEMISTRY A European Journal Communication

Markovnikov selectivities by modifications of the catalyst;^[24] the very different results obtained with L_1 , L_2 and L_3 for this reaction reflect their fundamentally different ligating properties.

It has been shown that a single oxygen atom insertion into the P–B bond of L₁ occurs upon reaction with TMAO to give L₂, which is a new type of ligand that we have called a borylphosphinite to stress the relationship to phosphinites, the well-known hydrocarbyl analogues. The P–B oxygenation can be performed on free or bound ligand L₁. This O insertion transforms the ligand from an electron-rich to an electron-poor donor in one step; a similar process with conventional P–C ligands is inconceivable. The large difference detected in the ligand binding properties of L₁ and L₂ is reflected in the catalytic activity and selectivity of their complexes 4 and 5 in the catalytic hydrosilylation and hydroboration of *p*-methoxystyrene. The clean insertion of O into a B–P bond is a new reaction with the potential to be general.

Acknowledgements

We thank Marten Ploeger for his experimental input and the Engineering and Physical Sciences Research Council for support.

Keywords: oxygen insertion • phosphinoboranes hydrosilylation • hydroboration • phosphane ligands

- a) J. A. Bailey, P. G. Pringle, *Coord. Chem. Rev.* 2015, DOI: 10.1016/ j.ccr.2015.02.001 and references therein; b) H. H. Karsch, G. Hanika, B. Huber, K. Meindl, S. Koenig, C. Krueger, G. Mueller, *J. Chem. Soc. Chem. Commun.* 1989, 373–375; c) D. C. Pestana, P. P. Power, *J. Am. Chem. Soc.* 1991, *113*, 8426–8437; d) R. T. Paine, H. Noeth, *Chem. Rev.* 1995, *95*, 343–379; e) P. P. Power, *Chem. Rev.* 1999, *99*, 3463–3504; f) R. C. Fischer, P. P. Power, *Chem. Rev.* 2010, *110*, 3877–3923.
- [2] S. J. Geier, T. M. Gilbert, D. W. Stephan, J. Am. Chem. Soc. 2008, 130, 12632–12633.
- [3] S. J. Geier, T. M. Gilbert, D. W. Stephan, *Inorg. Chem.* 2011, *50*, 336–344.
 [4] J. M. Breunig, A. Hübner, M. Bolte, M, Wagner, H.-W. Lerner, *Organometallics* 2013, *32*, 6792–6799.
- [5] A. Amgoune, S. Ladeira, K. Miqueu, D. Bourissou, J. Am. Chem. Soc. 2012, 134, 6560-6563.

- [6] J. A. Bailey, M. F. Haddow, P. G. Pringle, Chem. Commun. 2014, 50, 1432– 1434.
- [7] a) M. Shieh, C.-H. Ho, W.-S. Sheu, H.-W. Chen, J. Am. Chem. Soc. 2010, 132, 4032–4033; b) C. Cristóbal, E. Álvarez, M. Paneque, M. L. Poveda, Organometallics 2013, 32, 714–717.
- [8] H. Leisch, K. Morley, P. C. K. Lau, Chem. Rev. 2011, 111, 4165-4222.
- [9] G. J. ten Brink, I. W. C. E. Arends, R. A. Sheldon, Chem. Rev. 2004, 104, 4105–4124.
- [10] a) H.-J. Knölker, J. Prakt. Chem./Chem.-Ztg. 1996, 338, 190-192; b) A. Albini, Synthesis 1993, 1993, 263-277.
- [11] H. Sakurai, M. Kira, M. Kumada, Bull. Chem. Soc. Jpn. 1971, 44, 1167– 1167.
- [12] J. A. Soderquist, M. R. Najafi, J. Org. Chem. 1986, 51, 1330-1336.
- [13] a) B. Thiele, P. Paetzold, U. Englert, *Chem. Ber.* 1992, *125*, 2681–2686;
 b) S. Bae, M. K. Lakshman, *J. Org. Chem.* 2008, *73*, 1311–1319; c) H. P. Kokatla, P. F. Thomson, S. Bae, V. R. Doddi, M. K. Lakshman, *J. Org. Chem.* 2011, *76*, 7842–7848.
- [14] T. Miyada, M. Yamashita, Organometallics 2013, 32, 5281-5284.
- [15] A. Tsurusaki, T. Sasamori, N. Tokitoh, Chem. Eur. J. 2014, 20, 3752-3758.
- [16] a) P. Kölle, H. Nöth, R. T. Paine, *Chem. Ber.* **1989**, *122*, 423–426; b) H. Nöth, S. Staude, M. Thomann, R. T. Paine, *Chem. Ber.* **1993**, *126*, 611–618; c) K.-C. Schwan, A. Y. Timoskin, M. Zabel, M. Scheer, *Chem. Eur. J.* **2006**, *12*, 4900–4908; d) H. Nöth, W. Schrägle, *Chem. Ber.* **1964**, *97*, 2218–2229.
- [17] J. A. Bailey, M. Ploeger, P. G. Pringle, Inorg. Chem. 2014, 53, 7763-7769.
- [18] R. B. Bedford, S. L. Hazelwood, P. N. Horton, M. B. Hursthouse, Dalton Trans. 2003, 4164–4174.
- [19] D. B. Grotjahn, X. Zeng, A. L. Cooksy, W. S. Kassel, A. G. DiPasquale, L. N. Zakharov, A. L. Rheingold, *Organometallics* 2007, 26, 3385 3402.
- [20] D. Vidovic, J. A. Moore, J. N. Jones, A. H. Cowley, J. Am. Chem. Soc. 2005, 127, 4566–4567.
- [21] a) W. Hieber, A. Lipp, Chem. Ber. 1959, 92, 2085–2088; b) T.-Y. Luh, Coord. Chem. Rev. 1984, 60, 255–276.
- [22] a) W. Duczmal, W. Urbaniak, B. Marciniec, J. Organomet. Chem. 1986, 317, 85–92; b) B. Marciniec, W. Duczmal, W. Urbaniak, E. Śliwińska, J. Organomet. Chem. 1990, 385, 319–327; c) K. Ruhland, P. Gigler, E. Herdtweck, J. Organomet. Chem. 2008, 693, 874–893; d) B. Natarajan, N. Jayaraman, J. Organomet. Chem. 2011, 696, 722–730; e) E. Tomás-Mendivil, R. García-Álvarez, C. Vidal, P. Crochet, V. Cadierno, ACS Catal. 2014, 4, 1901–1910.
- [23] B. Marciniec, Coord. Chem. Rev. 2005, 249, 2374-2390.
- [24] a) K. Burgess, M. J. Ohlmeyer, *Chem. Rev.* **1991**, *91*, 1179–1191; b) I. Beletskaya, A. Pelter, *Tetrahedron* **1997**, *53*, 4957–5026; c) C. M. Crudden, D. Edwards, *Eur. J. Org. Chem.* **2003**, *2003*, 4695–4712; d) A.-M. Carroll, T. O'Sullivan, P. Guiry, *Adv. Synth. Catal.* **2005**, *347*, 609–631.

Received: January 29, 2015 Published online on February 20, 2015

www.chemeurj.org