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ABSTRACT: We report a scandium-catalyzed [3 + 2]
annulation of alkylideneoxindoles with allenylsilanes for the
enantioselective formation of cyclopentene-spirooxindoles
containing vinylsilanes. Using a Sc(OTf),/PyBOX/BArF
complex, the spiroannulation of allenylsilanes affords products
with >94:6 dr and >90:10 er. The effect of the counterion and
ligand to control selectivity is discussed. The transformation of
the vinylsilane is demonstrated using cross-coupling, epox-
idation, and Tamao—Fleming oxidation reactions. A series of
competition experiments provide a comparison of nucleophil-
icity between allyl- and allenylsilanes.

pirooxindoles contain a privileged structural framework

with a spirocycle at the C-3 position of the oxindole core.'
In recent years, spirooxindoles have gained significant attention
in medicinal chemistry and drug discovery with broad
representation in alkaloid natural products and pharmaceutical
lead compounds, with therapeutic propertles ranging from
antiviral,” to anticancer,” to antimalarial.’ Spirocycles and
spirooxindoles exhibit stereospecific biological activity,’
indicating the importance of diastereo- and enantioselective
synthetic methods to prepare these scaffolds. Construction of
the spirooxindole framework represents a challenge for
selectively creating the congested spiro-quaternary carbon
center and 1nc0rporat1ng functional handles for further
synthetic manipulation.”* Asymmetric synthetic methods
often exploit chiral catalysts to differentiate facial selectivity
of a prochiral substrate.””*

Our group has developed enantioselective methods to access
spirooxindoles using an annulation strategy with allyl- and
crotylsilane nucleophiles and prochiral, electrophilic oxin-
doles.”” Based on the high yield and enantioselectivity we
observed with allylsilanes, we envisioned using allenylsilanes,
which have been much less explored as nucleophiles compared
to allylsilanes. Allenylsilanes were first reported as 3-carbon
synthons by Danheiser in a [3 + 2] annulation reaction
involving Lewis-acid- actlvated a,f-unsaturated ketones to yield
trialkylsilylcyclopentenes.'” Evans also reported the catalytic
enantioselective addition and corresponding annulation of
allenylsilanes to access either homopropargylic alcohols or
dihydrofurans from ethyl glyoxylate, depending on the size of
the silyl group.'

Herein, we report a chiral Lewis-acid-catalyzed annulation
with allenylsilanes and alkylidene oxindoles to access
enantioenriched spirocyclopentene oxindoles 3 containing a
vinylsilane available for further transformations (Scheme 1)."?
Vinylsilanes provide a functional handle for a variety of
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reactions,”> C—Si oxidation to the corresponding ketone by
the Fleming—Tamao processes, ¢ and direct alkene reactions
such as epoxidation. Considering the limited reports of
allenylsilane annulations, we were also interested in directly
comparing the relative nucleophilicity of allylsilanes vs
allenylsilanes.

Our initial investigations determined that the mild
nucleophilicity of allenylsilanes requires the use of an activated
chiral scandium complex to catalyze the annulation reaction
with alkylidene oxindole 1a (Table 1). The use of both ligand
and sodium tetrakis-[3,5-bis(trifluoromethyl)phenylborate
(NaBArF) is required for high yields (Table 1, entries 1—2),
which is attributed to the in situ formation of a discrete cationic
scandium complex capable of high efficiency in this process.'”

Received: August 12, 2019

DOI: 10.1021/acs.orglett.9b02852
Org. Lett. XXXX, XXX, XXX—XXX


pubs.acs.org/OrgLett
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.orglett.9b02852
http://dx.doi.org/10.1021/acs.orglett.9b02852

Organic Letters

Table 1. Screen of Ligands and Additives for Annulation”

EtO,C SiEt;
. / SiEt, S EtO,C/.,
c(OThs/L F CH,
ot - CH additive \©\ o
N CH,Cl,, 4 A MS, N
1a Ac 2a i, 3h 3aa Ac

R L2,R=Ph R

% /‘f\’ o

L3, R=i-Pr
L4, R =t-Bu X-ray structure of 4aa
entry  ligand additive conversion” (%) dr* er?
1 none NaBArF 0 _ _
2 L1 NaBArF 100 90:10 82:12
3 L2 NaBArF 65 75:25 74:26
4 L3 NaBArF 100 93:7 9S8:5
S L4 NaBArF 100 98:2 99:1
6 LS NaBArF 0 - -
7 Lé NaBArF 0 - -
8 L4 AgSbF, 25 nd nd
9 L4 NaSbF 0 - -
10 L4 NaBF, 0 - -
11 L4 none 0 -

“Reaction conditions: 1a (0.1 mmol), 2a (0.2 mmol), Sc(OTf)3 (10
mol %), ligand (11 mol %), NaBArF (10 mol %), CH,Cl, (0.5 mL),
and 4 A MS (50 mg) under argon. See SI for solvent screening.

“Determined using '"H NMR analysis based on consumption of la
(product mixture includes 3aa + varying amounts of deac;latlon 4aa).
“Determined using 'H NMR analysis for unpurified 3aa. “Determined
using CSP-HPLC analysis after deacylation (i.e., for 4aa). No erosion
in yield or selectivity was observed at longer (i.e.,, 12—24 h) reaction
times.

A series of chiral ligands were screened using scandium triflate
to identify the optimal catalyst system to provide high
selectivity for the formation of spirocyclopentene 3aa. Using
(S,R)-Inda-PyBOX (L1) provided high yield with moderate
selectivity (entry 2), while (S)-phenyl-PyBOX (L2) afforded
product in 51gn1ﬁcantly lower yield and reduced enantiose-
lectivity (entry 3)."! Increasing the steric demand of the
PyBOX ligand (L3 and L4) improved the selectivity with (S)-
tert-butyl-PyBOX (L4), affording the highest selectivity
(entries 4 and $).

Scorpionate Inda-TRISOX ligand (LS) and tert-butyl- BOX
ligand (L6) were also explored, but no reactivity was observed
(entries 6 and 7). The diastereomeric ratio was measured for
3aa, while enantiomeric excess was determined after N-acyl
deprotection (for the NH product 4aa); N-acyl 3aa was not
separable on HPLC (see Supporting Information). Based on
our initial ligand screen, we proceeded to utilize the Sc(OTf),/
NaBArF/L4 catalyst system as the optimal system for
subsequent experiments. It is notable that all initial reaction
conditions favored formation of the annulation product (3aa)
with no addition (i.e., propargylation) product observed (vide
infra).'®"” The reaction proceeded with significantly reduced
activity when other weakly coordinating anions were employed
(entries 8—10).

High selectivity is observed for alkylidene oxindoles and
allenylsilanes with varying electronic effects and steric bulk of
the silyl group (Figure 1). Allenylsilanes with small (SiMe;) to

SiR3
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Figure 1. Scope of allenylsilane annulation reaction. Reaction
conditions (unless otherwise indicated): 1 (0.1 mmol), 2 (0.2
mmol), Sc(OTf); (10 mol %), L4 (11 mol %), NaBArF (10 mol %),
CH,Cl, (0.5 mL), and 4 A MS (50 mg) under argon. Diastereomeric
ratio determined using 'H NMR analysis for 3. Isolated yields
reported for 4 over two steps. Enantiomeric ratios determined using
CSP-HPLC (AD-H column) for 4 (after deacylation prior to
purification). “Reactlon conducted on a larger scale, up to 1 mmol
scale, as indicated. "Reaction time = 6 h. “Performed with 20 mol %
catalyst loading; reaction time = 24 h.

large (Si(i-Pr);) silyl groups all afford annulation products 4ba,
4bb, and 4bc in good yields and selectivity (99:1 dr and >97:3
er).”® Using aryl(dimethyl)silyl allene 2d, which we envisioned
could enable future derivatization,”" afforded 4ad with only a
slight decrease in yield and diastereoselectivity but retained
high enantioselectivity (95:5 er). Proceeding with allenylsilane
2a, we explored the alkylidene substrate scope (1b—i) and
observed that all reactions proceed with high selectivity
(>90:10 er) and high yields (87—95%), except for cyano 1i
which has notably reduced activity, proceeding in only 38%
yield for product 4ia even after extended reaction times and
higher catalyst loading.”> Both electron-withdrawing and
electron-donating substituents on the oxindole ring were well
accepted. X-ray structure analysis of 4aa confirms the absolute
configuration of the annulation product as (1R,5R).*

Next, the versatility of the vinylsilane functional handle and
transformation of the spirocyclopentene structure were
demonstrated. Vinylsilane 4aa was converted to vinyl bromide
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5 in 90% yield using N-bromosuccinamide in the presence of
1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) under light-free
conditions."”"® Vinyl bromide $ can be employed as an
organometallic cross-coupling partner as demonstrated by the
conversion to 6 using a Suzuki reaction which retains high
stereochemical enrichment (Figure 2).** The vinylsilane also
readily undergoes epoxidation with m-CPBA to afford
tetracyclic spirooxindole 7 in 76% yield and 90:10 dr, retaining

high enantioenrichment (97:3 er). 16b
SiEt;
EtOZCI ' N-Bromo- Et02CI '
succinimide
HFIP, CH,Cls,
4 rt,3h
aa o,
98:2 dr, 99:1 er 5 (90 %)
m-CPBA (HO),B—Ar
CH,Cl,, 40 °C, 3 h Pd(PPhg),, Na,COg
. Tol/H,0 (9:1)
SiEts 50 °C, 4 h
EtO,C'+ (o]
F

e CH, Ar
o EtO,C -
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N
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\ X-ray structure of 6

Figure 2. Transformation of vinylsilane-containing cyclopentene
spirooxindoles.

The vinylsilane can also be transformed under Tamao—
Fleming oxidation conditions to produce a cyclopentanone-
spirooxindole (e.g, 10).'“* Oxidation of the vinylsilane
proceeds via protodesilylation of the p-methoxyphenyl and
formation of silyl fluoride 8 (Figure 3). The best conditions for
protodesilylation were identified by exposing vinylsilane 4ad to
BF;-2AcOH to afford silyl fluoride 8, which was isolated in
quantitative yield.

For oxidation of the C—Si bond, silyl fluoride 8 requires
further activation with excess fluoride to form a pentavalent
silicon fluoride in the presence of peroxide.” Several common

Me,
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Figure 3. Tamao—Fleming oxidation of aryl-substituted vinyl-silane
4ad for the synthesis of cyclopentanone-spirooxindole 10.

fluoride and peroxide sources were initially explored, but only
low vyields of the desired oxidation product were observed.
Instead, the formation of silanol 9 (resulting from Si—
hydrolysis) was observed (Figure 3). To reduce the competing
hydrolysis pathway and favor oxidation, we employed KF with
an anhydrous peroxide source (H,0,-urea) in a MeOH/THF
solution of the vinylsilane. The Tamao—Fleming product (an
enol) tautomerizes to cyclopentanone-spirooxindole 10 which
was isolated in 81% yield with retention of enantioselectivity at
C1 (Figure 3). The diastereomer ratio was determined to be
84:16 based on "H NMR integration of the proton at the C2
position. A NOESY experiment was performed, and the
relative stereochemistry of the major stereoisomer of 10 was
determined to be (IR, 2R, SR) based on the absolute
confirmation determined for 4aa by X-ray analysis.

To expand the application of this methodology, we also
demonstrated conditions for the synthesis of dihydrofuran-
spirooxindoles 12 (eq 1).>” Annulation of isatin electrophile 11

SiR,
. 0 =" CH;,
\Cﬁg:o ScCly/L1/NaBArF  F
N (20 mol %) (1)
CHy, ———————————
CH.Cly, 4 A MS,
11 f,6h

12a, R = Et, (44%), 955 er
12b, R = j-Pr, (71%), 87:13 er

with allenylsilane 2a was accomplished using ScClL/(S,R)-
Inda-PyBOX/BArF (20 mol %) to afford 12a in 44% yield with
95:S er. When 2b is employed, 12b was formed in higher yield,
albeit with a lower selectivity (87:3 er). Here our method also
demonstrates notable selectivity for the annulation pathway (vs
the elimination/propargylation), favoring exclusive formation
of spirooxindole 12. A competition experiment in the
annulation reaction with la was performed as the first direct
comparison of allenylsilane and allylsilane nucleophilicity
(Table 2).”® Under the assumption that the annulation process

Table 2. Competition Experiments between Allenylsilane
and Allylsilane Nucleophiles

Competition Experiment
SiR; SiR’;

Et0C Sc(OTf)y/L4
F / NaBArF EtOzC‘ EtOZCI
o (10mol%) (10 mol %)

N CHyCly 4AMS,3h

Ac SiRy o S|R3

1a 2\ 3aa, R=Et 14aa, R’ = Et
75 Cs | 43 3ab,R=i-Pr 14ab, R’ = i-Pr
experiment allenyl [Si] allyl [Si] product ratio (3:14)
1 SiEt; (2a) SiEt; (13a) 2.5:1 (3aa:14aa)
2 SiEt; (2a) Si(iPr); (13b) 1:2.4 (3aa:14ab)
3 Si(iPr); (2b)  Si(iPr)s (13b) 1:2.8 (3ab:14ab)

is not reversible (see SI for conditions with yield and selectivity
retained at longer reaction times), competition experiments
with 1a were utilized to extrapolate a kinetic analysis with the
product distribution determined using '’F NMR spectroscopy
(integration of '°F peaks was substantiated with '"H NMR peak
integration for known products). The first competition
experiment comparing allenyl(triethyl)silane 2a with allyl-
(triethyl)silane 13a under our standard reaction conditions
indicated enhanced nucleophilicity of the allenylsilane, favoring
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the formation of spirocyclopentene 3aa in a 2.5:1 ratio (Table
2, entry 1). Only the two annulation products (3aa and 14aa)
were observed as products in this competition reaction.
Switching to allyl(tri-isopropyl)silane 13b, a competition
experiment with 2a reversed selectivity with spirocyclopentane
14ab produced at a faster rate in a 2.4:1 ratio (entry 2). The
competition between allyl(tri-isopropyl)silane 13b and allenyl-
(tri-isopropyl)silane 2b also indicated enhanced nucleophil-
icity for the allylsilane, with product 14ab again forming at a
faster rate than 3ab in a 2.8:1 ratio (entry 3). The trend from
these initial data suggests that an allenylsilane is more
nucleophilic with a smaller silyl group (SiEt;), while an
allylsilane is more nucleophilic with a larger silyl group (Si(i-
Pr),). Although not a large effect, the reversal in relative rates
may suggest a different mechanistic pathway is followed for the
allenylsilane and allylsilane in this reaction. While the
allylsilane annulation proceeds via formation of a f-stabilized
carbocation intermediate (via a 1,2-silyl shift),””*” which is
favored for large silyl groups,zgd the allenylsilane annulation
may proceed via a concerted cycloaddition that is more
favorable for the smaller silyl group.”®

In conclusion, we have shown the utility of allenylsilanes to
access cyclopentene-spirooxindoles in high yield and selectivity
with a chiral scandium catalyst. This methodology favors the
annulation pathway (vs propargylation). Competition experi-
ments comparing the nucleophilicity of allenylsilanes and
allylsilanes demonstrate that both the 7-system and the size of
the silyl group affect the relative rate and product distribution
for these annulation reactions and suggest that different
mechanistic pathways may be operative. The vinylsilane affords
a versatile functional group to further modify the spirooxindole
scaffold for potential applications in medicinal chemistry.
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