Inorganica Chimica Acta 379 (2011) 115-121

Contents lists available at SciVerse ScienceDirect

Inorganica Chimica Acta

journal homepage: www.elsevier.com/locate/ica

New $\kappa^3\mbox{-}PNN'\mbox{-}$ and $\kappa^4\mbox{-}PNN'O\mbox{-}polydentate ligands: Synthesis, coordination and structural studies$

Mark R.J. Elsegood, Noelia M. Sanchez-Ballester, Martin B. Smith*

Department of Chemistry, Loughborough University, Loughborough, Leics LE11 3TU, UK

ARTICLE INFO

Article history: Received 22 July 2011 Received in revised form 20 September 2011 Accepted 21 September 2011 Available online 1 October 2011

Keywords: Coordination modes Metallocycles P ligands Late-transition metals X-ray crystallography

ABSTRACT

The three-step synthesis of new mixed P/N/N'/O-donor ligands $C_6H_3(OH)$ {2-NHC(O)CH₂N=CHC₆H₄ PPh₂{(4-CH₃) **3a**·**HH** and C₆H₄(OH){3-NHC(O)CH₂N=CHC₆H₄PPh₂} **3b**·**HH**, by Schiff base condensation of the 1° amines $C_6H_3(OH)$ {2-NHC(O)CH₂NH₂}(4-CH₃) **2a** or $C_6H_4(OH)$ {3-NHC(O)CH₂NH₂} **2b** with C_6H_4 (CHO)(2-PPh₂) in refluxing EtOH, is described. Reaction of 1 equiv. of **3a** HH or **3b** HH with MCl₂(cod) (M = Pt, Pd; cod = cycloocta-1,5-diene) affords the κ^2 -PN-chelate complexes MCl₂(**3a**·HH) (M = Pd **4a**; M = Pt 4b) and $MCl_2(3b \cdot HH)$ (M = Pt 4c). The dichlorometal(II) complexes 4d and 4e, bearing instead a pendant 4-phenolic group, were similarly prepared (in >90% yield). Chloro-bridge cleavage of [Pd(µ-Cl) $(\eta^3-C_3H_5)]_2$ with **3a HH** or **3b HH** gave the monocationic κ^2 -PN-chelate complexes $[Pd(\eta^3-C_3H_5)]_2$ C_3H_5)(**3a HH**)]Cl **5a** or [Pd(η^3 - C_3H_5)(**3b HH**)]Cl **5b**, respectively. Elimination of cod, and single CH₃ protonation, from $Pt(CH_3)_2(cod)$ upon reaction with 1 equiv. of **3a**-**HH** or **3b**-**HH** in C_7H_8 at room temperature afforded the neutral complexes $C_6H_3(OH)$ {2-NC(O)CH₂N=CHC₆H₄PPh₂Pt(CH₃)}(4-CH₃) **6a** and $C_6H_4(OH)$ {3-NC(O)CH₂N=CHC₆H₄PPh₂Pt(CH₃)} **6b**, respectively bearing a monoanionic (**3a**·H⁻ or **3b**·H⁻) κ^3 -PNN'-tridentate ligand. Amide and phenol deprotonation were readily achieved, using KO^tBu as base, to give high yields of the κ^4 -PNN'O-tetradentate complexes C₆H₃(O){2-NC(O)CH₂N=CHC₆H₄PPh₂Pd}(4-CH₃) **7a** and $C_6H_3(O)$ {2-NC(O)CH₂N=CHC₆H₄PPh₂Pt}(4-CH₃) **7b** bearing the dianionic ligand **3a**²⁻. All new compounds have been characterised by multinuclear NMR, FTIR, mass spectroscopy and microanalysis. Single crystal X-ray studies have been performed on compounds 1b 1.5CH₂Cl₂, 3b HH 0.5Et₂O, **6b**·CHCl₃ and **7b**·0.5Et₂O.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Organometallic and coordination complexes of tridentate and tetradentate ligands continue to attract wide interest for the diverse ligating capabilities, sensing, magnetic and luminescent properties and catalytic applications. Various donor atom combinations have been documented in the literature and, in many cases, contain at least one phosphorus donor centre. A range of different donor atom combinations have been reported for tridentate ligands including amongst others: P2B [1], P2C [2], P2Si [3], P2N [4], P₂O [5], PC₂ [6], PN₂ [7], PNO [8], PNS [8c] and PS₂ [9]. Furthermore, while examples of symmetric tetradentate systems are relatively common and include, for example, P₂N₂ [10], O₂N₂ [11] or S₂N₂ [12], nonsymmetric tetradentate ligands are considerably more unusual and include P₃C [13], P₃Si [14], P₃N [15], PN₃ [16], PN₂O [17] and As₂PN [18]. Herein we describe the synthesis of two new potentially tetradentate ligands bearing a PNN'O donor set combination. We demonstrate, given the correct spatial donor atom orientation, that all four donor centres can readily coordinate to a square-planar metal(II) centre. All new compounds are structurally supported by a combination of spectroscopic and crystallographic techniques.

2. Experimental

2.1. Materials

Standard Schlenk techniques were used for the synthesis of $C_6H_3(OH)$ {2-NHC(O)CH₂N=CHC₆H₄PPh₂}(4-CH₃) **3a**·**HH** and C_6H_4 (OH){3-NHC(O)CH₂N=CHC₆H₄PPh₂} **3b**·**HH** whilst all other reactions were carried out in air using previously distilled solvents unless otherwise stated. The compounds $C_6H_4(CHO)(2-PPh_2)$ [19], MCl₂(cod) (M = Pt, Pd; cod = cycloocta-1,5-diene) [20] and Pt(CH₃)₂ (cod) [21] were all prepared according to known procedures. All other chemicals were obtained from commercial sources and used directly without further purification.

2.2. Instrumentation

Infrared spectra were recorded as KBr pellets on either a Perkin– Elmer System 2000 (4000–400 cm⁻¹ range) or a Spectrum 100S

^{*} Corresponding author. Tel.: +44 0 1509 222553; fax: +44 0 1509 223925. *E-mail address*: m.b.smith@lboro.ac.uk (M.B. Smith).

^{0020-1693/\$ -} see front matter @ 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.ica.2011.09.045

(4000–250 cm⁻¹ range) Fourier-Transform spectrometer. ¹H NMR spectra (400 MHz) were recorded on a Bruker DPX-400 FT spectrometer with chemical shifts (δ) in ppm to high frequency of Si(CH₃)₄ and coupling constants (I) in Hz. ³¹P{¹H} NMR spectra were recorded on a Bruker DPX-400 FT spectrometer with chemical shifts (δ) in ppm to high frequency of 85% H₃PO₄. NMR spectra were measured in CDCl₃ or (CD₃)₂SO at 298 K. Elemental analyses (Perkin-Elmer 2400 CHN or Exeter Analytical, Inc. CE-440 Elemental Analyzers) were performed by the Loughborough University Analytical Service within the Department of Chemistry. Mass spectra were recorded within the Department of Chemistry at Loughborough University and by the EPSRC National Mass Spectrometry Service at Swansea University. Compounds **4a** and **4b** were analysed (Thermofisher LTQ Orbitrap XL instrument) by nano-electrospray (nano-ESI) in a positive ionisation mode using CH₂Cl₂ as primary solvent.

2.3. Syntheses

2.3.1. Preparation of $C_6H_3(OH)$ {2-NHC(0)CH₂NHCO₂Bz}(4-CH₃) (**1a**) and $C_6H_4(OH)$ {3-NHC(0)CH₂NHCO₂Bz} (**1b**)

To a THF (100 mL) solution of carbobenzyloxyglycine (5.054 g, 0.024 mol) was added, in quick succession, $C_6H_3(OH)(2-NH_2)$ (4-CH₃) (2.980 g, 0.024 mol) and dicyclohexylcarbodiimide, DCC (5.346 g, 0.026 mol). The solution was stirred for approx. 4 h during which time a white solid formed. The solid was removed by filtration and the filtrate evaporated to dryness under reduced pressure. The THF solvent was replaced by ethyl acetate (100 mL) and petroleum ether (b.p 40-60 °C, 100 mL) to afford 1a which was collected by suction filtration and dried in vacuo. Yield: 5.544 g, 73%. Selected data: ¹H [(CD₃)₂SO]: 9.65 (s, 1H), 9.08 (s, 1H), 7.73-6.72 (m, 8H), 5.08 (s, 2H), 3.85 (d, 2H), 2.19 (s, 3H) ppm. FTIR: 3344, 3286, 3258, 1721, 1659 cm⁻¹. FTMS: *m/z* 315 [M+H]. Anal. Calc. for C₁₇H₁₈N₂O₄: C, 64.95; H, 5.78; N, 8.91. Found: C, 65.00; H, 5.89; N, 9.35%. Similarly, C₆H₄(OH){3-NHC(O)CH₂NH- CO_2Bz **1b** was prepared in 68% yield. Selected data: ¹H [(CD_3)₂SO]: 9.84 (s. 1H), 9.40 (s. 1H), 7.55-6.94 (m. 9H), 6.45 (dd, 1H), 5.06 (s. 2H), 3.79 (d, 2H) ppm, FTIR: 3392, 3313, 3224, 1704, 1692, 1674 cm⁻¹. FTMS: *m/z* 301 [M+H]. Anal. Calc. for C₁₆H₁₆N₂O₄: C, 63.99; H, 5.38; N, 9.33. Found: C, 64.18; H, 5.64; N, 9.33%.

2.3.2. Preparation of $C_6H_3(OH)$ {2-NHC(O)CH₂NH₂}(4-CH₃) (**2a**) and $C_6H_4(OH)$ {3-NHC(O)CH₂NH₂} (**2b**)

A mixture of **1a** (1.002 g, 3.19 mmol), Pd (10% on C) (0.268 g), EtOH (50 mL) and cyclohexene (2.5 mL) was refluxed for 15 min. After cooling, the mixture was filtered and the solution evaporated to dryness under reduced pressure to afford **2a**. Yield: 0.502 g, 87%. Selected data: ¹H [(CD₃)₂SO]: 7.81 (d, 1H), 6.56–6.46m, 2H), 3.03 (s, 2H), 1.99 (s, 3H) ppm. FTIR: 3421, 3352, 3255, 3060, 3028, 1648 cm⁻¹. ESMS: *m/z* 181 [M+H]. *Anal.* Calc. for C₉H₁₂N₂O₂: C, 59.98; H, 6.73; N, 15.55. Found: C, 60.19; H, 6.84; N, 15.53%. The related compound C₆H₄(OH){3-NHC(O)CH₂NH₂} **2b** was also prepared (91% isolated yield). Selected data: ¹H [(CD₃)₂SO]: 9.65 (br, 1H), 7.23–6.43 (m, 4H), 3.23 (s, 2H) ppm. FTIR: 3345, 3331, 3296, 1673 cm⁻¹. ESMS: *m/z* 167 [M+H]. *Anal.* Calc. for C₈H₁₀N₂O₂: C, 57.82; H, 6.08; N, 16.86. Found: C, 58.21; H, 6.37; N, 16.09%.

2.3.3. Preparation of $C_6H_3(OH)$ {2-NHC(0)CH₂N=CHC₆H₄PPh₂}(4-CH₃) (**3a**·**HH**) and $C_6H_4(OH)$ {3-NHC(0)CH₂N=CHC₆H₄PPh₂}(**3b**·**HH**)

A suspension of **2a** (0.399 g, 2.21 mmol) and C₆H₄(CHO)(2-PPh₂) (0.667 g, 2.30 mmol) in absolute EtOH (40 mL) was refluxed, under a N₂ atmosphere, for approx. 4 h. After cooling to r.t., the volume was reduced to ~10 mL under reduced pressure, cooled to 0 °C and the solid collected by suction filtration. The solid **3a HH** was washed with a small portion of EtOH and dried *in vacuo*. Yield: 0.608 g, 61%. Selected data: ³¹P [(CD₃)₂SO]: -9.6 ppm. ¹H: 9.78 (s, 1H), 9.16 (s, 1H), 8.54 (d, 1H), 7.72–6.84 (m, 18H), 4.24 (s, 2H), 2.15 (s, 3H) ppm. FTIR: 3314, 1654 cm⁻¹. ESMS: *m/z* 453 [M+H]. *Anal.* Calc. for $C_{28}H_{25}N_2O_2P$: C, 74.31; H, 5.58; N, 6.19. Found: C, 74.05; H, 5.49; N, 6.11%. Similarly $C_6H_4(OH)$ {3-NHC(O)CH₂N= CHC₆H₄PPh₂} **3b**·HH was prepared in 53% isolated yield. Selected data: ³¹P [(CD₃)₂SO]: -13.6 ppm. ¹H: 9.82 (d, 1H), 9.43 (s, 1H), 8.84 (d, 1H), 8.02–6.90 (m, 16H), 6.49 (ddd, 1H), 4.23 (s, 2H) ppm. FTIR: 3243, 3104, 1661 cm⁻¹. EIMS: *m/z* 438 [M]. *Anal.* Calc. for $C_{27}H_{23}N_2O_2P$: C, 73.95; H, 5.30; N, 6.39. Found: C, 73.79; H, 5.29; N, 6.45%.

2.3.4. Preparation of $C_6H_3(OH)$ {2-NHC(O)CH₂N=CHC₆H₄PPh₂PdCl₂} (4-CH₃) (**4a**), $C_6H_3(OH)$ {2-NHC(O)CH₂N=CHC₆H₄PPh₂PtCl₂}(4-CH₃) (**4b**), $C_6H_4(OH)$ {3-NHC(O)CH₂N=CHC₆H₄PPh₂PtCl₂}(**4c**), $C_6H_4(OH)$ {4-NHC(O)CH₂N=CHC₆H₄PPh₂PdCl₂} (**4d**) and $C_6H_4(OH)$ {4-NHC(O) CH₂N=CHC₆H₄PPh₂PtCl₂} (**4e**)

To a CH_2Cl_2 (20 mL) solution of $PdCl_2(cod)$ (0.064 g, 0.22 mmol) was added **3a** HH (0.101 g, 0.22 mmol) to give a yellow solution. After stirring the solution for 15 min a yellow solid formed and the volume then reduced under vacuum to ~1-2 mL. Addition of diethyl ether (25 mL) further aided precipitation. The solid 4a was collected by suction filtration and dried in vacuo. Yield: 0.136 g, 96%. Compounds **4b**-**4e** were prepared similarly using either PtCl₂(cod) or PdCl₂(cod). Selected data for **4a**: ³¹P [(CD₃)₂SO]: 33.1 ppm. FTIR: 3318, 3261, 1701, 1644, 1625, 1594 cm⁻¹. FTMS + p NSI: *m/z* 557 [M-2HCl+H⁺]. Anal. Calc. for C₂₈H₂₅N₂O₂PPdCl₂: C, 53.39; H, 4.01; N, 4.45. Found: C, 53.51; H, 4.21; N, 4.13%. Selected data for 4b (90% yield): ³¹P [(CD₃)₂SO]: 9.1 ppm, ¹J_{PtP} 3476 Hz; 3.8 ppm, ¹J_{PtP} 3753 Hz; 1.4 ppm, ¹J_{PtP} 3230 Hz. FTIR: 3389, 3266, 1667, 1631, 1596 cm⁻¹. FTMS + p NSI: m/z 683 [M–Cl]. Anal. Calc. for C₂₈H₂₅N₂O₂PPtCl₂·Et₂O: C, 48.49; H, 4.46; N, 3.54. Found: C, 49.09; H, 3.81; N, 4.03%. Selected data for **4c** (97% yield): ³¹P [(CD₃)₂SO]: 8.8 ppm, ¹*J*_{PtP} 3479 Hz; 4.0 ppm, ¹*J*_{PtP} 3771 Hz; 1.5 ppm, ¹*J*_{PtP} 3204 Hz. FTIR: 3349, 3203, 1662, 1635, 1592 cm⁻¹. Anal. Calc. for C27H23N2O2PPtCl2 0.5Et2O: C, 46.97; H, 3.81; N, 3.78. Found: C, 46.71: H. 3.51: N. 3.92%. Selected data for **4d** (93% vield): ³¹P [(CD₃)₂SO]: 37.9 ppm. FTIR: 3406, 1668, 1644, 1598 cm⁻¹. ESMS: m/z 581 [M-Cl]. Anal. Calc. for C₂₇H₂₃N₂O₂PPdCl₂·0.25CH₂Cl₂: C, 51.37; H, 3.73; N, 4.40. Found: C, 51.23; H, 3.81; N, 4.07%. Selected data for **4e** (94% yield): ³¹P [(CD₃)₂SO]: 9.8 ppm, ¹/_{PtP} 3487 Hz; 1.8 ppm, ¹*I*_{PtP} 3952 Hz. FTIR: 3210, 1670, 1636, 1593 cm⁻¹. ESMS: *m*/*z* 669 [M–Cl]. Anal. Calc. for C₂₇H₂₃N₂O₂PPtCl₂: C, 46.03; H, 3.30; N, 3.98. Found: C, 46.09; H, 3.76; N, 3.83%.

2.3.5. Preparation of $[C_6H_3(OH)\{2-NHC(O)CH_2N=CHC_6H_4PPh_2Pd(\eta^3-C_3H_5)\}(4-CH_3)]Cl$ (**5a**) and $[C_6H_4(OH)\{3-NHC(O)CH_2N=CHC_6H_4PPh_2Pd(\eta^3-C_3H_5)\}]Cl$ (**5b**)

To a solution of $[Pd(\mu-Cl)(\eta^3-C_3H_5)]_2$ (0.037 g, 0.10 mmol) in CH₂Cl₂ (5 mL) was added **3a HH** (0.092 g, 0.20 mmol) to afford a yellow solution. After stirring for 1 h the solution was concentrated under reduced pressure to \sim 1-2 mL and diethyl ether (10 mL) added. The yellow solid **5a** was collected and dried *in vacuo*. Yield: 0.113 g, 88%. Selected data for **5a**: ³¹P (CDCl₃): 24.3 ppm. ¹H: 8.88 (s, 1H), 8.71 (s, 1H), 7.81-6.87 (m, 18H), 5.80 (q, 1H), 5.40 (s, 2H), 4.00 (br), 3.07 (br), 2.24 (s, 3H) ppm. FTIR: 3434, 3222, 3160, 1656, 1629 cm⁻¹. ESMS: *m/z* 599 [M–Cl]. *Anal*. Calc. for C₃₁H₃₀N₂O₂PPdCl: C, 58.68; H, 4.78; N, 4.42. Found: C, 58.34; H, 4.79; N, 4.44%. Selected data for **5b** (96% yield): ³¹P (CDCl₃): 24.0 ppm. ¹H: 8.58 (s, 1H), 8.33 (s, 1H), 7.77-6.47 (m, 19H), 5.68 (q, 1H), 5.13 (s, 2H), 3.88 (br), 2.81 (br) ppm. FTIR: 3378, 3248, 3196, 3140, 1683, 1633, 1608 cm⁻¹. ESMS: *m/z* 585 [M–Cl]. Anal. Calc. for C₃₀H₂₈N₂O₂PPdCl·0.25CH₂Cl₂: C, 56.53; H, 4.48; N, 4.36. Found: C, 56.20; H, 4.49; N, 3.93%.

2.3.6. Preparation of $C_6H_3(OH)$ {2-NC(0)CH₂N=CHC₆H₄PPh₂Pt(CH₃)} (4-CH₃)(**6a**), $C_6H_4(OH)$ {3-NC(0)CH₂N=CHC₆H₄PPh₂Pt(CH₃)} (**6b**) and $C_6H_4(OH)$ {4-NC(0)CH₂N=CHC₆H₄PPh₂Pt(CH₃)} (**6c**)

To the solids Pt(CH₃)₂(cod) (0.039 g, 0.12 mmol) and **3a** HH (0.054 g, 0.12 mmol) was added toluene (1 mL) to afford an initial yellow solution which later turned orange. After standing for approx. 2 d, a yellow crystalline solid **6a** formed which was collected by suction filtration, washed with petroleum ether (b.p. 60-80, 5 mL) and dried. Yield: 0.050 g, 65%. The κ^3 -PNN'-tridentate complexes **6b** (84% yield) and 6c (86% yield) were prepared similarly. Selected data for **6a**: ³¹P(CDCl₃): 13.3 ppm, ¹J(PtP) 3852 Hz. ¹H: 8.40(³J(PtH) 43.9, s, 1H), 7.57–6.66 (m, 17H), 4.80 (s, 2H), 2.08 (s, 3H), 0.00 (²J(PtH) 71.5 Hz, d, 3H) ppm. FTIR: 3422, 1636, 1616, 1590, 1568 cm⁻¹. ESMS: *m/z* 662 [M]. Anal. Calc. for C₂₉H₂₇N₂O₂PPt: C, 52.64; H, 4.12: N. 4.24. Found: C. 52.09: H. 4.12: N. 4.12%. Selected data for **6b**: ³¹P [(CD₃)₂SO]: 12.3 ppm, ¹/(PtP) 3736 Hz. ¹H: 9.22 (s, 1H), 9.06 (³/(PtH) 41.0, s, 1H), 8.09–6.44 (m, 18H), 4.91 (s, 2H), 0.00 (²/(PtH) 70 Hz, d, 3H) ppm. FTIR: 3368, 3230, 1635, 1611, 1567 cm⁻¹. ESMS: m/z 648 [M]. Anal. Calc. for C₂₈H₂₅N₂O₂PPt·0.75C₇H₈: C, 55.72; H, 4.37; N, 3.92. Found: C, 55.37; H, 4.39; N, 4.06%. Selected data for 6c: ³¹P [(CD₃)₂SO]: 12.2 ppm, ¹/(PtP) 3689 Hz. ¹H: 9.07 (s, 1H), 8.11-6.75 (m, 18H, arom. H), 4.91 (s, 2H), 0.00 (²/(PtH) 72.0 Hz, d, 3H) ppm. FTIR: 1628, 1573 cm⁻¹. ESMS: *m/z* 648 [M+H]. Anal. Calc. for C₂₈H₂₅N₂O₂PPt: C, 51.93; H, 3.90; N, 4.33. Found: C, 51.64; H, 3.72; N, 3.77%.

2.3.7. Preparation of $C_6H_3(O)$ {2-NC(O)CH₂N=CHC₆H₄PPh₂Pd}(4-CH₃) (**7a**) and $C_6H_3(O)$ {2-NC(O)CH₂N=CHC₆H₄PPh₂Pt}(4-CH₃) (**7b**)

A yellow CH₃OH (2 mL, HPLC grade) suspension of **4a** (0.099 g, 0.16 mmol) was treated with ^{*t*}BuOK (0.040 g, 0.36 mmol). The resulting purple suspension was stirred for 1 h, the solid **7a** collected by filtration and washed with a small portion of CH₃OH. Yield: quantitative. Compound **7b** was prepared similarly in 92% yield. Both **7a** and **7b** could be recrystallised from CH₂Cl₂/Et₂O/ hexanes. Selected data for **7a**: ³¹P (CDCl₃): 20.3 ppm. ¹H: 7.97 (s, 1H), 7.93 (s, 1H), 7.64–7.34 (m, 14H), 6.48 (d, 2H), 4.96 (s, 2H), 2.16 (s, 3H) ppm. FTIR: 1640 (CO), 1606, 1583 cm⁻¹. ESMS: *m/z*

557 [M]. *Anal.* Calc. for $C_{28}H_{23}N_2O_2PPd \cdot H_2O$: C, 58.49; H, 4.39; N, 4.87. Found: C, 58.36; H, 4.08; N, 4.82%. Selected data for **7b**: ³¹P (CDCl₃): 6.9 ppm, ¹*J*(PtP) 3374 Hz. ¹H: 8.25, ³*J*(PtH) 97.1 Hz (s, 1H), 8.07 (d, 1H), 7.71–6.50 (m, 16H), 5.03 (s, 2H), 2.21 (s, 3H) ppm. FTIR: 1635 (CO), 1610, 1587 cm⁻¹. ESMS: *m/z* 647 [M]. *Anal.* Calc. for $C_{28}H_{23}N_2O_2PPt$: C, 52.09; H, 3.60; N, 4.34. Found: C, 51.96; H, 3.74; N, 3.99%.

2.4. X-ray crystallography

Slow evaporation of a THF/Et₂O solution of **1b** gave suitable crystals whereas crystals of **3b** HH were obtained by vapour diffusion of Et₂O into a CH₂Cl₂/EtOH solution. For **6b** and **7b**, suitable crystals were obtained by vapour diffusion of Et₂O into a CHCl₃/ MeOH (or CH₂Cl₂) solution. Details of the data collection parameters and crystal data for 1b 1.5CH₂Cl₂, 3b HH 0.5Et₂O, 6b CHCl₃ and **7b**·0.5Et₂O are given in Table 1. Measurements for **3b** HH 0.5Et₂O, **6b** CHCl₃ and **7b** 0.5Et₂O were made on a Bruker SMART 1000 (Apex II for 1b-1.5CH₂Cl₂) CCD diffractometer using graphite monochromated radiation from a sealed tube Mo K α source. Narrow frame ω -scans were employed and intensities were corrected semi-empirically for absorption, based on symmetryequivalent and repeated reflections. The structures were solved by direct methods and refined on F^2 values for all unique data by full-matrix least squares. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were constrained in a riding model with U_{eq} set to 1.2 U_{eq} of the carrier atom (1.5 U_{eq} for methyl hydrogen) except for NH and OH coordinates in 1b 1.5CH₂Cl₂ and 3b HH 0.5Et₂O which were freely refined. In each structure the solvent of crystallisation was badly disordered and modelled by the Platon Squeeze procedure [22]. In **3b**·HH·0.5Et₂O, disorder in one of the phenyl rings [C(22)-C(27)] was modelled with restraints on geometry and displacement parameters; major component occupancy = 58.4(11)%. In **7b**·0.5Et₂O, the hydrogen atoms in the CH₃ groups [C(28) and C(56)] were disordered (50/50). Programs used included Bruker AXS APEX II and SMART [23] for diffractometer control and SAINT for frame integration [24], Bruker SHELXTL [25] for

Table	1
-------	---

Crystallographic data for $1b\cdot 1.5 CH_2 Cl_2,\, 3b\cdot HH\cdot 0.5 OEt_2,\, 6b\cdot CHCl_3$ and $7b\cdot 0.5 OEt_2.$

Compound	$\textbf{1b} \cdot 1.5 CH_2 Cl_2$	3b HH 0.50Et ₂	6b 0.50Et ₂	7b ·0.50Et ₂
Empirical formula	C ₁₆ H ₁₆ N ₂ O ₄ ·1.5CH ₂ Cl ₂	C27H24N2O2P-0.5OEt2	C28H25N2O2PPt-CHCl3	C28H23N2O2PPt-0.50Et2
Formula weight	427.70	476.51	766.93	682.60
Crystal system	orthorhombic	triclinic	monoclinic	triclinic
Space group	Fdd2	PĪ	$P2_1/c$	PĪ
a (Å)	17.772(5)	8.5606(13)	10.1906(6)	11.8789(4)
b (Å)	77.05(2)	10.0060(15)	16.8627(10)	14.6793(5)
c (Å)	4.7521(12)	16.348(2)	17.5250(10)	15.8954(5)
α (°)		87.437(2)		82.1451(5)
β (°)		76.095(2)	97.3012(10)	76.8028(5)
γ (°)		71.080(2)		85.4477(5)
$V(Å^3)$	6507(3)	1285.0(3)	2987.1(3)	2669.89(15)
Ζ	16	2	4	4
λ	0.71073	0.71073	0.71073	0.71073
T (K)	150(2)	150(2)	150(2)	150(2)
D _{calc} [mgm ³]	1.746	1.232	1.705	1.698
Absorption coefficient (mm ⁻¹)	0.594	0.137	5.048	5.347
Crystal habit and colour	plate, pale yellow	rod, colourless	tablet, yellow	block, red
Crystal size (mm ³)	$0.42 \times 0.14 \times 0.03$	$0.99 \times 0.08 \times 0.04$	$0.11 \times 0.10 \times 0.04$	$0.36 \times 0.35 \times 0.11$
θ Range (°)	2.35-25.00	2.15-27.50	1.68-29.01	1.81-28.96
Reflections collected	2864	10909	25926	23700
Independent reflections	1618 [<i>R</i> _{int} = 0.0335]	5654 $[R_{int} = 0.0283]$	7213 $[R_{int} = 0.0508]$	12353 $[R_{int} = 0.0177]$
Reflections with $F^2 > 2\sigma(F^2)$	1286	3498	4830	10504
Completeness (%)	99.6	99.0	100.0	99.3
Number of parameters	208	341	309	613
Final R ^a , R ^b	0.0634, 0.1805	0.0548, 0.1451	0.0355, 0.0707	0.0207, 0.0537

^a $R = \sum ||F_0| - |F_c|| / \sum |F_0|.$

^b $wR_2 = \left[\sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2]\right]^{1/2}$.

structure solution, refinement, and molecular graphics and local programs.

3. Results and discussion

3.1. Ligand synthesis

The nonsymmetric ligands **3a**·**HH** and **3b**·**HH** (Scheme 1) were synthesised, starting from commercially available 2-amino-4methylphenol or 3-aminophenol, using an adapted method for the synthesis of ligands with N_2O_2 and N_3O donor sets [26]. Hence reaction of the appropriate aminophenol with carbobenzyloxyglycine and a slight excess of DCC in THF for 4 h gave **1a** or **1b** in 73% and 68% yields, respectively. Hydrogenolysis of **1a** or **1b** with Pd/C (10%) and cyclohexene in refluxing EtOH afforded the primary amines **2a** and **2b**. Characterising data for **1a–2b** are given in Section 2.

The X-ray structure of **1b**·1.5CH₂Cl₂ has been determined (Fig. 1) and confirms the successful incorporation of the {3-NHC(O)CH₂NHCO₂Bz} group. A 2-dimensional structure (SI-FIG1) propagating in the *ac* plane was obtained through a combination of strong (amino)NH···O(amide) [N(1)···O(2') 2.777(5) Å, N(1)-H(1A)···O(2') 156(5)°; N(2)···O(3") 2.901(6) Å, N(2)-H(2)···O(3") 149(5)°] and (hydroxyl)O-H···O(amide) [O(1)···O(3"') 2.870(5) Å, O(1)-H(1)···O(3"'') 162(7)°; symmetry operators ' = $z + \frac{1}{4}$; $x - \frac{1}{4}$, $-y + \frac{1}{4}$, $z - \frac{1}{4}$; " = x, y, z + 1, " = $x + \frac{1}{4}$, $-y + \frac{1}{4}$] intermolecular H-bonding interactions.

Schiff base condensation of **2a** or **2b** with $C_6H_4(CHO)(2-PPh_2)$ in refluxing EtOH gave, after simple workup, the phosphino(imines) **3a HH** or **3b HH** in 61% and 53% yields, respectively. Schiff base

Fig. 1. X-ray structure of 1b. The CH₂Cl₂ solvent of crystallisation and all hydrogen atoms except those on N(1), N(2) and O(1) have been removed for clarity.

condensation was readily ascertained by ³¹P and ¹NMR spectroscopy. Compounds **3a HH** and **3b HH** adopt an *E*-(*anti*-)configuration as previously found for other phosphino(imines) [16a,17a,27] and further supported, in the case of **3b**·**HH**, by a single crystal X-ray study. The X-ray structure of 3b·HH·0.50Et₂ (Fig. 2) has been determined with the geometry around P(1) being essentially distorted tetrahedral with C-P-C angles in the range $101.08(11)^{\circ}-103.30(11)^{\circ}$. The P(1) group faces both the N(1)/N(2) donor atoms in contrast to our previous work [17a] in which, for the 2-positioned -OH isomer, the O(2)/N(1)/N(2) groups point away from the -PPh₂ substituent. Various H-bonding interactions exist including an intramolecular N(1)...H(2)-N(2) H-bond [N(1)…N(2) 2.668(2) Å, N(1)…H(2)–N(2) 117(2)°] and an intermolecular O(1)…H(2A')–O(2') [O(1)…O(2') 2.687(2) Å, O(1)…H(2A') O(2') 176(3)°; symmetry operator ' = -x+3, -y+1, -z+1] H-bond linking molecules into head-to-tail dimer pairs (SIFIG2) with an $R_2^2(16)$ motif [28]. Intermolecular O···H–O hydrogen bonded 1Dchains were previously observed by us when the phenolic group is located in the 4-position [17a].

3.2. Coordination studies

The reactivity of **3a-HH** and **3b-HH** towards Pd^{II} and Pt^{II} square planar metal centres was briefly investigated in order to ascertain

⁽⁾н(2А)

Fig. 2. X-ray structure of **3b-HH**. The Et_2O solvent of crystallisation and all hydrogen atoms except those on N(2) and O(2) have been removed for clarity.

the geometric flexibility of both new ligands. Phosphino(imines) are well known ligands which coordinate in a κ^2 -PN-chelating manner at various transition metal centres [27]. Treatment of **3a** HH or **3b** HH with MCl₂(cod) (M = Pt, Pd) afforded the κ^2 -PNchelate complexes $MCl_2(3a \cdot HH)$ (M = Pd 4a; M = Pt 4b) and $MCl_2(3b \cdot HH)$ (M = Pt 4c) in excellent yields (>90%). For NMR comparison purposes, the isomeric 4-phenol positioned metal(II) complexes 4d and 4e were also prepared. Furthermore we successfully synthesised the mononuclear cationic complexes $[Pd(\eta^3-C_3H_5)]$ (3a HH)]Cl 5a and [Pd(η^3 -C₃H₅)(3b HH)]Cl 5b from the room temperature reaction of $[Pd(\mu-Cl)(\eta^3-C_3H_5)]_2$ and **3a HH** or **3b HH** in CH₂Cl₂. The ³¹P{¹H} NMR spectra of **4a**, **4d**, **5a** and **5b** all showed downfield phosphorus chemical shifts [δ (P) 33.1; 37.9; 24.3 and 24.0 ppm, respectively]. For **4b**, **4c** and **4e**, in (CD₃)₂SO solution, three Pt^{II} species were observed with ¹J_{PtP} coupling constants typically in the range of 3204-3952 Hz suggesting possible coordination of one or both the NH/OH donor groups and formation of cationic platinum(II) species in highly polar DMSO solvent media. Other characterising data are given in Section 2.

Reaction of **3a**·**HH** or **3b**·**HH** with Pt(CH₃)₂(cod) in C₇H₈ at ambient temperature gave the neutral κ^3 -PNN'-tridentate complexes **6a** and **6b** in 65% and 84% yields, respectively. In the ³¹P{¹H} NMR spectra a single ³¹P resonance was observed at δ (P) 13.3 (**6a**) and 13.2 (**6b**) ppm with ¹J_{PtP} of approx. 3800 Hz. The ¹H NMR spectra clearly confirmed the presence of one methyl bound ligand and was further supported by the single crystal X-ray structure determination of **6b**·CHCl₃ (Fig. 3).

Complex **6b** displayed an essentially square-planar geometry around the Pt^{II} centre with bond angles in the range $81.07(15)^{\circ}$ - $95.13(11)^{\circ}$ (Table 2). The Pt(1)–N(1)–C(8)–C(7)–C(2)–P(1) sixmembered ring is essentially flat with Pt(1) and N(1) lying 0.456 Å and 0.161 Å, respectively out of the plane defined by atoms C(8), C(7), C(2) and P(1). For the five-membered ring, C(9) and N(1) are 0.025 Å and 0.024 Å, respectively out of the plane defined by atoms Pt(1), N(1), C(9), C(10) and N(2). Dimer pairs are formed through intermolecular O···H–O H-bonding [O(1)···O(2A) 2.636(5) Å, O(1)···H(2A)–O(2A) 174°; symmetry operator A = -x + 1, -y, -z] generating an $R_2^2(16)$ ring motif [28].

Reaction of **4a** or **4b** with ^tBuOK, in CH₃OH, gave the neutral complexes **7a** and **7b** in which κ^4 -PNN'O-tetradendate coordination of **3a**^{2–} has occurred. For **7b**, the ³¹P{¹H} NMR spectrum showed a reduction (~500 Hz) in ¹J_{PtP} coupling relative to the κ^3 -PNN'-tridentate coordination observed in **6a**. The X-ray structure of **7b**·0.5Et₂O has been determined (Fig. 4 and SIFIG3) with selected bond lengths and angles given in Table 3. There are two molecules with very similar conformations in the asymmetric unit. The Pt–P, Pt–N and Pt–O bond lengths are all broadly as anticipated [17a,29]. Consistent with κ^4 -PNN'O-tetradendate coordination is the presence of one six- (PtPCCCN) and two five-membered (PtNCCN and PtNCCO) chelate rings. The three metallocyclic conformations in **7b** can be described as follows: the Pt(1)–N(1)–

Fig. 3. X-ray structure of 6b. The CHCl₃ solvent of crystallisation and all hydrogen atoms except those on O(2) and O(2A) have been removed for clarity.

Table 2Selected bond lengths and angles for 6b·CHCl3.

Bond length (Å)	
Pt(1)-P(1)	2.1828(13)
Pt(1)-N(1)	2.059(4)
Pt(1)-N(2)	2.062(4)
Pt(1)-C(1)	2.055(5)
C(8)-N(1)	1.283(6)
C(10)-O(1)	1.257(5)
Bond angle (°)	
P(1)-Pt(1)-C(1)	91.24(15)
P(1)-Pt(1)-N(1)	95.13(11)
P(1)-Pt(1)-N(2)	175.86(10)
N(1)-Pt(1)-C(1)	173.36(18)
N(1)-Pt(1)-N(2)	81.07(14)

Fig. 4. X-ray structure of 7b. The Et_2O solvent of crystallisation and all hydrogen atoms have been removed for clarity.

C(7)-C(6)-C(1)-P(1) ring is essentially flat with P(1) lying 0.40 Å [or 0.27 Å for P(2)] out of the plane defined by atoms Pt(1), N(1), C(7), C(6) and C(1), whereas both five-membered rings are effectively planar [within 0.06 Å for Pt(1)-N(1)-C(8)-C(9)-N(2) and

Table 3				
Selected bond	lengths and	angles	for 7h .() 50Et ₂ ^a

Bond length (Å)	
Pt(1)-P(1)	2.2259(6) [2.2263(7)]
Pt(1)–N(1)	1.974(2) [1.972(2)]
Pt(1)-N(2)	1.989(2) [1.995(2)]
Pt(1)-O(2)	2.0010(17) [2.0103(19)]
C(7)-N(1)	1.285(3) [1.288(4)]
C(9)-O(1)	1.234(3) [1.228(3)]
Bond angle (°)	
P(1)-Pt(1)-O(2)	97.95(5) [97.42(5)]
P(1)-Pt(1)-N(1)	95.13(6) [95.60(7)]
P(1)-Pt(1)-N(2)	177.71(6) [179.01(7)]
N(1)-Pt(1)-O(2)	166.49(8) [166.92(8)]
N(1)-Pt(1)-N(2)	83.42(8) [84.22(10)]
N(2)-Pt(1)-O(2)	83.40(8) [82.74(9)]

^a Equivalent parameters for the second independent molecule are given in square parentheses.

0.005 Å for Pt(1)–N(2)–C(10)–C(15)–O(2) for mol. 1; 0.06 Å and 0.008 Å for mol. 2].

4. Conclusions

In summary, we have shown that new multifunctionalised phosphino(imines) containing predisposed NH/OH groups can be prepared and shown to adopt various ligation modes at square planar metal centres such as Pt^{II} and Pd^{II}.

Acknowledgements

We are extremely grateful to Johnson Matthey for their kind donation of precious metals and to the EPSRC National Mass Spectrometry Service at Swansea University for data collection.

Appendix A. Supplementary material

CCDC 833456, 833457, 833458 and 833459 contain the supplementary crystallographic data for $1b \cdot 1.5$ CH₂Cl₂, $3b \cdot$ HH $\cdot 0.5$ Et₂O, **6b** ·CHCl₃ and **7b** · 0.5Et₂O, respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.ica.2011.09.045.

References

- [1] Y. Segawa, M. Yamashita, K. Nozaki, J. Am. Chem. Soc. 131 (2009) 9201.
- [2] (a) P. O'Leary, C.A. van Walree, N.C. Mehendale, J. Sumerel, D.E. Morse, W.C. Kaska, G. van Koten, R.J.M. Klein Gebbink, Dalton Trans. (2009) 4289;
 (b) J. Choi, Y. Choliy, X. Zhang, T.J. Emge, K. Krogh-Jespersen, A.S. Goldman, J. Am. Chem. Soc. 131 (2009) 15627;
- (c) B.L. Dietrich, K.I. Goldberg, D.M. Heinekey, T. Autrey, J.C. Linehan, Inorg. Chem. 47 (2008) 8583.
- [3] (a) A. García-Camprubi, M. Martin, E. Sola, Inorg, Chem. 49 (2010) 10649;
 (b) E. Morgan, D.F. MacLean, R. McDonald, L. Turculet, J. Am. Chem. Soc. 131 (2009) 14234;

(c) D.F. MacLean, R. McDonald, M.J. Ferguson, A.J. Caddell, L. Turculet, Chem. Commun. (2008) 5146.

[4] (a) L.C. Gregor, C.-H. Chen, C.M. Fafard, L. Fan, C. Guo, B.M. Foxman, D.G. Gusev, O.V. Ozerov, Dalton Trans. 39 (2010) 3195;

(b) M. Feller, E. Ben-Ari, M.A. Iron, Y. Diskin-Posner, G. Leitus, L.J.W. Shimon, L. Konstantinovski, D. Milstein, Inorg. Chem. 49 (2010) 1615;

- (c) B. Askevold, M.M. Khusniyarov, E. Herdtweck, K. Meyer, S. Schneider, Angew. Chem., Int. Ed. 49 (2010) 7566;
- (d) J.I. van der Vlugt, J.N.H. Reek, Angew. Chem., Int. Ed. 48 (2009) 8832;
- (e) D. Benito-Garagorri, L. Goncalo Alves, M. Puchberger, K. Mereiter, L.F. Veiros, M.J. Calhorda, M. Deus Carvalho, L.P. Ferreira, M. Godinho, K. Kirchner, Organometallics 28 (2009) 6902;

(f) A. Friedrich, R. Ghosh, R. Kolb, E. Herdtweck, S. Schneider, Organometallics 28 (2009) 708;

(g) N.D. Jones, P. Meessen, U. Losehand, B.O. Patrick, B.R. James, Inorg. Chem. 44 (2005) 3290.

- [5] (a) A.E.W. Ledger, A. Moreno, C.E. Ellul, M.F. Mahon, P.S. Pregosin, M.K. Whittlesey, J.M.J. Williams, Inorg. Chem. 49 (2010) 7244;
 (b) G. Asensio, A.B. Cuenca, M.A. Esteruelas, M. Medio-Simón, M. Oliván, M. Valencia, Inorg. Chem. 49 (2010) 8665;
 (a) O. Maing, J. Leargh, P.G. Curgar, Contract Physics 24 (2005) 2402.
- (c) Q. Major, A.J. Lough, D.G. Gusev, Organometallics 24 (2005) 2492.
 [6] C. Gracia, G. Marco, R. Navarro, P. Romero, T. Soler, E.P. Urriolabeitia, Organometallics 22 (2003) 4910.
- [7] (a) A. Picot, H. Dyer, A. Buchard, A. Auffrant, L. Vendier, P. Le Floch, S. Sabo-Etienne, Inorg. Chem. 49 (2010) 1310;
 - (b) S.D. Phillips, J.A. Fuentes, M.L. Clarke, Chem. Eur. J. 16 (2010) 8002;
 - (c) S. Liu, R. Peloso, P. Braunstein, Dalton Trans. 39 (2010) 2563;
 - (d) M.R.J. Elsegood, A.J. Lake, M.B. Smith, Eur. J. Inorg. Chem. (2009) 1068;
 - (e) B.M. Schmiege, M.J. Carney, B.L. Small, D.L. Gerlach, J.A. Halfen, Dalton Trans. (2007) 2547;
 - (f) C. Redshaw, V.C. Gibson, M.R.J. Elsegood, W. Clegg, Chem. Commun. (2007) 1951:
 - (g) A. Choualeb, A.J. Lough, D.G. Gusev, Organometallics 26 (2007) 5224.
- [8] (a) O. del Campo, A. Carbayo, J.V. Cuevas, A. Muñoz, G. Garcia-Herbosa, D. Moreno, E. Ballesteros, S. Basurto, T. Gómez, T. Torroba, Chem. Commun. (2008) 4576;

(b) P. Raghavendra Kumar, S. Upreti, A.K. Singh, Polyhedron 27 (2008) 1610; (c) J.D.G. Correia, A. Domingos, I. Santos, H. Spies, J. Chem. Soc., Dalton Trans. (2001) 2245;

(d) J.D.G. Correia, A. Domingos, A. Paulo, I. Santos, J. Chem. Soc., Dalton Trans. (2000) 2477;

(e) P. Bhattacharyya, M.L. Loza, J. Parr, A.M.Z. Slawin, J. Chem. Soc., Dalton Trans. (1999) 2917.

- [9] (a) M. Doux, L. Ricard, P. Le Floch, N. Mézailles, Dalton Trans. (2004) 2593;
 (b) V. Gómez-Benítez, S. Hernández-Ortega, D. Morales-Morales, Inorg. Chim. Acta 346 (2003) 256.
- [10] (a) A. Gondoh, T. Koike, M. Akita, Inorg. Chim. Acta 374 (2011) 489;
 (b) C. Schotes, A. Mezzetti, J. Am. Chem. Soc. 132 (2010) 3652;

(c) M.R.J. Elsegood, A.J. Lake, M.B. Smith, Dalton Trans. (2009) 30;
(d) N.L. Fry, M.J. Rose, C. Nyitray, P.K. Mascharak, Inorg. Chem. 47 (2008)

- 11604.
- (e) W.A. Chomitz, J. Arnold, Chem. Commun. (2007) 4797;
- (f) J. Bennett, A.D. Rae, G. Salem, N.C. Ward, P. Waring, K. Wells, A.C. Willis, J. Chem. Soc., Dalton Trans. (2002) 234.
- [11] (a) K.J. Blackmore, N. Lal, J.W. Ziller, A.F. Heyduk, J. Am. Chem. Soc. 130 (2008) 2728;
 - (b) B. Saito, H. Egami, T. Katsuki, J. Am. Chem. Soc. 129 (2007) 1978;
- (c) C. González-Arellano, A. Corma, M. Iglesias, F. Sánchez, Chem. Commun. (2005) 1990.
 [12] (a) A.R. Cowley, J.R. Dilworth, P.S. Donnelly, J.M. White, Inorg. Chem. 45 (2006)
- [12] (a) A.K. Cowiey, J.K. Dilworth, P.S. Donnelly, J.M. white, Inorg. Chem. 45 (2006) 496;

(b) P.J. Blower, T.C. Castle, A.R. Cowley, J.R. Dilworth, P.S. Donnelly, E. Labisbal, F.E. Sowrey, S.J. Teat, M.J. Went, Dalton Trans. (2003) 4416.

[13] (a) M. Ciclosi, F. Estevan, P. Lahuerta, V. Passarelli, J. Pérez-Prieto, M. Sanaú, Dalton Trans. (2009) 2290; (b) M. Ciclosi, J. Lloret, F. Estevan, P. Lahuerta, M. Sanaú, J. Pérez-Prieto, Angew.

(b) M. Ciclosi, J. Lloret, F. Estevan, P. Lanuerta, M. Sanau, J. Perez-Prieto, Angew. Chem., Int. Ed. 45 (2006) 6741.

- [14] M.T. Whited, N.P. Mankad, Y. Lee, P.F. Oblad, J.C. Peters, Inorg. Chem. 48 (2009) 2507.
- [15] M.T. Whited, E. Rivard, J.C. Peters, Chem. Commun. (2006) 1613.
- [16] (a) S.E. Durran, M.R.J. Elsegood, S.R. Hammond, M.B. Smith, Inorg. Chem. 46 (2007) 2755;
- (b) Y.K. Kim, S.J. Lee, K.H. Ahn, J. Org. Chem. 65 (2000) 7807.
- [17] (a) S.E. Durran, M.R.J. Elsegood, S.R. Hammond, M.B. Smith, Dalton Trans. 39 (2010) 7136;

(b) G.A. Bogdanovic, A. Spasojević-de Biré, B.V. Prelesnik, V.M. Leovac, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 54 (1998) 766.

- [18] R.J. Doyle, G. Salem, A.C. Willis, J. Chem. Soc., Dalton Trans. (1997) 2713.
- [19] J.E. Hoots, T.B. Rauchfuss, D.M. Roundhill, Inorg. Chem. 21 (1982) 175.
- [20] (a) D. Drew, J.R. Doyle, Inorg. Synth. 13 (1972) 47;
- (b) J.X. McDermott, J.F. White, G.M. Whitesides, J. Am. Chem. Soc. 98 (1976) 6521.
- [21] E. Costa, P.G. Pringle, M. Ravetz, Inorg. Synth. 31 (1997) 284.
- [22] A.L. Spek, Acta Crystallogr., Sect. A 46 (1990) C34.
- [23] APEX II and SMART Programs for Diffractometer Control, Bruker AXS Inc., Madison, WI, 2006 and 2001.
- [24] SAINT Software for CCD Diffractometers, Bruker AXS Inc., Madison, WI, 2001 and 2006.
- [25] (a) G.M. Sheldrick, SHELXTL User Manual, Version 6.10, Bruker AXS Inc., Madison, WI, 2000.;

(b) G.M. Sheldrick, Acta Crystallogr., Sect. A 64 (2008) 112.

- [26] (a) M.R. Bermejo, A.M. González, M. Fondo, A. García-Deibe, M. Maneiro, J. Sanmartin, O.L. Hoyos, M. Watkinson, New J. Chem. 24 (2000) 235; (b) M.R. Bermejo, A.M. González, M. Fondo, M. Maneiro, M. Rey, M. Vázquez, O.L. Hoyos, J.C. García-Monteagudo, Inorg. Chim. Acta 307 (2000) 106; (c) O.L. Hoyes, M.R. Bermejo, M. Fondo, A. García-Deibe, A.M. González, M. Maneiro, R. Pedrido, I. Chem. Soc., Dalton Trans. (2000) 3122.
- [27] M.-H. Thibault, B.E.G. Lucier, R.W. Schurko, F.-G. Fontaine, Dalton Trans. (2009) 7701.
- [28] (a) M.C. Etter, J.C. MacDonald, J. Bernstein, Acta Crystallogr., Sect. B 46 (1990) 256;

(b) M.C. Etter, Acc. Chem. Res. 23 (1990) 120;

(c) J. Bernstein, R.E. Davis, L. Shimoni, N.-L. Chang, Angew Chem., Int. Ed. Engl. 34 (1995) 1555.

[29] Y. Shimazaki, N. Arai, T.J. Dunn, T. Yajima, F. Tani, C.F. Ramogida, T. Storr, Dalton Trans. 40 (2011) 2469.