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Complete switch of reaction specificity of an aldolase by directed

evolution in vitro: Synthesis of generic aliphatic al

Abstract: A structure-guided engineering of fructose-6-phosphate
aldolase was performed to expand its substrate promiscuity toward
aliphatic nucleophiles, i.e., unsubstituted alkanones and alkanals. A
“smart” combinatorial library was created targeting residues D6, T26
and N28 that form a binding pocket around the nucleophilic carbon
atom. Double-selectivity screening was executed by high-
performance TLC that allowed simultaneous determination of total
activity as well as a preference for acetone versus propanal as
competing nucleophiles. D6 turned out to be the key residue that
enabled activity with non-hydroxylated nucleophiles. Altogether 25
single- and double-site variants (D6X and D6X/T26X) were
discovered that show useful synthetic activity and a varying
preference for ketone or aldehyde as the aldol nucleophiles.
Remarkably, all of the novel variants had completely lost their native
activity for cleavage of fructose 6-phosphate.

Aldolases and ftransaldolases are specialized on sugar
phosphates, yet highly interesting biocatalytic tools for chemj
synthesis because of their precise stereoselectivity in
carboligation step and their activity under very mild reaction
conditions."? For example, fructose-6-phosphate
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Scheme 1. Native use of DHA nucleophile by wild-type FSA and promiscuous
tolesgnce for acetone of the D6H variant with phosphorylated aldehyde

n aldolase having the ability to utilize generic aliphatic, non-
hydroxylated substrates both as electrophilic and nucleophilic
components would constitute a highly flexible catalyst for a
plethora of synthetic opportunities toward the construction of
chiral building blocks by Green Chemistry principles. The range
of addressable targets from such reactions, such as the homo
aldol products of aldehydes (e.g., 4, 5), are common structural
motifs in natural products like polyketides™ or terpenoids,""® but
are also important as intermediates in the production of
pharmaceuticals!"” and industrial bulk chemicals such as the
Guerbet-type compounds.!"? Here we present the engineering
by a directed evolution approach of novel FSA variants, which
selectively use acetone (1) or propanal (2) as nucleophilic
substrates with high carboligation stereoselectivity.

From an inspection of the enzyme active site, using the X-
ray structure of FSA with a model of the D-Fru6P substrate
bound to the catalytic lysine (K85),”! it is evident that the 3-OH
group in the nucleophile moiety interacts with residue D6 via
hydrogen bonding and loosely contacts the backbone amide
group of N28 (Fig. 1). D6 also forms a hydrogen bond with 5-OH
of Fru6P. In addition, T26 donates a hydrogen bond to D6,
which aligns it for an optimal substrate interaction. Replacing
these polar residues by hydrophobic ones would interrupt the
stabilizing contacts and thereby should improve an alternative
binding of non-hydroxylated nucleophiles such as acetone or
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aliphatic aldehydes. The side chain of N28, however, donates a
hydrogen bond to the 4-OH group, which stabilizes the incipient
oxyanion formation at the aldehyde carbonyl group upon aldol
attack and render mutation of N28 problematic.!"!

Figure 1. PyMOL“sl model of the active site of the wild-type FSA from E.
coli®The X-ray structure of FSA (PDB entry 1I6w)[4] was aligned with the D-

The “essential” 3-OH group is highlighted by an arrow.
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Library screening was performed with whole cells in aqueous
medium containing a mixture of acetone and propanal (1:2 =
17:1, viv) as competitive substrat hough the aldehyde was
essential to serve as the electrophile, one proportion was

by TLC for
ones yielded one or two
sities stronger than wild-
detectable product

new product spots (Figure 2)
type, whereas others
amounts or were inacj
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Figure 2. Exemplary TLC analysis using acetone and propanal as substrates
cgtalysed by Wate candidates having different activity and nucleophile

ectivity. Ani ehyde staining reveals a blue spot corresponding to the
o-aldol 4,4@hd a green spot for the cross-aldol 3. Lanes correspond to
t sequences A = D6H, B = D6H/T26L, C = D = D6A/T26A (duplicate
E = T26l, F = wt, G = D6L/T26l, H = D6P/T26L. Image contrast was
improved for visualization.

and sequencing furnished a total set of 25 unique
genetic variants. The latter were further characterized for their
relative kinetic activities and for their substrate selectivity against
d 2 by automated high-performance TLC (HPTLC) analysis
densitometrical product quantification. We found that
C is a medium-throughput screening method, which is well
ed for the direct screening of aldol product formation,
owing for simultaneous analysis of both activity and selectivity.
t is complementary to the typical inverse determination of
aldolase activity by aldol cleavage assays® albeit limited to
endpoint measurements. The HPTLC method was validated by
a comparison to standard GC results, using reactions catalyzed
by FSA variants D6E, D6L, D6A and D6L/T26A.

Among the 25 unique hits, 16 (64%) showed a clear
competitive preference for one over the other nucleophile
(nucleophile preference >3:1), while the other 9 (36%) produced
both products 3 and 4 in similar quantities (Scheme 2). The 16
selective variants were further analyzed by GC for an accurate
determination of their nucleophile selectivity (Figure 3). The
analysis shows that the two positions (D6/T26) selected for
mutagenesis are indeed the expected hot spots for changing the
catalytic properties of the enzyme, and that the “smart library”
strategy paid off with a very high proportion of positive hits (25
out of 48 library members, 52% hit rate). The conditions chosen
for substrate competition facilitated a direct evaluation of both
activity and nucleophile selectivity, which could be read out
using conventional medium-throughput TLC screening.

Clearly, non-hydroxylated nucleophiles become favored if the
hydrogen-bonding pattern directed at the 3-OH group are
deleted via non-polar D6 replacement (D6A, D6V, D6L, D6P), or
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if mutant residues are incompatible with the hydrogen-bonding
network and occupy an additional volume (D6H, D6E, D6Q).
While under the specific conditions many active variants
appeared rather non-selective (e.g., D6E), some variants
showed very high complementary selectivity for either of the
aldehyde or ketone nucleophiles. A detailed analysis of the
selective candidates revealed that the known D6H variant® was
the most selective catalyst for 1, similar to the higher active D6L
variant (Figure 3). However, most of the selective variants
preferred the more reactive 2 as nucleophile, despite of its much
lower assay concentration. Interestingly, the primary preference
introduced by the D6X replacement can be strongly shifted
towards improved preference for 2 by T26X exchanges,
particularly with residues having increasing hydrophobic volume
(A<<V<L<I). The effect is observed for D6E, D6L, D6H, and is
particularly effective for D6H, where a strong switch of
preference from 1 (D6H) to 2 (D6H/T26L) takes place, which
both show similar rates. A synonymous trend is seen for D6A or
D6P but to a lesser extent because these are already quite
selective for 2. While the T26V and T26l are mostly
accompanied by lower rates, the T26L mutants typically show
higher rate and thus represent the best choice with a
compromise in rate and selectivity. The highest selectivity for 2
was determined for the D6Q/T26I variant but only at a rather low
rate. Surprisingly, the simple T26L mutation alone results in
significantly increased rate and selectivity for 2. Notably, proline
is tolerated in the D6 position but is not tolerated to replace T2
usually, introduction of proline is cumbersome becau
conformational restrictions.
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The very high selectivity of several variants to utilize 2 as
nucleophile was unexpected, given its low concentration in

comparison to excessive 1. ate experiments were
conducted to determine relative ic activities in the
absence of nucleophile competition, firstl| g 2 as the sole
substrate (Figure 4, left); as a refere e used the

enzyme known to accept 2
complementary screen by using 1 in the

itself is unreactive
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Schiyyne 2. Reactions used for screening the nucleophile preference of the
D6. X library. Stereoselectivity was analyzed via cyclic acetal formation.
RegZillon conditions: i) NaBH,, MeOH ii) 2,2-dimethoxypropane, H".
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Figure 4. Blue bars: rate of formation of 4 by self-aldolization of 2 catalyzed by
FSA variants most active in primary screenings; wt-FSA and DERA from E.
coli (light blue) were included for reference. Green bars: rate of formation of 11
by addition of 1 to 6 using FSA variants most active on 1. For reaction
conditions see Supporting Info.

In the first tests, most active FSA variants, independent of their
nucleophile selectivity, were screened for their rate of formation
of 4. The concentration of 2 had to be limited (83 mM) because
of its denaturation effect on the enzyme at higher substrate
concentrations. Whereas wild-type FSA showed barely any
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detectable product formation, several variants displayed good
activity. Several new FSA variants (D6A/T26A, D6A/T26V,
D6E/T26A) were found to have activity superior to the DERA
reference. A distinctive feature is that reactions catalyzed by
FSA variants stop after the first addition to form 4, while DERA
catalyzes a consecutive addition to give a trimer of type 5, which
can cyclize into a lactol form.?"!

In the second test series, variants selective for 1 were
investigated for their relative rates. As the electrophile,
isopentanal (6) was employed when isobutanal proved
unreactive with common nucleophiles; both did not show any
reactivity for self-aldolization even at high enzyme
concentrations, probably because of their steric bulkiness. The
corresponding aldol products are acyclic and generated by a
bimolecular synthetic process, thus thermodynamically
unfavorable,?? but acetone can be used at rather high
concentration to drive the equilibrium towards product formation
because FSA is quite stable to organic cosolvents. Screening for
the formation of 7 under these non-competitive conditions
showed that only the single mutants D6L and D6H have highest
activity, whereas mutant combinations caused lower rates.

Unfortunately, for none of the reactions studied we could find
a reliable in vitro assay to perform steady-state kinetic
measurements with purified enzymes in direction of synthesis.
Probably owing to its low electrophilic nature, acetone has only
low binding affinity to FSA and no Ky could be estimated. Cleagly,
rate differences reported are not due to different expres
levels, which were checked by SDS-PAGE, nor to di
protein stabilities, which were checked by differential scanning
fluorimetry."”

The novel activities and selectivities most likely agifdue to

network for recognition of the 3-OH group and occupy a large
space than the native aspartate (D6L, D6H, D6E, D6Q; exgept

variants essentially have a prefi
enhanced by hydrophobic rep,

while T26l needs to be
compensate for its steric

seems to be
combined with
bulkiness.

n a preparative scale (34% yield)
showed high enanti iy (ee >95%) by chiral GC.?*
Similar results were obtained by preparative addition of 1 to 6

10.1002/anie.201804831

WILEY-VCH

and to the straight-chain isomer 8, yielding aldol products 7 and
9, respectively.

d for steric reasons
this was never
ion,?" there
btained on
nverted into the cyclic
sis (Scheme 2). NMR
) arrangement of
lysis showed the
>99% ee). As a control,
onditions before being
e of cis and trans
J4R)-stereoselectivity of
ed with non-hydroxylated,
Gratifyingly, FSA variants
| were even active with butanal (11) to
ith about one third of the rate for 4 and
tivity, as proven by a corresponding
analysis of the derivall . The larger homolog 8 did not lead
to aldol formation. Both compounds 4 and 12 are formal

ecursors i dustrially important Guerbet-type compounds,

' d as bulk solvents/plasticizers.'? It is tempting to
ulate that enzymatic routes to such man-made bulk
ials®®®! could be realized using FSA-derived catalysts in a
biotc@nology process.

(2S)-Configuration can be a
when using 2 as a nucleophile; how
rigorously proven for the corresponding

the alkyl substitue
presence of only
aldehyde 4 was
processed, whic

, following a single smart library strategy it was
possible ntify a collection of new FSA variants having novel
activities and distinct preferences for the nucleophilic substrate,
and that are promising for possible use in the stereospecific
synthesis of chiral building blocks. These enzymes significantly
the product space hitherto addressable by enzymatic
ligation.""? Remarkably, the synthesis of all generic aldol
ducts such as 3, 4, 7, 9 or 12 — stripped from the abundant
lar functionalization of native substrates — could also be
performed conveniently using recombinant whole cell catalysis
because such substrates and products seem to permeate quite
well across the cell wall. It is appropriate to stress that all new
enzyme variants completely lost the native FSA activity for
cleavage of Fru6P, nor do they show residual synthetic activity
with hydroxylated nucleophiles.

This study shows that a complete switch in reaction
specificity of an aldolase can be realized by focusing directed
evolution on a confined hot spot of substrate binding. By
exploiting existing knowledge on enzyme structure-function
relationships and exhaustive bioinformatic analysis of protein
databases, smart combinatorial libraries can be rapidly designed
that offer very high hit rates. We could also show that parallel,
automated HPTLC analysis is a valuable medium-throughput
screening tool that is well suited for such a highly focused
approach. We believe that the direct monitoring of product
formation is more flexible, and furnishes more appropriate data
for an evaluation of the synthetic capacity of carboligation
catalysts, as compared to the conventional indirect monitoring of
fragments arising from aldol cleavage.
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Experimental Section

For experimental details, see Supporting Info..
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