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A series of fluorinated styrylbenzene derivatives were synthesized by the Mizoroki–Heck reaction using
phosphine-free catalytic conditions or by adopting the one-pot Wittig–Heck reaction sequence. The
fluorinated styrylbenzenes were converted into polyaromatic hydrocarbons such as phenanthrenes,
[4]helicenes, and benzo[ghi]perylene by a modified photocyclization procedure involving I2-THF
condition.
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Fluorinated polyaromatic hydrocarbons (F-PHCs) play an
important role in understanding the action and the mechanism
of carcinogenesis of this class of compounds. Presence of fluorine
at different positions of the PHC helps to narrow the possible active
sites to bind with DNA1 or in modulating the carcinogenicity from
the remote sites2 or understanding other conformational parame-
ters.3 The study has established that certain F-PHCs have lower
biological activity due to the presence of fluorine at the crucial sec-
tion of the molecular framework and hence are less tumorigenic
than the parent PHCs.1b,4 The derivatives of F-PHCs also have a sig-
nificant role in the study of reactions of standard nucleophiles with
radical cations.5 Recently polyaromatic compounds such as hexa-
benzocoronenes with the presence of a number of fluorine substit-
uents have shown novel metastable molecular conformations.6

Besides these the F-PHCs have a wide range of applications in
molecular recognition, Host–Guest interactions, material chemis-
try, biologically important compounds,7 medicinal chemistry,8 li-
quid crystals,9 and crystal engineering.10

The area of chemistry of fluorinated organic molecules has been
a subject of immense research and several monograms and books
are now available for reference.11 Generally the fluorine atom is
introduced by various special fluorinating methods on the sub-
strate molecules.12 This approach of accessing F-PHCs often has a
drawback of formation of unwanted isomers.12c,13–16 The other op-
tion is to select an appropriately fluorinated starting molecule and
ll rights reserved.

kar).
build the structure of F-PHC and has been successfully demon-
strated in some cases.17–21

Recently we have developed phosphine-free catalyst systems
for efficient Mizoroki–Heck reaction22 as well as a one-pot
Wittig–Heck reaction sequence.23 One of the useful methods of
synthesis of phenanthrenes, benzo[c]phenanthrenes, and helicenes
is photocyclization of the corresponding stilbene derivatives.24 In
our earlier studies we have also developed an efficient modifica-
tion of this photocyclization procedure by replacing the conven-
tionally preferred propylene oxide as the acid scavenger with
readily available tetrahydrofuran.25 In this communication we
present a combination of these two methods to synthesize fluori-
nated polyaromatic hydrocarbons.

The Path A of Scheme 1 describes the basic Mizoroki–Heck
reaction to construct styrylbenzene derivative. The phosphine free
catalyst system [comprising of the in situ mixture of ligand
1-(a-aminobenzyl)-2-naphthols L and Pd(OAc)2] was screened
for standard Mizoroki–Heck reaction with fluorinated aromatic
bromo compounds 1, 7, or 10 with good conversions, Scheme 2.
The stilbenes obtained are isolated in excellent yield under the
experimental conditions.

However, this approach is limited to the availability of the cor-
responding styrene derivatives. To overcome this limitation we
had developed the one-pot approach of in situ synthesis of styrene
from the aldehydes by the Wittig reaction and utilized it for the
subsequent Mizoroki–Heck reaction.23 The advantage of this reac-
tion is the availability of a range of aldehydes with varied func-
tional groups and the elimination of the need of purification of
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Scheme 1. Synthesis of fluorinated stilbenes.
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Scheme 4. Photodehydrocyclization of fluorinated stilbenes.
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the styrene for the coupling reactions. This strategy utilizes two
aromatic moieties (Ar1CHO and Ar2X), to construct the stilbene
unit and offers a variety of two different fluorine or fluorine con-
taining substitutions as shown in Path B of Scheme 1.
A series of fluorine containing styrylbenzenes were synthesized
from corresponding aromatic aldehydes 3, 13, 15, and 17 via their
in situ conversion to styrenes and the subsequent Mizoroki–Heck
reaction with suitable aryl halide as outlined in Scheme 3. As an
example the reaction of 4-fluorobenzaldehyde 3 with one carbon
phosphonium salt (Ph3PCH3I) and base will produce 4-fluorosty-
rene 4, which will undergo in situ Mizoroki–Heck reaction with
1-bromo-4-fluorobenzene 1 to form 4,40-difluoro stilbene 5 in
moderate yield. Although the overall yields of such approach are
slightly lower as the conditions are not currently fully optimized,
this path offers wider scope for easy access to a variety of fluori-
nated stilbenes.

The standard method of photodehydrocyclization of stilbene in
the presence of iodine as the oxidant produces phenanthrene and
hydriodic acid, HI. Since this acid needs to be neutralized usually
propylene oxide is used as an acid scavenger. However, the use
of propylene oxide requires slight care as it has low boiling point
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Table 1 (continued)

No. Stilbene Derivative Cyclized product
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Conditions for photocyclization: iodine (1.1 equiv), THF (100 equiv), toluene, 125 W
HPMV lamp, 24 h.
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and proper cooling is necessary to prevent its loss during reaction.
We have developed a modified method of similar photodehydro-
cyclization utilizing commonly available tetrahydrofuran as a
readily available, less toxic acid scavenger with higher boiling
point for practical applications.25 The modified method is applied
for the photodehydrocyclization of fluorinated stilbenes for the
synthesis of corresponding fluorine containing phenanthrene
derivatives, Scheme 4.

The photolysis is performed with iodine and excess of THF in
degassed toluene under the irradiation of high pressure mercury
vapor lamp till the cyclization is complete. The cyclization in most
cases was complete in 24 h with excellent conversions as can be
seen from the examples listed in Table 1. The 1,3-dioxolane con-
taining derivative of stilbene 16 prepared from piperonal 15, on
photodehydrocyclization gave a linear product 29 instead of the
angular product due to the steric constraints.26 The fluorinated
helical PHCs are also important compounds and a set of fluorinated
[4]helicenes 30, 31, and 32 were prepared from the corresponding
styrylnaphthalenes 18, 19, and 20, respectively, in good chemical
yields. In all the three cases the angular cyclization occurred and
no linear products were detected.

Having established the conditions for the improved procedure of
photodehydrocyclization of fluorinated stilbenes it was envisaged
to apply this strategy for the construction of larger F-PHCs by
selecting fluorinated bis(stilbenes) or tris(stilbenes) as substrates.
With this aim a number of such conjugated compounds were syn-
thesized. The method of one-pot Wittig–Heck reaction developed
in our laboratory23 was extended for the synthesis of 1,4-bis(4-flu-
orostyryl)benzene 35.27 The process involved in situ synthesis of
divinylbenzene starting from terephthalaldehyde 33 and the Wittig
salt (Ph3PCH3I), which was trapped by the Mizoroki–Heck reaction
with p-bromofluorobenzene 1 (Scheme 5). The reaction furnished a
mixture of mono-Heck reaction product 34 and the expected dou-
ble Heck reaction product 35, the former was separated and further
subjected to Mizoroki–Heck conditions22 with iodobenzene to pre-
pare 1-(4-fluorostyryl)-4-styrylbenzene 36 in excellent yield. The
sample of 36 was subjected to the standard photocyclization condi-
tion, however the expected 2-fluoro[5]helicene 37 was not detected
but 5-fluorobenzo[ghi]perylene 38 was isolated in small amount.
Such type of further cyclization of [5]helicene is a common occur-
rence under photochemical conditions.19a,28

Synthesis of 35 by the above approach was less effective prob-
ably due to the polymerization and cross-linking of in situ formed
divinylstyrene. Another approach for its synthesis was investigated
where 4-fluorostyrene was in situ synthesized and subjected to a
double Mizoroki–Heck reaction with 1,4-dibromobenzene 39
(Scheme 6). This approach was a better option for accessing the de-
sired 1,4-bis(4-fluorostyryl)benzene 35.

Another route for the preparation of 2-fluoro[5]helicene was
investigated where 3-bromophenanthrene 43 was prepared from
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the phosphonium salt 41 via an intermediate 4-bromostilbene 42.
This bromophenanthrene 43 was subjected to another one-pot
Wittig–Heck reaction sequence to introduce fluorinated stilbene
derivative 44. However the photolysis of 44 also resulted in the for-
mation of 5-fluorobenzo[ghi]perylene 38 as a major product
(Scheme 7). It is noteworthy that photocyclization of distyrylben-
zene 36 as well as styrylphenanthrene 44 gave the same product
38 but the latter case was more efficient possibly due to the forma-
tion of a more stable diradical intermediate 44a.

In continuation with our efforts to construct highly conjugated
fluorinated molecules a combination of Wittig–Heck reaction was
performed on 4-fluorobenzaldehyde 3 to make in situ 4-fluorosty-
rene which was trapped by the triple Heck reaction with 1,3,5-trib-
romobenzene 45 (Scheme 8). The fluorinated tri-styrylbenzene 46
was isolated in all E form, but efforts to subject it to the photolysis
to construct trifluoro benzo[c]naphtha[2,1-p]chrysene29 were not
successful. Under the present conditions several unidentifiable
products were detected during the photochemical reaction of 46.

In this Letter we present our initial results for the synthesis of
fluorine containing styrylbenzene derivatives by the Mizoroki–
Heck reaction and the one-pot Wittig–Heck reaction sequence.
The fluorinated stilbene derivatives were then subjected to modi-
fied photodehydrocyclization reaction to efficiently prepare several
fluorinated polyaromatic hydrocarbons.30
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Mass (EI) 246.3 (100), 245.2 (93), 243.8 (80), 241.7 (15), 228.3 (20), 227.2 (20),
226.1(18), 225.2 (11), 121.9 (60), 113.1 (12), 112.1 (11), 110.1 (11), 98.7 (10).
IR (KBr) t 3046, 1684, 1598, 1499, 1429, 1357, 1289, 1247, 1216, 1199, 1176,
1124, 1010, 974, 885, 837, 784, 744 cm�1.

31. Ittah, Y.; Jerina, D. M. J. Fluorine Chem. 1980, 16, 137.
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