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Control of selectivity in the generation and reactions of oxonium ylidesw
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Dirhodium catalyzed reactions of aryl-substituted tetrahydro-

pyranone diazoacetoacetates produce ylide intermediates that

unexpectedly yield two oxabicyclo[4.2.1]-nonane diastereoisomers,

but a single diastereoisomer is formed by increasing the steric bulk

of the aryl substituent.

The synthesis and controlled reactions of oxonium ylides formed

through catalytic reactions of diazocarbonyl compounds with

ethers1 have high potential for the construction of diverse

natural products.2 In our search for viable substrates that could

take advantage of oxonium ylide chemistry, we considered the

tetrahydro-4-pyranone framework 3 which is accessible in a two

step synthetic process from synthetically available reactants

(Scheme 1). The hetero-Diels–Alder reaction has numerous

variants,3 including those that are highly enantioselective.4 The

subsequent Mukaiyama-Michael reaction has recently been

reported to occur in high yield5 and exceptional diastereocontrol

is well known in Lewis acid catalyzed reactions of 1 with silyl

enol ethers.6 We anticipated then that transition metal catalyzed

reaction of 3 would form oxonium ylide 4 and from this reaction

intermediate the resultant [1,2]-rearrangement product 5 would

be obtained with high selectivity.7 Consistent with this expecta-

tion, West and coworkers have reported that a similar six-

membered ring diazoketone underwent [1,2]-rearrangement with

complete stereoretention, which occurred in competition with

C–H insertion and elimination (Scheme 2).8b The structural

oxabicyclo[4.2.1]nonane framework is found in a number of

natural products,9 and a limited number of approaches have

been used for their synthesis.10

Phenyldihydropyranone 6a was prepared by BF3�Et2O-

mediated hetero-Diels–Alder reaction between benzaldehyde

and Danishefsky’s diene.11 This process was followed by the

Mukaiyama–Michael reaction of 6a with methyl 3-(tert-butyl-

dimethylsilanoxy)-2-diazo-3-butenoate 2 catalyzed by Zn(OTf)2
(1.0 mol%) in refluxing dichloromethane.5 After hydrolysis and

purification, 7a was isolated in 99% yield (Scheme 3) and was

determined to be solely the trans isomer by NOE analysis

(see supporting informationw). This high stereocontrol is general

for reactions of 2 with all 6-substituted 5,6-dihydro-4-pyranones.

Dinitrogen extrusion catalyzed by 1.0 mol% of dirhodium

(perfluorobutyrate) [Rh2(pfb)4] in refluxing dichloromethane

produced, after chromatography, a white solid that was the

oxabicyclo[4.2.1]nonan-4,8-dione product 8 in 77% isolated yield

(Scheme 4). No evidence was obtained for the product from C–H

insertion into the C–H bond adjacent to the phenyl substituent

of 7a. Because the trans isomer 7awas the reactant, and analogous

to the process described in Scheme 2, we expected that the final

product would also have that same stereochemistry. However, the

reaction resulted in a mixture of two stereoisomers in a 71 : 29
Scheme 1 Strategy for the synthesis of the oxabicyclo[4.2.1]-nonane.

Scheme 2 Stereoretentive [1,2] rearrangement and C–H insertion.

Scheme 3 Coupled hetero-Diels–Alder and highly diastereoselective

Mukaiyama–Michael reactions.

Scheme 4 Products from Rh(II) catalyzed dinitrogen extrusion with

diazo substituted tetrahydropyranones.
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molar ratio that were chromatographically and spectrally distin-

guishable. The isomer ratio was invariant with common ligands on

dirhodium (tfa = trifluoroacetate, OAc, cap = caprolactamate)

that cover a broad range of electronic influences.12 Solvent and

temperature influences were also minor.13 1H NMR spectroscopic

evaluation showed that the two compounds were constitutionally

identical and had the same connectivity. Spectral analysis provided

their identification as the anti and syn stereoisomers of 1-carbo-

methoxy-2-phenyl-9-oxabicyclo[4.2.1]nonan-4,8-dione 8a, but

only through the crystal structures of the major isomer (71% of

the total) and theminor isomer (29%of total) could their identities

as the major and minor isomers be established (Fig. 1). Note that

the original trans-stereochemistry of the reactant 7a (positions 2

and 6) is formally inverted in forming anti-8a.

We investigated the influence of substituents at the para-

position on the benzene ring in 7 on the ratio of syn-8a to anti-

8a. The results from this investigation are reported in Table 1.

The catalytic dinitrogen extrusion/metal carbene-derived reac-

tions of 7 with the strongly electron-withdrawing p-NO2 7b and

p-CF3 7c substituents were remarkably clean, and isolation of

anti-8 and syn-8 from both substrates was achieved in very high

yield. Compounds 7d and 7e, which have electron-donating para

substituents, produced elimination products trans-9d and cis-9e

(Fig. 2) in competition with [1,2]-rearrangement products anti-8

and syn-8. The ratios of syn-8(d or e) to anti-8(d or e) from 7d or

7e were the same, within experimental error, as those from 7a

with the same catalyst. Also, the trans-9(d and e) to cis-9(d and e)

ratios were remarkably similar to those of the corresponding

ratios of syn-8a to anti-8a, suggesting that the diastereoselection

established in the formation of 8 and 9 could both be determined

in the ylide formation step.

How did this apparent ‘‘isomerism’’ arise? The most common

explanation is that the cause of this erosion of stereochemical

retention is a stepwise mechanism involving radical or ion pairs

in the formation of 8 from the ylide precursor.8,14 The lack of

product dependence on catalyst suggests that the catalyst is not

bound to the ylide during the product forming step. In the case

of diazoacetoacetate 7 the stepwise mechanism would involve

ylide formation followed by homolytic or heterolytic cleavage

of the benzyl-oxygen bond, then bond rotation at the benzyl

carbon and ring closure to form the observed anti-8 and syn-8

products. However, the absence of a substituent effect on the

isomer ratio and the production of a single ylide-derived isomer

from a comparable diazoketone (Scheme 2) suggests that other

factors may be operating, one of which could be conforma-

tional (e.g., one conformational isomer of 7 forming syn-8 while

a second conformer of 7 forms anti-8).

To evaluate the influence of conformational factors several

bulky aryl groups of 7 were examined for their suitability in

ylide formation and [1,2]-rearrangement. The mesityl (10) and

the 9-anthranyl (12) derivatives were screened in the

dirhodium(II) catalyzed dinitrogen extrusion reaction. Single

ylide-derived isomers [syn-11 from 10 (eqn (1)) and syn-13

from 12 (eqn (2))15] were observed without evidence for the

anti-isomer, as determined by 1H NMR data, but they were

formed in less than 50% yield as mixtures with other reaction

products. However, dirhodium(II)-catalyzed reaction of the

2,6-dimethyl-4-nitrophenyl derivative (14) proved to be rela-

tively free of competing reactions, and dinitrogen extrusion of

14, catalyzed by Rh2(pfb)4, formed syn-15 in 77% isolated

yield without a measurable contribution (1H NMR) from the

potential anti-15 diastereomer (eqn (3)).

ð1Þ

ð2Þ

ð3Þ

In conclusion, dirhodium carboxylate catalyzed ylide generation

with aryl-substituted tetrahydropyranone diazo-acetoacetates

and their subsequent [1,2]-rearrangement forms two dia-

stereoisomers with the oxabicyclo[4.2.1]nonane framework.

Fig. 1 Views of (a) syn-8a and (b) anti-8a showing the anisotropic atomic

displacement ellipsoids for the non-hydrogen atoms at the 30% probability

level. Hydrogen atoms are displayed with an arbitrarily small radius.

Table 1 Influence of phenyl substituents on product ratioa

Entry Z = Yield 8, %b syn-8 : anti-8c Yield 9, %d trans-9 : cis-9c

1 H 77 71 : 29 Trace —
2 NO2 94 74 : 26 Trace —
3 CF3 92 74 : 26 Trace —
4 Me 55 69 : 31 14 64 : 36
5 OMe 22 69 : 31 16 58 : 42

a Reactions were performed in refluxing CH2Cl2 for 2 h using 1.0 mol%

of Rh2(pfb)4. Results reported are averages of two or more reactions.
b Weight yield of isolated anti-8 and syn-8 products following chromato-

graphic separation. c Product ratio determined by 1HNMR analysis with

variance of �4%. d NMR yield of trans-9 and cis-9 products determined

by the use of benzaldehyde as an internal standard.

Fig. 2 Elimination products from reactions of 7d (Z = Me) and 7e

(Z = OMe) with Rh2(pfb)4.
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para-Substituents on the 2-substituted aromatic ring were

expected to influence the stability of intermediates for this

reaction if formed from the ylide by homolytic or heterolytic

cleavage, but the ratio of these two diastereoisomers was

independent of para-substituents. However, using the same

catalysts and conditions with aryl-substituted tetrahydro-

pyranone diazoacetoacetates in which the steric bulk of the

2-aryl group is substantially increased produced a single

diastereoisomer. The importance of the size of the aryl group,

coupled with the absence of a substituent effect on the ratio

of oxabicyclo[4.2.1]-nonane diastereomers suggests that

conformational influences may be responsible for the apparent

isomerism; in this case each reacting conformer forms a

different ylide-derived intermediate by reaction of the rhodium

carbene with either the axial or equatorial lone pair of

electrons on oxygen. Rearrangement of each of these two

non-equilibrating ylides would then form a distinct diastereo-

isomeric product. However, our results do not rule out the

long held dissociation–rearrangement–recombination pathway,8

and further investigations are underway to delineate the

mechanism of this and related transformations.

We are grateful to the National Institutes of Health (GM

465030) for their support of this research.
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