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Over ten thousand biologically active indole derivatives have 
been identified to date. Of those, over 200 are currently marked 

as drugs or undergoing clinical trials.1 As such, new or improved 

methods for the construction of this heterocyclic system are 

constantly needed. This is particularly true for the development 

of safe and efficient large scale preparations, given the ubiquitous 

characteristics of indoles among bioactive molecules and natural 

products.
2
 As part of our pharmacological compound evaluation, 

we were interested in synthesizing 7-alkoxy-1,2,3,4-tetrahydro-

cyclopenta[b]-indol-3-yl derivatives (see Fig. 1 for numbering of 

the 1,2,3,4-tetrahydrocyclopenta[b]indole ring system). One of 

  

 

 

 

 

Figure 1. 1,2,3,4-Tetrahydrocyclopenta[b]indole numbering system. 

these compounds, APD334
3,8

 (Fig. 2), was selected as a clinical 

 

 

 

 

  

Figure 2. APD334 

candidate for the potential treatment of autoimmune diseases. 
Although a variety of ring-substituted indoles are accessible 

through classical methods such as the Fischer, Bischler, 

Madelung, Reissert, Nenitzescu and Gassman procedures,
4
 

limitations can arise from difficult to obtain precursors and/or 

low reaction conversions.
5
 Our attempts to synthesize 7-oxo-

1,2,3,4-tetrahydrocyclopenta[b]-indol-3-yl derivatives using the 

Nenitzescu reaction, for example, led only to multicomponent 

mixtures. A telescoped condensation intramolecular Heck 

cyclization strategy (Scheme 1),
6,8

 on the  

 

 

 

 

 

 

 

 

 

Scheme 1. (i) Si(OEt)4, PPTS, DMF. (ii) Pd-catalyst, DIEA. 

 

other hand, proved more successful but was still restrictive. As 

expected, iodides (Table 1, Entries 1-3) were superior to 

bromides (Table 1, Entries 4-6) in the cyclization step. The 

benzyloxy derivative 4 (R = Bn), however, could not be obtained 
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under a variety of conditions and palladium catalysts (e.g. 

Pd(dppb)Cl2, Pd( dppp)Cl2, Table 1, Entries 7-12).
7
 Conversely, 

the methoxy analogue 4 (R = Me) formed as the major product, 

as determined by LC-MS, but due to 4 co-eluting with Si(OEt)4 

or products derived therefrom, it could only be isolated in modest 

yields after extensive column chromatography on silica (Table 1, 
Entries 1-3). These results made us question the generality 

  

Table 1. Formation of 4 under the conditions described in 

Scheme 1 utilizing different Pd-catalysts 

Entry R X Pd-catalyst Yield % 

1 Me I Pd(OAc)2 32 (4a)  

2 Me I Pd(dppb)Cl2 29 (4a) 

3 Me I Pd(dppp)Cl2 44 (4a) 

4 Me Br Pd(OAc)2 5 (4a) 

5 Me Br Pd(dppb)Cl2 6 (4a) 

6 Me Br Pd(dppp)Cl2 6 (4a) 

7 Bn I Pd(OAc)2 decomposition 

8 Bn I Pd(dppb)Cl2 decomposition 

9 Bn I Pd(dppp)Cl2 decomposition 

10 Bn Br Pd(OAc)2 no reaction 

11 Bn Br Pd(dppb)Cl2 no reaction 

12 Bn Br Pd(dppp)Cl2 no reaction 

 

and scalability of this approach and prompted us to explore other 

routes. Thus, herein we now report a novel and more scalable 

approach to the 7-oxo-1,2,3,4-tetrahydrocyclopenta[b]-indol-3-yl 

system with broader application 

 

We first evaluated the condensation/cyclization reaction of 4-
substituted phenylhydrazines 5 with ethyl 2-(2-

oxocylopentyl)acetate (2) (Figure 3). Although the correspon- 

 

 

 

 

 

 

 

 
Figure 3. Fischer Indolization of 2 with various 4-substituted phenyl 
hydrazines. 

 

ding phenylhydrazones 6 formed successfully in-situ, subsequent 

cyclization, independent of the electronic nature of the R-groups 

investigated, invariably led to product mixtures in which the 

desired indoles 8 were only minor components.
9
 Similar results 

were obtained with the isolated phenylhydrazones 6 under a 

variety of conditions. We reasoned that failure to mainly produce 

the indoles (8) of interest was, in part, due to non-selective 

tautomerization of the phenylhydrazones 6 to ene-hydrazines 7.
10

 
Consequently, we decided to block one side of the cyclopentano-

ne derivative to tautomerization by introducing a second 

functional group at the same carbon, with the potential for 

removal at a later stage. Thus, 10
11 was obtained quantitatively,  

 

 

 

 

 

Scheme 2. (i) K2CO3, Acetone , reflux. 

 

in g to kg scale, after commercially available ethyl 2-

oxocyclopentanecarboxylate (9) was alkylated with ethyl 2-

bromoacetate in the presence of potassium carbonate in acetone 

(Scheme 2). Alkylation of 9 with other 2-bromo-esters and -
nitriles worked similarly well.  

To test our hypothesis, 4-methoxyphenyl hydrazine (11a) and 10 

were subjected to acid catalyzed Fischer indolization. To our 

delight, the corresponding indole derivative formed under a 

variety of conditions, and in the most promising iteration, merely 

heating the two precursors in the presence of stoichiometric 
amounts of acetic acid in ethanol gave the corresponding product 

12a in high yield (Scheme 3).
12

 Under the established parameters, 

this procedure was deemed safe and operationally simple enough 

to be carried out in hundreds of grams. Interestingly, reaction of 

4-benzyloxyphenyl hydrazine (11b) with 10 also resulted in the 

successful formation of the indole derivative 12b. This was 
particularly pleasing since, for unknown reasons to us, the 

condensation intramolecular Heck cyclization strategy (vide 

supra) of the respective benzyloxy aniline 1 failed, in our 

laboratory, to yield the corresponding indole derivative 4 

(Scheme 1, Table 1, Entries 7-12). 

 

          

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3. (i)  1 equiv AcOH, EtOH, 75 °C. 

 

  Next, we focused our attention to the removal of the ester 

dummy group. We reasoned that, after hydrolysis, 

decarboxylation should be feasible due to the 1,3 relationship of 
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the resulting pseudo-benzylic acid with the indole double bond. 

Thus, treatment of diester 12a with 50% aq NaOH in 

ethanol/water gave the corresponding diacid 13a in 61% yield 

(Scheme 4). As expected and in analogy to β-ketoacids, simply  

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4. (i) 50% aq NaOH, EtOH/H2O then 6 N HCl. (ii) AcOH, 

60 °C. 

heating 13a in acetic acid resulted in smooth decarboxylation to 

the corresponding tricycle 14a.13
 Similarly, 12b gave after 

hydrolysis (13b) and decarboxylation the corresponding acid 14b 

in 55% overall yield.  

Fischer re-esterification of 14a,b and 15 to 4a,b and 16, 
respectively, was  easily achieved via refluxing the corresponding 

acids in ethanol with a catalytic amount of sulfuric acid (Scheme 

5). Acid catalyzed reaction with other alcohols also succeeded  

  

  

 

 

  

 

 

 

 

 

 

 

 

Scheme 5. (i) EtOH, H2SO4 (0.6 equiv), reflux.  (ii) 3 equiv BBr3, 

CH2Cl2, -5 to 0 °C or EtOH/H2O, NH4
+HCO2

-, 10% Pd/C, 40 °C. 

(iii) 3 equiv BBr3, CH2Cl2, -5 to 0 °C then EtOH, 40 °C. 

 

neat or by using solvents such as chloroform or toluene. De-

methylation of 14a, on the other hand, was best achieved with 

BBr3 whereas transfer hydrogenation
14

 of 14b using ammonium 

formate in the presence of palladium-on-carbon (10% Pd/C) gave 
the same product 15 without significant reduction of the indole to 

the indoline.
15

 De-methylation of 4a or de-benzylation of 4b 

using the respective conditions described above, gave indole 16 

in modest yield. 16 could also be conveniently obtained from 

14a via a one pot de-methylation/re-esterification procedure 

using excess BBr3 and quenching of the resulting reaction 

mixture with ethanol.
16 

In summary, we have developed a new entry into the 1,2,3,4-

tetrahydrocyclopenta[b]-indol-3-yl core by utilizing a Fischer 
indolization of geminally substituted cyclopentanone derivatives 

followed by a pseudo-benzylic decarboxylation of the resulting 

acids. Furthermore, we demonstrate that substituents at the 3- and 

7-positions can, for example, be useful synthetic handles for 

further functionalization. We are now evaluating  the asymmetric 

version of the pseudo-benzylic decarboxylation step and general 
applicability of this methodology. 
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