Synthesis of N,N-Disubstituted 1-Cyanocyclopropanecarboxamides

Kenji Yamagata,*^[a] Fumi Okabe,^[a] and Yoshinobu Tagawa^[a]

Keywords: Acetyl chloride / Cyclization / Cyclopropanes / Furans / Ring opening

2-(Disubstituted amino)-4,5-dihydro-3-furancarbonitriles $1\mathbf{a}-\mathbf{i}$ reacted with acetyl chloride to yield the corresponding ring-opening products $2\mathbf{a}-\mathbf{i}$. The cyclization of compounds $2\mathbf{a}-\mathbf{f}$ with bases gave the corresponding *N*,*N*-disubstituted 1cyanocyclopropanecarboxamides $3\mathbf{a}-\mathbf{c}$ and (*E*)-1-cyano-2phenylcyclopropanecarboxamides **3d–f**. The same compounds **3d–f** were also obtained by treatment of compounds **2g–i** with sodium methoxide.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003)

Introduction

Cyclopropane derivatives have been recognized as an important class of compounds found in natural and synthetic substances, with particularly significant applications in medicinal and agricultural chemistry.^[1,2] Hence, the synthetic organic chemistry of cyclopropane-containing compounds has been extensively explored.^[3] Ring cleavage by nucleophiles of cyclopropanes substituted at the same ring carbon by two electron-withdrawing groups has been known and studied in a variety of systems.^[4,5] Photolysis^[6-10] or thermolysis^[11-13] of dihydrofurans is known to produce cyclopropanes having one or two electron-withdrawing substituents. However, these methods have unsatisfactory yields, and this disadvantage has prompted us to develop a more efficient method. In the course of our studies on heterocyclic enamino nitriles, we showed that 2-amino-4,5-dihydro-3-furancarbonitrile reacts with sodium iodide to give 1-cyanocyclopropanecarboxamide.^[14] Under the same conditions, in the case of 2-(disubstituted amino)-4,5-dihydro-3-furancarbonitriles 1, a ring-contraction reaction did not take place. Acetyl halides have been used as reagents for the cleavage of cyclic ethers.^[16-18] For example, acetyl chloride converts tetrahydrofuran to 4-chlorobutyl acetate. In a previous paper we reported that N-benzoyl-4-chloro-2-cyanobutanamides, when refluxed with potassium carbonate in acetone, cyclize to cyclopropanes.^[19] These findings suggest the possibility that when compounds 1 are treated with acetyl chloride and base successively, the ring-opening products initially formed may undergo cyclization to furnish cyclopropane derivatives.

Hence, we examined the reaction of compounds 1 with acetyl chloride and then with base.

Results and Discussion

When a mixture of 2-pyrrolidin-1-yl-4,5-dihydrofuran-3carbonitrile (1a) and acetyl chloride in acetonitrile was stirred at room temperature, the ring-opening product, 1-(2-acetyl-4-chloro-2-cyanobutanoyl)pyrrolidine (2a), was obtained in 96% yield, and no formation of 4-chloro-2-cyano-1-pyrrolidinyl-1-butenyl acetate (2a') was observed (Scheme 1). The IR spectrum of 2a reveals a band at 2240 cm⁻¹ due to a nonconjugated cyano group and two bands at 1730 and 1660 cm⁻¹ attributable to the acetyl and the pyrrolidinylcarbonyl groups. The ¹³C NMR spectrum exhibits a quaternary carbon atom signal at $\delta = 60.0$ ppm and the signals due to olefinic carbon atoms are not observed.

Scheme 1. Reaction of 2-(disubstituted amino)-4,5-dihydro-3-furancarbonitriles 1a-i with acetyl chloride

 [[]a] Faculty of Pharmaceutical Sciences, Fukuoka University, 814-0180 Fukuoka, Japan Fax: (internat.) + 81-92/863-0389 E-mail: yamagata@fukuoka-u.ac.jp

FULL PAPER

The carbon signal at $\delta = 60.0$ ppm has been assigned to the C-2 carbon atom bearing acetyl and pyrrolidinylcarbonyl groups. These spectroscopic data are consistent with 1-but-anoylpyrrolidine **2a** rather than 1-butenyl acetate **2a**'. Compounds **1b**-**i** react with acetyl chloride under the same conditions to afford the corresponding 2-acetyl-4-chlorobut-anenitriles **2b**-**i** in good to excellent yields. All nine ring-opening products **2a**-**i** are relatively unstable, so crystalline compounds **2c**-**i** are partially decomposed during recrystallization.

Subsequently, in order to obtain the cyclopropane derivatives, we examined the cyclization of compounds $2\mathbf{a}-\mathbf{i}$ with bases. The reactions of $2\mathbf{a}-\mathbf{c}$ with aqueous potassium carbonate resulted in the formation of the expected cyclopropanes $3\mathbf{a}-\mathbf{c}$ in good yields (Scheme 2). Compounds $2\mathbf{d}-\mathbf{f}$ were easily cyclized to the cyclopropane derivatives $3\mathbf{d}-\mathbf{f}$ when treated with sodium methoxide. The same compounds $3\mathbf{d}-\mathbf{f}$ were also obtained by treatment of $2\mathbf{g}-\mathbf{i}$ with sodium methoxide. The structures of $3\mathbf{a}-\mathbf{f}$ were confirmed by direct comparison with authentic samples, which were synthesized by the following methods (Scheme 3): Conversion of 1-cyanocyclopropanecarboxylic acid ^[20] or (*E*)-1-cyano-2-phenylcyclopropanecarboxylic acid ^[21] with thionyl chloride provided cyclopropanecarbonyl chlorides, and subsequent treatment with amines gave 1-cyanocyclopropanecarbox-

Scheme 2. Synthesis of N, N-disubstituted 1-cyanocyclopropanecarboxamides 3a-f

amides $3\mathbf{a}-\mathbf{c}$ or (*E*)-1-cyano-2-phenylcyclopropanecarboxamides $3\mathbf{d}-\mathbf{f}$ in 34-72% yields. Thus, compounds $3\mathbf{d}-\mathbf{f}$ have the (*E*) configuration.

Scheme 3. Synthesis of 3a-f from 1-cyanocyclopropanecarboxylic acid and (*E*)-1-cyano-2-phenylcyclopropanecarboxylic acid

The formation of **3** can be rationalized by the mechanism shown in Schemes 1 and Scheme 2. Acetyl chloride attacks at the 3-position of **1** to form the intermediate iminium salts **A**, which undergo ring opening between the oxygen atom and the C-5 position of **A** by a chloride ion to produce **2**. The hydroxide or the methoxide ion attacks the carbonyl carbon atom of the acetyl group of **2** to form the alkoxide **B/C**, which then is cyclized to **3**.

Finally, we investigated a one-pot synthesis of **3** by a ringcleavage/cyclization process. The typical procedure was as follows: Acetyl chloride was added to a suspension of **1d**-**f** in acetonitrile at room temperature. After the starting materials **1d**-**f** had disappeared, the solvent was removed, and sodium methoxide in methanol was added to the residue. The mixture was stirred at room temperature for 1 h to give **3d**,e,**f** in 94, 94, and 93% yields, respectively. Similar reactions of **1g**-**i** gave **3g**-**i** in good yields. Successive treatment of **1a**,**b**,**c** with acetyl chloride and aqueous potassium carbonate resulted in the formation of **3a**,**b**,**c** in 77, 80, and 77% yields, respectively.

In conclusion, from a viewpoint of simple operation, mild conditions, and good yields in the preparation of 2-acetyl-4-chlorobutanenitriles as well as in the cyclization step, the present reactions provide a useful method for the synthesis of N,N-disubstituted 1-cyanocyclopropanecarbox-amides.

Experimental Section

General: All melting points are uncorrected. IR spectra were taken with a Jasco A-302 spectrometer. ¹H and ¹³C NMR spectra were measured with a Jeol JNM-A500 instrument (500.00 MHz for ¹H, 125.65 MHz for ¹³C) in CDCl₃ with TMS as internal standard. ¹³C signal assignments were confirmed by the DEPT technique. Mass spectra were recorded with a Jeol JMS-HX110 instrument at 70 eV. Elemental analyses were performed using an MT-6 elemental analyzer (Yanaco). The starting compounds **1a**–**i** were prepared as previously described.^[15,22]

General Procedures for the Synthesis of 2-Acetyl-4-chloro-2-cyanobutanamides 2. Procedure A: Acetyl chloride (1.73 g, 22 mmol) was added to an ice-cooled and stirred solution of 1a-c (20 mmol) in acetonitrile (20 mL). The mixture was stirred at room temperature for 4 h. After removal of the solvent in vacuo, the residue was chromatographed on silica gel with CH_2Cl_2 as the eluent to give 2a-c. **Procedure B:** A suspension of 1d-i (20 mmol) and acetyl chloride (1.73 g, 22 mmol) in acetonitrile (20 mL) was stirred at room temperature for 4 h (in the case of the preparation of 2d,e,g-i) or 20 h (2f). The solvent was removed and diisopropyl ether (30 mL) was added to the residue. The precipitate was collected and washed with diisopropyl ether.

1-(2-Acetyl-4-chloro-2-cyanobutanoyl)pyrrolidine (2a): Yield 4.64 g (96%). Colorless oil. IR (neat): $\tilde{v} = 2240 [v(C=N)]$, 1730 [v(C=O)], 1660 [v(C=O)] cm⁻¹. ¹H NMR: $\delta = 1.86-2.08$ (m, 4 H, NCH₂CH₂), 2.35 (s, 3 H, CH₃), 2.53 (ddd, J = 6.4, 9.2, 14.2 Hz, 1 H, 3-H), 2.74 (ddd, J = 5.5, 9.2, 14.2 Hz, 1 H, 3-H), 3.32–3.58 (m, 4 H, NCH₂), 3.63 (ddd, J = 6.4, 9.2, 11.0 Hz, 1 H, 4-H) pm. ¹³C NMR: $\delta = 23.5$ (CH₂), 25.8 (CH₃), 26.6 (CH₂), 36.3 (C-3), 39.4 (C-4), 47.5 (NCH₂), 48.4 (NCH₂), 60.0 (C-2), 115.2 (C=N), 159.2 (C=O), 195.0 (C=O) ppm. MS (FAB): m/z (%) = 243 (100) [M⁺ + H]. C₁₁H₁₅CIN₂O₂ (242.7): calcd. C 54.44, H 6.23, N 11.54; found C 54.60, H 6.26, N 11.70.

1-(2-Acetyl-4-chloro-2-cyanobutanoyl)piperidine (2b): Yield 4.70 g (92%). Pale yellow oil. IR (neat): $\tilde{v} = 2250 [v(C=N)]$, 1730 [v(C=O)], 1660 [v(C=O)] cm⁻¹. ¹H NMR: $\delta = 1.50-1.75$ (m, 6 H, NCH₂CH₂CH₂CH₂), 2.36 (s, 3 H, CH₃), 2.52 (ddd, J = 6.1, 9.5, 14.1 Hz, 1 H, 3-H), 2.73 (ddd, J = 5.2, 9.5, 14.1 Hz, 1 H, 3-H), 3.35–3.58 (m, 4 H, NCH₂), 3.62 (ddd, J = 6.1, 9.5, 11.3 Hz, 1 H, 4-H), 3.77 (ddd, J = 5.2, 9.5, 11.3 Hz, 1 H, 4-H), 3.77 (ddd, J = 5.2, 9.5, 11.3 Hz, 1 H, 4-H), 3.77 (ddd, J = 5.2, 9.5, 11.3 Hz, 1 H, 4-H) ppm. ¹³C NMR: $\delta = 24.1 (CH_2), 25.3 (CH_2), 25.7 (CH_3), 36.7 (C-3), 39.4 (C-4), 45.2 (NCH₂), 47.6 (NCH₂), 59.1 (C-2), 115.5 (C=N), 159.8 (C=O), 195.5 (C=O) ppm. MS (FAB): <math>m/z$ (%) = 257 (100) [M⁺ + H]. C₁₂H₁₇CIN₂O₂ (256.7): calcd. C 56.14, H 6.67, N 10.91; found C 56.32, H 6.73, N 11.03.

1-(2-Acetyl-4-chloro-2-cyanobutanoyl)morpholine (2c): Yield 4.50 g (87%). M.p. 66−67 °C. Colorless prisms (diethyl ether/petroleum ether). IR (KBr): $\tilde{v} = 2260$ [v(C≡N)], 1725 [v(C=O)], 1660 [v(C=O)] cm⁻¹. ¹H NMR: $\delta = 2.38$ (s, 3 H, *CH*₃), 2.55 (ddd, *J* = 6.4, 9.2, 14.4 Hz, 1 H, 3-H), 2.75 (ddd, *J* = 5.5, 9.2, 14.4 Hz, 1 H, 3-H), 3.40−3.80 (m, 10 H, 4-H, NCH₂CH₂O) ppm. ¹³C NMR: $\delta = 25.7$ (*C*H₃), 36.6 (C-3), 39.2 (C-4), 44.2 (N*C*H₂), 47.2 (N*C*H₂), 59.1 (C-2), 66.0 (O*C*H₂), 66.3 (O*C*H₂), 115.2 (C≡N), 160.2 (C=O), 195.3 (C=O) ppm. MS (FAB): *m/z* (%) = 259 (89) [M⁺ + H]. C₁₁H₁₅ClN₂O₃ (258.7): calcd. C 51.07, H 5.84, N 10.83; found C 51.02, H 5.83, N 10.81.

1-(2-Acetyl-4-chloro-2-cyano-3-phenylbutanoyl)pyrrolidine (2d): Yield 4.63 g (73%). M.p. 141 °C (dec.). Colorless prisms (acetone/ petroleum ether). IR (KBr): $\tilde{v} = 2260$ [v(C=N)], 1725 [v(C=O)], 1660 [v(C=O)] cm⁻¹. ¹H NMR: $\delta = 1.80-2.10$ (m, 4 H, NCH₂CH₂), 1.88 (s, 3 H, CH₃), 3.10-3.20 (m, 1 H, NCH₂), 3.55-3.80 (m, 3 H, NCH₂), 3.94 (t, J = 10.4 Hz, 3-H), 4.15 (dd, J = 3.7, 10.4 Hz, 4-H), 4.20 (dd, J = 3.7, 10.4 Hz, 4-H), 7.30-7.40 (m, 5 H, aryl) ppm. ¹³C NMR: $\delta = 23.4$ (CH₃), 26.6 (CH₂), 27.0 (CH₂), 45.3 (C-4), 47.4 (NCH₂), 48.7 (NCH₂), 50.9 (C-3), 65.0 (C-2), 115.4 (C=N), 129.0, 129.1, 129.3, 134.4 (C aryl), 158.8 (C=O), 194.9 (C=O) ppm. MS (FAB): m/z (%) = 319 (75) [M⁺ + H]. C₁₇H₁₉ClN₂O₂ (318.8): calcd. C 64.05, H 6.01, N 8.79; found C 64.00, H 6.02, N8.76.

1-(2-Acetyl-4-chloro-2-cyano-3-phenylbutanoyl)piperidine (2e): Yield 4.94 g (74%). M.p. 136 °C (dec.). Colorless prisms (diethyl ether). IR (KBr): $\tilde{v} = 2240 \ [v(C=N)]$, 1730 [v(C=O)], 1640 [v(C=O)] cm⁻¹. ¹H NMR: $\delta = 1.30-1.75$ (m, 6 H, NCH₂CH₂CH₂CH₂), 1.83 (s, 3 H, CH₃), 3.20-3.70 (m, 4 H, NCH₂), 3.95 (t, J = 11.6 Hz,

1 H, 3-H), 4.13–4.19 (m, 2 H, 4-H), 7.30–7.40 (m, 5 H, aryl) ppm. ¹³C NMR: δ = 24.1 (*C*H₃), 25.2 (*C*H₂), 26.6 (*C*H₂), 45.6 (C-4), 47.5 (N*C*H₂), 51.3 (C-3), 63.8 (C-2), 115.8 (C=N), 128.9, 129.1, 129.4, 134.3 (C aryl), 159.6 (C=O), 195.2 (C=O) ppm. MS (FAB): *m*/*z* (%) = 333 (63) [M⁺ + H]. C₁₈H₂₁ClN₂O₂ (332.8): calcd. C 64.96, H 6.36, N 8.42; found C 64.97, H 6.42, N 8.48.

1-(2-Acetyl-4-chloro-2-cyano-3-phenylbutanoyl)morpholine (2f): Yield 5.43 g (81%). M.p. 174 °C (dec.). Colorless prisms (acetone/ petroleum ether). IR (KBr): $\tilde{v} = 2240$ [v(C=N)], 1730 [v(C=O)], 1660 [v(C=O)] cm⁻¹. ¹H NMR: $\delta = 1.85$ (s, 3 H, *CH*₃), 3.50–3.80 (m, 8 H, NC*H*₂*CH*₂O) 3.95 (t, *J* = 10.7 Hz, 1 H, 3-H), 4.12 (dd, *J* = 3.6, 10.7 Hz, 1 H, 4-H), 4.18 (dd, *J* = 3.6, 10.7 Hz, 1 H, 4-H), 7.37–7.40 (m, 5 H, aryl) ppm. ¹³C NMR: $\delta = 26.6$ (*C*H₃), 44.6 (N*C*H₂), 45.4 (C-4), 47.0 (N*C*H₂) 51.1 (C-3), 63.9 (C-2), 65.7 (O*C*H₂), 66.3 (O*C*H₂), 115.5 (C=N), 129.1, 129.2, 129.3, 134.0 (C aryl) 160.1 (C=O), 195.0 (C=O) ppm. MS (FAB): *m/z* (%) = 335 (64) [M⁺ + H]. C₁₇H₁₉ClN₂O₃ (334.8): calcd. C 60.99, H 5.72, N 8.37; found C 61.04, H 5.67, N 8.53.

1-(2-Acetyl-4-chloro-2-cyano-4-phenylbutanoyl)pyrrolidine (2g): Yield 5.31 g (83%). M.p. 108–110 °C. Colorless prisms (acetone/ petroleum ether). IR (KBr): $\tilde{v} = 2260$ [v(C=N)], 1730 [v(C=O)], 1670 [v(C=O)] cm⁻¹. ¹H NMR: $\delta = 1.80-2.00$ (m, 4 H, NCH₂CH₂), 2.18 (s, 3 H, CH₃), 2.94 (dd, J = 6.8, 15.0 Hz, 1 H, 3-H), 3.13 (dd, J = 6.8, 15.0 Hz, 1 H, 3-H), 3.40–3.75 (m, 4 H, NCH₂), 5.18 (t, J = 6.8 Hz, 1 H, 4-H), 7.30–7.45 (m, 5 H, aryl) ppm. ¹³C NMR: $\delta = 23.3$ (CH₃), 26.1 (CH₂), 26.6 (CH₂), 43.1 (C-3), 47.6 (NCH₂), 48.5 (NCH₂), 58.8(C-4), 59.5 (C-2), 115.5 (C=N), 127.4, 128.8, 129.0, 140.0 (C aryl), 159.7 (C=O), 194.7 (C=O) ppm. MS (FAB): m/z (%) = 319 (45) [M⁺ + H]. C₁₇H₁₉ClN₂O₂ (318.8): calcd. C 64.05, H 6.01, N 8.79; found C 63.95, H 6.09, N 8.82.

1-(2-Acety1-4-chloro-2-cyano-4-phenylbutanoyl)piperidine (2h): Yield 5.04 g (76%). M.p. 86–87 °C. Colorless prisms (diethyl ether/ petroleum ether). IR (KBr): $\tilde{v} = 2250 [v(C=N)]$, 1725 [v(C=O)], 1660 [v(C=O)] cm⁻¹. ¹H NMR: $\delta = 1.50-1.70$ (m, 6 H, NCH₂CH₂CH₂CH₂), 2.17 (s, 3 H, CH₃), 3.00 (dd, J = 6.7, 15.0 Hz, 1 H, 3-H), 3.06 (dd, J = 6.7, 15.0 Hz, 1 H, 3-H), 3.40–3.60 (m, 4 H, NCH₂), 5.17 (t, J = 6.7 Hz, 1 H, 4-H), 7.30–7.45 (m, 5 H, aryl) ppm. ¹³C NMR: $\delta = 24.1 (CH_3)$, 25.2 (CH₂), 25.5 (CH₂), 26.1 (CH₂), 43.8 (C-3), 45.2 (NCH₂), 47.7 (NCH₂), 58.6 (C-2), 58.7 (C-4), 115.8 (C=N), 127.5, 128.8, 129.0, 140.1 (C aryl), 160.3 (C=O), 195.3 (C=O) ppm. MS (FAB): m/z (%) = 333 (20) [M⁺ + H]. C₁₈H₂₁ClN₂O₂ (332.8): calcd. C 64.96, H 6.36, N 8.42; found C 65.05, H 6.31, N 8.44.

1-(2-Acety1-4-chloro-2-cyano-4-phenylbutanoyl)morpholine (2i): Yield 5.22 g (78%). M.p. 121–122 °C. Colorless prisms (acetone/ petroleum ether). IR (KBr): $\tilde{v} = 2240 [v(C=N)]$, 1730 [v(C=O)], 1670 [v(C=O)] cm⁻¹. ¹H NMR: $\delta = 2.19$ (s, 3 H, *CH*₃), 2.99 (dd, J = 6.7, 15.0 Hz, 1 H, 3-H), 3.08 (dd, J = 6.7, 15.0 Hz, 1 H, 3-H), 3.40–3.75 (m, 8 H, NCH₂CH₂O), 5.16 (t, J = 6.7 Hz, 1 H, 4-H), 7.30–7.45 (m, 5 H, aryl) ppm. ¹³C NMR: $\delta = 26.1$ (CH₃), 43.7 (C-3), 44.6 (NCH₂), 47.0 (NCH₂), 58.5 (C-4), 58.7 (C-2), 63.8 (OCH₂), 66.1 (OCH₂), 115.6 (C=N), 127.4, 128.9, 129.2, 139.9 (C aryl), 160.7 (C=O), 195.1 (C=O) ppm. MS (FAB): *m/z* (%) = 335 (44) [M⁺ + H]. C₁₇H₁₉ClN₂O₃ (334.8): calcd. C 60.99, H 5.72, N 8.37; found C 60.91, H 5.72, N 8.37.

General Procedures for the Synthesis of 1-Cyanocyclopropanecarboxamides 3. Procedure A: A mixture of 2a-c (5 mmol), 20% K₂CO₃ (10 mL), and EtOH (10 mL) was stirred at room temperature for 2 h. The solvent was removed and H₂O (20 mL) was added to the residue. The mixture was extracted with EtOAc. The extract

Eur. J. Org. Chem. 2003, 2383-2387

www.eurjoc.org

FULL PAPER

was washed with H₂O, dried with Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with CH₂Cl₂/acetone (4:1) as the eluent to yield 3a (0.68 g, 83%), 3b (0.76 g, 85%), and 3c (0.71 g, 79%). Procedure B: A mixture of 2d-i (5 mmol) and MeONa (0.30 g, 5.5 mmol) in MeOH (15 mL) was stirred at room temperature for 1 h. After removal of the MeOH in vacuo, H₂O (20 mL) was added to the residue and the mixture was extracted with EtOAc. The extract was washed with H₂O, dried with Na₂SO₄, and concentrated in vacuo. The residue was chromatographed on silica gel with CH₂Cl₂/acetone (4:1) as the eluent to give 3d [from 2d: 1.14 g (95%); from 2g: 1.15 g (96%)], 3e [from 2e: 1.12 g (96%); from 2h: 1.20 g (94%)], 3f [from 2f: 1.16 g (91%); from 2i: 1.01 g (79%)]. Procedure C: A mixture of 1a-c (20 mmol) and acetyl chloride (1.73 g, 22 mmol) in acetonitrile (20 mL) was stirred at room temperature for 4 h. After removal of the solvent in vacuo, 20% K₂CO₃ (25 mL) and EtOH (25 mL) were added to the residue. The resulting mixture was stirred at room temperature for 2 h. The solvent was removed and H₂O (40 mL) was added to the residue. The mixture was extracted with EtOAc. The extract was washed with H₂O, dried with Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with CH₂Cl₂/acetone (4:1) as the eluent to afford 3a (2.51 g, 77%), 3b (2.83 g, 80%), and 3c (2.76 g, 77%). Procedure D: A mixture of 1d-i (20 mmol) and acetyl chloride (1.73 g, 22 mmol) in acetonitrile (20 mL) was stirred at room temperature for 4 h (in the case of the reaction of 1d,e,g-i) or 20 h (1f). After removal of the solvent in vacuo, MeONa (1.19 g, 22 mmol) in MeOH (30 mL) was added to the residue. The resulting mixture was stirred at room temperature for 1 h. The solvent was removed and H₂O (40 mL) was added to the residue. The mixture was extracted with EtOAc. The extract was washed with H₂O, dried with Na₂SO₄, and concentrated in vacuo. The residue was chromatographed on silica gel with CH₂Cl₂/acetone (4:1) as the eluent to give **3d** [from **1d**: 4.60 g (94%); from **1g**: 4.61 g (94%)], 3e [from 1e: 4.76 g (94%); from 1h 4.82 g (95%)], and 3f [from 1f: 4.78 g (93%); from 1i: 3.23 g (63%)]. Procedure E: A mixture of 1cyanocyclopropanecarboxylic acid (0.56 g, 5 mmol) or (E)-1-cyano-2-phenylcyclopropanecarboxylic acid (0.94 g, 5 mmol) and SOCl₂ (3 mL) was refluxed for 1 h. After removal of the SOCl₂ under reduced pressure, a solution of pyrrolidine (0.71 g, 10 mmol) [piperidine (0.85 g, 10 mmol) or morpholine (0.87 g, 10 mmol)] and triethylamine (1.01 g, 10 mmol) in THF (10 mL) was added to the residue. The mixture was stirred at room temperature for 30 min. The solvent was removed and H₂O (20 mL) was added to the residue. The mixture was extracted with EtOAc. The extract was washed with H₂O, dried with Na₂SO₄, and concentrated in vacuo. The residue was chromatographed on silica gel with CH₂Cl₂ as the eluent to give **3a** (0.39 g, 48%), **3b** (0.64 g, 72%), **3c** (0.57 g, 63%), **3d** (0.65 g, 54%), **3e** (0.75 g, 59%), and **3f** (0.43 g, 34%).

1-[(1-Cyanocyclopropyl)carbonyl]pyrrolidine (3a): M.p. 51-52 °C. Colorless columns (diethyl ether/petroleum ether). IR (KBr): $\tilde{v} = 2260 [v(C=N)]$, 1640 $[v(C=O)] \text{ cm}^{-1}$. ¹H NMR: $\delta = 1.47-1.50$ (m, 2 H, CH₂), 1.64–1.70 (m, 2 H, CH₂), 1.88–1.93 (m, 2 H, NCH₂CH₂), 1.99–2.03 (m, 2 H, NCH₂CH₂), 3.47–3.50 (m, 2 H, NCH₂CH₂), 3.84–3.90 (m, 2 H, NCH₂CH₂), ppm. ¹³C NMR: $\delta = 13.5$ (C-1), 16.6 (CH₂), 24.0 (CH₂), 26.4 (CH₂), 47.5 (NCH₂), 47.6 (NCH₂), 120.2 (C=N), 162.6 (C=O) ppm. MS (FAB): m/z (%) = 165 (100) [M⁺ + H]. C₉H₁₂N₂O (164.2): calcd. C 65.83, H 7.37, N 17.06; found C 65.80, H 7.46, N 17.06.

1-[(1-Cyanocyclopropyl)carbonyl]piperidine (3b): M.p. 91–92 °C. Colorless columns (diethyl ether/petroleum ether). IR (KBr): $\tilde{v} = 2240 [v(C=N)]$, 1640 [v(C=O)] cm⁻¹. ¹H NMR: $\delta = 1.46-1.58$ (m, 4 H, CH₂), 1.50–1.75 (m, 6 H, NCH₂CH₂CH₂CH₂), 3.40–3.80 (m, 4 H, NCH₂) ppm. ¹³C NMR: $\delta = 13.1$ (C-1), 15.4 (CH₂), 24.4 (CH₂), 25.5 (CH₂), 44.6 (NCH₂), 47.5 (NCH₂), 120.2 (C=N), 162.9 (C=O) ppm. MS (FAB): *m*/*z* (%) = 179 (100) [M⁺ + H]. C₁₀H₁₄N₂O (178.2): calcd. C 67.39, H 7.92, N 15.72; found C 67.22, H 7.87, N 15.62.

1-[(1-Cyanocyclopropyl)carbonyl]morpholine (3c): M.p. 84–85 °C. Colorless columns (diethyl ether). IR (KBr): $\tilde{v} = 2240 [v(C≡N)]$, 1645 [v(C=O)] cm⁻¹. ¹H NMR: $\delta = 1.51-1.54$ (m, 2 H, CH₂), 1.59–1.62 (m, 2 H, CH₂), 3.50–3.90 (m, 8 H, NCH₂CH₂O) ppm. ¹³C NMR: $\delta = 12.8$ (C-1), 15.6 (CH₂), 43.7 (NCH₂), 46.8 (NCH₂), 66.4 (OCH₂), 119.9 (C≡N), 163.4 (C=O) ppm. MS (FAB): *m/z* (%) = 181 (100) [M⁺ + H]. C₉H₁₂N₂O₂ (180.2): calcd. C 59.98, H 6.71, N 15.55; found C 59.79, H 6.68, N 15.52.

(*E*)-1-[(1-Cyano-2-phenylcyclopropyl)carbonyl]pyrrolidine (3d): Colorless oil. IR (neat): $\tilde{v} = 2240$ [$v(C \equiv N$)], 1650 [v(C = O)] cm⁻¹. ¹H NMR: $\delta = 1.90-2.03$ (m, 5 H, 3-H, NCH₂CH₂), 2.24 (dd, *J* = 5.5, 8.6 Hz, 1 H, 3-H), 3.02 (t, *J* = 8.6 Hz, 1 H, 2-H), 3.50-3.55 (m, 2 H, NCH₂CH₂), 3.70-3.85 (m, 2 H, NCH₂CH₂), 7.28-7.40 (m, 5 H, aryl) ppm. ¹³C NMR: $\delta = 20.4$ (C-3), 23.6 (C-1), 24.0 (CH₂), 26.5 (CH₂), 33.0 (C-2), 47.6 (NCH₂), 47.8 (NCH₂), 117.8 (C=N), 128.1, 128.7, 133.9 (C aryl), 162.5 (C=O) ppm. MS (FAB): *m*/*z* (%) = 241 (100) [M⁺ + H]. C₁₅H₁₆N₂·0.2H₂O (243.9): calcd. C 73.87, H 6.78, N 11.49; found C 73.89, H 6.76, N 11.51.

(*E*)-1-[(1-Cyano-2-phenylcyclopropyl)carbonyl]piperidine (3e): Colorless oil. IR (neat): $\tilde{v} = 2250$ [v(C≡N)], 1660 [v(C=O)] cm⁻¹. ¹H NMR: $\delta = 1.60-1.70$ (m, 6 H, NCH₂CH₂CH₂CH₂), 1.96 (dd, *J* = 5.8, 8.5 Hz, 1 H, 3-H), 2.21 (t, *J* = 5.8, 8.5 Hz, 1 H, 3-H), 2.84 (t, *J* = 8.5 Hz, 1 H, 2-H) 3.50-3.70 (m, 4 H, NCH₂), 7.25-7.40 (m, 5 H, aryl) ppm. ¹³C NMR: $\delta = 19.0$ (C-3), 23.2 (C-1), 24.4 (CH₂), 25.8 (CH₂), 31.9 (C-2), 44.6 (NCH₂), 47.6 (NCH₂), 117.7 (C≡N), 127.8, 128.2, 128.8, 133.6 (C aryl), 162.8 (C=O) ppm. MS (FAB): *m*/*z* (%) = 255 (100) [M⁺ + H]. C₁₆H₁₈N₂O (254.3): calcd. C 75.56, H 7.13, N 11.01; found C 75.45, H 7.25, N 10.92.

(*E*)-1-[(1-Cyano-2-phenylcyclopropyl)carbonyl]morpholine (3f): M.p. 91–92 °C. Colorless needles (diethyl ether/petroleum ether). IR (KBr): $\tilde{v} = 2240 [v(C \equiv N)]$, 1670 $[v(C = O)] \text{ cm}^{-1}$. ¹H NMR: $\delta = 2.01 (dd, J = 5.8, 9.2 \text{ Hz}, 1 \text{ H}, 3\text{-H}), 2.23 (dd, J = 5.8, 9.2 \text{ Hz}, 1 \text{ H}, 3\text{-H}), 2.89 (t, J = 9.2 \text{ Hz}, 1 \text{ H}, 2\text{-H}), 3.60–3.80 (m, 8 \text{ H}, NCH_2CH_2O), 7.25–7.42 (m, 5 \text{ H}, aryl) ppm.¹³C NMR: <math>\delta = 19.2$ (C-3), 22.9 (C-1), 32.3 (C-2), 44.0 (NCH₂), 47.0 (NCH₂), 66.4 (OCH₂), 117.5 (C=N), 127.7, 128.4, 128.9, 133.2 (C aryl), 163.3 (C=O) ppm. MS (FAB): m/z (%) = 257 (100) [M⁺ + H]. C₁₅H₁₆N₂O₂ (256.3): calcd. C 70.29, H 6.29, N 10.93; found C 70.26, H 6.39, N 10.81.

- ^[1] [^{1a]} H. W. Lin, C. T. Walsh, *The Chemistry of the Cyclopropyl Group* (Eds: S. Patai, Z. Rappoport); John Wiley & Sons, New York, **1987**, pp. 959–1025. ^[1b] C. J. Suckling, *Angew. Chem.* **1988**, 100, 555–570; *Angew. Chem. Int. Ed. Engl.* **1988**, 27, 537–552.
- ^[2] ^[2a] J. Salaün, *Top. Curr. Chem.* 2000, 207, 1–67. ^[2b] C. H. Stammer, *Tetrahedron* 1990, 46, 2231–2254. ^[2c] J. Salaün, *Chem. Rev.* 1989, 89, 1247–1270.
- [3] For recent books, see: "Carbocyclic Three- and Four-membered Ring Systems", in *Methods Org. Chem. (Houben-Weyl)* (Ed.: A. de Meijere), Thieme, Stuttgart, New York, **1997**, vol. E17a/b.
- [4] H. N. C. Wong, M. Y. Hon, C. W. Tse, Y. C. Yip, *Chem. Rev.* 1989, 89, 165–198.

- ^[5] S. Danishefsky, Acc. Chem. Res. 1979, 12, 66-72.
- [6] C. V. Juelke, D. W. Boykin, Jr., J. I. Dale, R. E. Lutz, J. Org. Chem. 1975, 40, 545–552.
- ^[7] H. Wamhoff, Chem. Ber. 1972, 105, 748-752.
- ^[8] [^{8a]} P. Scribe, M. R. Mont, J. Wiemann, *Tetrahedron Lett.* 1967, 5757–5761.
 ^[8b] J. Wiemann, N. Thoai, F. Weisbuch, *Tetrahedron Lett.* 1965, 2983–2986.
- [9] D. E. McGreen, M. G. Vinje, R. S. McDaniel, Can. J. Chem. 1965, 43, 1417–1418.
- ^[10] D. W. Boykin, R. E. Lutz, J. Am. Chem. Soc. **1964**, 86, 5046-5047.
- ^[11] M. E. Alonso, A. Morales, J. Org. Chem. 1980, 45, 4530-4532.
- ^[12] D. M. A. Armitage, C. L. Wilson, J. Am. Chem. Soc. 1959, 81, 2437–2440.
- ^[13] C. L. Wilson, J. Am. Chem. Soc. 1947, 69, 3002-3004.
- ^[14] K. Yamagata, H. Maruoka, Y. Hashimoto, M. Yamazaki, *Heterocycles* **1989**, *29*, 5–9.

- ^[15] K. Yamagata, M. Takaki, M. Yamazaki, *Liebigs Ann. Chem.* 1992, 1109–1112.
- ^[16] S. Bhar, B. C. Ranu, J. Org. Chem. 1995, 60, 745-747.
- ^[17] A. Oku, T. Harada, K. Kita, *Tetrahedron Lett.* **1982**, *23*, 681–684.
- ^[18] P. Mimero, C. Saluzzo, R. Amouroux, *Tetrahedron Lett.* **1994**, *35*, 1553–1556.
- ^[19] H. Maruoka, K. Yamagata, M. Yamazaki, *Heterocycles* 1990, 31, 2011–2023.
- ^[20] R. K. Sing, S. Danishefsky, J. Org. Chem. 1975, 40, 2969-2970.
- ^[21] E. W. Yankee, B. Spencer, N. E. Howe, D. J. Cram, J. Am. Chem. Soc. 1973, 95, 4220–4230.
- [22] K. Yamagata, K. Akizuki, M. Yakazaki, J. Prakt. Chem. 1998, 340, 51-57.

Received September 17, 2002