Tetrahedron Letters 54 (2013) 3568-3571

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Regioselective Suzuki–Miyaura cross-coupling reactions of 4-methyl-6,7-bis(trifluoromethanesulfonyloxy)coumarin

Aws M. Hamdy^a, Nadi Eleya^{a,b}, Hamid H. Mohammed^{a,c}, Zien Khaddour^a, Tamás Patonay^d, Alexander Villinger^a, Peter Langer^{a,e,*}

^a Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany

^bZakho University, Department of Chemistry, College of Science, Kurdistan Region, Iraq

^c Department of Chemistry, University Al-Mustansiriyah, Baghdad, Iraq

^d Department of Organic Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary

^e Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany

ARTICLE INFO

ABSTRACT

Arylated coumarins were prepared by site-selective Suzuki–Miyaura cross-coupling reaction of the bis(triflate) of 4-methyl-6,7-dihydroxycoumarin.

© 2013 Elsevier Ltd. All rights reserved.

Article history: Received 28 February 2013 Revised 23 April 2013 Accepted 29 April 2013 Available online 9 May 2013

Keywords: Coumarin Regioselectivity Palladium Catalysis Suzuki-Miyaura reaction

Coumarin and its derivatives are one of the most important classes of heterocyclic compounds which occur in many natural products.¹ For example, wedelolactone and other coumarins were isolated from the roots of Hedysarum multijugum, which is a plant in Hedysarum Linn. of the family Leguminosae used as a folk herbal drug in northwest China.^{1a} Many compounds were isolated from plants, such as alternariol, umbelliferone (7-hydroxycoumarin), scoparone (6,7-dimethoxycoumarin), osthole (7-methoxy-8-(3methylbut-2-en-1-yl)coumarin), and others.² Coumarins are known to possess a wide range of biological activities, such as anti-HIV, antibiotic, antifungal, anti-bacterial (including antituberculotic), antiviral, anticancer, immunosuppressive, muscle relaxant, anticlotting, and anticoagulant activity.³ In addition, they are widely used as additives in food chemicals, perfumes, agrochemicals, cosmetics, pharmaceuticals,⁴ insecticides, optical brightening agents, and dispersed fluorescent and laser dyes.⁵ Coumarins can be synthesized by various methods, such as the Pechmann,⁶ Perkin,⁷ Knoevenagel,⁸ and Wittig⁹ reaction. Because of its preparative simplicity and relatively inexpensive starting materials, the Pechmann reaction has been widely used for the synthesis of coumarins. This method involves the reaction of phenols with β -ketoesters in the presence of acidic catalysts.¹⁰⁻¹² Transition-metal catalyzed reactions have also been applied to the synthesis of coumarins substituted at positions three or four. Cross-coupling reactions of 4-tosyloxycoumarins have been widely investigated. Palladium,¹³ nickel,¹⁴ and rhodium catalysts¹⁵ have been used in Suzuki-Miyaura reactions of arylboronic acids. Suzuki-Miyaura reactions using potassium aryltrifluoroborates have also been reported.¹⁶ Likewise, the applicability of Negishi,¹⁷ Sonogashira,¹⁷ Stille,¹⁸ and Heck¹⁹ reactions in the coumarin series has been demonstrated. On the other hand, not much is known about palladium catalyzed crosscoupling reactions of more complex coumarins. A study related to reactions of 3-bromo-4-(trifluoromethanesulfonvloxy)- and 3-bromo-4-tosyloxy-coumarin has been previously reported.²⁰ Crosscoupling reactions of 5,7-bis(trifluoromethanesulfonyloxy)-coumarin and of 3- and 6-bromo-4-(trifluoromethane-sulfonyloxy) coumarin have also been reported.21

Herein, we report a new and convenient synthesis of arylated coumarins by what are, to the best of our knowledge, the first Suzuki–Miyaura cross-coupling reactions of the bis(triflate) of 4methyl-6,7-dihydroxycoumarin. The reactions proceed with very good regioselectivity and the products are not readily available by other methods.

4-Methyl-6,7-dihdroxycoumarin (1) was transformed to its bis(triflate) **2** in 75% yield by reaction with triflic anhydride (2.4 equiv) and triethylamine (4.0 equiv) (Scheme 1).²² It proved

^{*} Corresponding author. Tel.: +49 381 4986410; fax: +49 381 4986412. *E-mail address:* peter.langer@uni-rostock.de (P. Langer).

^{0040-4039/\$ -} see front matter \odot 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2013.04.123

Scheme 2. Synthesis of **4a–e**. Reagents and conditions: (i) **2** (1.0 equiv), **3** (2.0 equiv), K_3PO_4 (3.0 equiv), Pd(PPh₃)₄ (6 mol %), 1,4-dioxane, 120 °C, 6 h.

Table 1 Synthesis of 4a-e

3, 4	Ar	4 ^a (%)
a	3,5-Me ₂ C ₆ H ₃	75
b	$4-(MeO)C_6H_4$	83
c	4-ClC ₆ H ₄	83
d	C ₆ H ₅	70
e	4-(EtO)C ₆ H ₄	88

^a Yields of isolated products.

to be important that the addition of triflic anhydride was performed at -78 °C.

The Suzuki–Miyaura reaction of **2** with arylboronic acids **3a–e** (2.0 equiv) afforded the 4-methyl-6,7-diarylcoumarins **4a–e** in 73–88% yield (Scheme 2, Table 1).^{23,24} Both electron-poor and electron-rich arylboronic acids were successfully employed. The best yields were obtained using Pd(PPh₃)₄ (6 mol %) as the catalyst, K₃PO₄ (3.0 equiv) as the base, and 1,4-dioxane as the solvent (120 °C, 6 h). The structure of **4e** was independently confirmed by X-ray crystal structure analysis (Fig. 1).²⁵

The Suzuki–Miyaura reaction of **2** with 1.2 equiv of arylboronic acids **3** afforded the 4-methyl-7-aryl-6-(trifluoromethanesulfonyl-oxy)coumarins **5a–m** in 70–90% yield with very good regioselectivity (Scheme 3, Table 2).^{23,26} During the optimization, it proved to be important to use 1.2 equiv of the arylboronic acid and to carry out the reaction at 70 instead of 120 °C to avoid double coupling. Both electron-poor and electron-rich arylboronic acids were successfully employed. The structure of **5b** was confirmed by HMBC experiments (Fig. 2). The structure of **5f** was independently confirmed by X-ray crystal structure analysis (Fig. 3).²⁵

The one-pot Suzuki–Miyaura reaction of bis(triflate) **2** with two different arylboronic acids (sequential addition of 1.2 equiv of each arylboronic acid) afforded the 4-methyl-6,7-diarylcoumarins **6a–d** in 73–81% yields (Scheme 4, Table 3).^{23,27} The reactions were carried out at 70 °C for the first step (to avoid double coupling) and at 120 °C for the second step.

Palladium catalyzed cross-coupling reactions usually occur at the electronically more deficient and sterically less hindered position.^{28,29} Positions six and seven of bis(triflate) **2** are sterically similar. However, the regioselectivity of Suzuki reactions of bis(triflate) **2** in favor of position seven can be explained by electronic reasons. Position seven is located *para* to the electron-withdrawing vinylogous ester group, while position six is located *para* to the electron-donating oxygen atom.

In conclusion, we have reported a convenient synthesis of arylated coumarins by Suzuki–Miyaura cross-coupling reactions of

Figure 1. Molecular structure of 4e.

Scheme 3. Synthesis of **5a–m**. Reagents and conditions: (i) **2** (1.0 equiv), **3** (1.2 equiv), K₃PO₄ (1.5 equiv), Pd(PPh₃)₄ (3 mol %), 1,4-dioxane, 70 °C, 6 h.

Table 2 Synthesis of 5a-m

3, 5	Ar	5 ^a (%)
a	3,5-Me ₂ C ₆ H ₃	75
b	$4-(MeO)C_6H_4$	80
с	$4-ClC_6H_4$	85
d	C ₆ H ₅	72
e	$4-(EtO)C_6H_6$	90
f	$4-EtC_6H_4$	84
g	$4-FC_6H_4$	78
h	$4 - (F_3C)C_6H_4$	83
i	$4-MeC_6H_4$	75
j	$3-MeC_6H_4$	80
k	$3-(MeO)C_6H_4$	70
1	2,3,4-(MeO) ₃ C ₆ H ₂	90
m	$4-tBuC_{e}H_{4}$	77

^a Yields of isolated products.

Figure 2. Important HMBC correlations of 5b.

Figure 3. Molecular structure of 5f.

Scheme 4. Synthesis of 6a-d. Reagents and conditions: (i) 2 (1.0 equiv), Ar¹B(OH)₂ (1.2 equiv), K₃PO₄ (1.5 equiv), Pd(PPh₃)₄ (3 mol %), dioxane, 70 °C, 6 h; (ii) Ar²B(OH)₂ (1.2 equiv), K₃PO₄ (1.5 equiv), Pd(PPh₃)₄ (3 mol %), 1,4-dioxane, 120 °C, 6 h.

Table	3
-------	---

Synthesis of 6a-d

3	6	Ar ¹	Ar ²	6 ^a (%)
b,c	a	4-(MeO)C ₆ H ₄	4-ClC ₆ H ₄	73
b,g	b	4-(MeO)C ₆ H ₄	$4-FC_6H_4$	78
bj	с	4-(MeO)C ₆ H ₄	3-MeC ₆ H ₄	75
b,a	d	4-(MeO)C ₆ H ₄	3,5-Me ₂ C ₆ H ₃	81

^a Yields of isolated products.

Figure 4. Possible explanation for the site-selectivity of 2.

the bis(triflate) of 4-methyl-6.7-dihydroxycoumarin. The reactions proceed with excellent regioselectivity in favor of the electronically more deficient position (Fig. 4).

Acknowledgments

Financial support by the DAAD (scholarships for A.M.H. and N.E.), by the Ministry of Higher Education and Scientific Research Iraq (scholarship for H.M.), and by the State of

Mecklenburg-Vorpommern is gratefully acknowledged. The project is implemented through the New Hungary Development Plan, co-financed by the European Social Fund and the European Regional Development Fund. The project was also funded by the EFRE program of the EU.

References and notes

- 1. (a) Wang, W.; Zhao, Y. Y.; Liang, H.; Jia, Q.; Chen, H. B. J. Nat. Prod. 2006, 69, 876; (b) Murray, R. D. H. The Natural Coumarins; Wiley: New York, 1986; (c) Murray, R. D. H. Nat. Prod. Rep. 1995, 12, 477; (d) Estevez-Braun, A.; Gonzalez, A. G. Nat. Prod. Rep. 1997, 14, 465-475; (e) Donnelly, D. M. X.; Boland, G. In The Flavonoids: Advances in Research Since 1986; Harborne, J. B., Ed.; Chapman and Hall: London, 1994; p 239; (f) Monachep, G. D.; Borr, B.; Neto, A. S.; De Lima, R. A. Phytochemistry 1983, 22, 1657-1658; (g) Donnelly, D. M. X.; Finet, J.-P.; Guiry, P. J.; Hutchinson, R. M. J. Chem. Soc., Perkin Trans. 1990, 2851
- 2. (a) Raistrick, H.; Stilkings, C. E.; Thomas, R. Biochemistry 1953, 55, 421; (b) Abaul, J.; Philogene, E.; Bourgeois, P. J. Nat. Prod. 1994, 57, 846.
- 3. (a) Murakami, A.; Gao, G.; Omura, M.; Yano, M.; Ito, C.; Furukawa, H.; Takahashi, D.; Koshimizu, K.; Ohigashi, H. Bioorg. Med. Chem. Lett. **2000**, 10, 59; (b) Xia, Y.; Yang, Z.-Y.; Xia, P.; Hackl, T.; Hamel, E.; Mauger, A.; Wu, J.-H.; Lee, K.-H. J. Med. Chem. 2001, 44, 3932; (c) Itoigawa, M.; Ito, C.; Tan, H. T.-W.; Kuchide, M.; Tokuda, H.; Nishino, H.; Furukawa, H. Cancer Lett. 2001, 169, 15; (d) Yamaguchi, T.; Fukuda, T.; Ishibashi, F.; Iwao, M. Tetrahedron Lett. 2006, 47, 3755; (e) Yamamoto, Y.; Kurazono, M. Bioorg. Med. Chem. Lett. 2007, 17, 1626; (f) Kayser; OKolodziej, H. Planta Med. 1997, 63, 508; (g) Wang, C. J.; Hsieh, Y. J.; Chu, C. Y.; Lin, Y. L.; Tseng, T. H. Cancer Lett. 2002, 183, 163; (h) Huang, H. C. Weng, Y. I.; Lee, C. R.; Jan, T. R.; Chen, Y. L.; Lee, Y. T. Br. J. Pharmacol. 1993, 110, 1508; (i) Huang, H. C.; Huang, Y. L.; Chang, J. L.; Chen, C. C.; Lee, Y. T. *Eur. J. Pharmacol.* **1992**, *217*, 143; (j) Zhang, L.; Jiang, G.; Yao, F.; He, Y.; Liang, G.; Zhang, Y.; Hu, B.; Wu, Y.; Li, Y.; Lin, H. *PLoS One* **2012**, *7*, e37865; (k) Kashman, Y.; Gustafson, K. R.; Fuller, W. R.; Cardellina, J. H.; MacMahon, J. B.; Currens, M. J.; Buckheit, R. W.; Hughes, S. H.; Cragg, G. M.; Boyd, M. R. J. Med. Chem. 1992, 35, 2735; (1) Spino, C.; Dodier, M.; Sotheeswawaran, S. Bioorg. Med. Chem. Lett. 1998, 8, 3475; (m) Nayyar, A.; Jain, R. Curr. Med. Chem. 1873, 2005, 12.
- O'Kennedy, R.; Thornes, R. D. Coumarins: Biology, Applications, and Mode of Action; Wiley: Chichester, 1997.
- 5. Murray, R. D. H.; Méndez, J.; Brown, S. A. The Natural Coumarins: Occurrence, Chemistry, and Biochemistry; Wiley: New York, 1982.
- Sethna, S. M.; Phadke, R. Org. React. 1953, 7, 1.
- Donnelly, B. J.; Donnelly, D. M. X.; O'Sullivan, A. M. Tetrahedron 1968, 24, 2617.
- 8. (a) Jones, G. Org. React. 1967, 15, 204; (b) Bigi, F.; Chesini, L.; Maggi, R.; Sartori, G. J. Org. Chem. 1999, 1033, 64.
- 9. Yavari, I.; Hekmat-Shoar, R.; Zonuzi, A. Tetrahedron Lett. 1998, 39, 2391.
- 10. Nadkarni, A. J.; Kudav, N. A. Indian J. Chem. 1981, 20B, 719.
- 11. Bose, D. S.; Rudradas, A. P.; Babu, M. H. Tetrahedron Lett. 2002, 43, 9195.
- 12. Smitha, G.; Reddy, C. S. Synth. Commun. 2004, 34, 3997.
- 13. (a) Santana, M. D.; Garcia-Bueno, R.; Garcia, G.; Sánchez, G.; Gárcia, J.; Kapdi, A; Naik, M.; Pednekar, S.; Pérez, J.; Gárcia, L.; Pérez, E.; Serrano, J. L. *Dalton Trans.* **2012**, *41*, 3842; (b) Wong, P. Y.; Chow, W. K.; Chung, K. H.; So, C. M.; Lau, C. P.; Kwong, F. Y. Chem. Commun. 2011, 47, 8328; (c) Gallagher, B. D.; Taft, B. R.; Lipshutz, B. H. Org. Lett. 2009, 11, 5374; (d) Song, F.; Lu, S.; Gunnet, J.; Xu, J. Z; Wines, P.; Proost, J; Liang, Y.; Baumann, C.; Lenhard, J.; Murray, W. V.; Demarest, K. T.; Kuo, G.-H. *J. Med. Chem.* **2007**, *50*, 2807; (e) Wu, J.; Wang, L.; Fathi, R.; Yang, Z. Tetrahedron Lett. 2002, 43, 4395.
- (a) Xing, C.-H.; Lee, J.-R.; Tang, Z.-Y.; Zheng, J. R.; Hu, Q.-S. Adv. Synth. Catal. **2011**, 353, 2051; (b) Kuroda, J.-I.; Inamoto, K.; Hiroya, K.; Doi, K. Eur. J. Org. Chem. **2009**, 2251; (c) Tang, Z.-Y.; Hu, Q.-S. Adv. Synth. Catal. **2004**, 346, 1635. 14.
- 15. Wu, J.; Zhang, L.; Gar, K. Eur. J. Org. Chem. 2006, 5260.
 16. (a) Wu, J.; Zhang, L.; Xia, H.-G. Tetrahedron Lett. 2006, 47, 1525; (b) Wu, J.; Zhang, L.; Luo, Y. Tetrahedron Lett. 2006, 47, 6747.
- 17 Wu, J.; Liao, Y.; Yang, Z. J. Org. Chem. 2001, 66, 3642.
- Schio, L.; Chatreaux, F.; Klich, M. Tetrahedron Lett. 2000, 41, 1543. 18.
- 19. Hansen, A. L.; Skydstrup, T. Org. Lett. 2005, 7, 5585.
- 20. Zhang, L.; Meng, T.; Fan, R.; Wu, J. J. Org. Chem. **2007**, 72, 7279.
- (a) Wang, L; Xia, J; Tian, H; Qian, C; Ma, Y. *Indian J. Chem., Sect B* **2003**, *42*, 2097; (b) Akrawi, O. A.; Nagy, G.; Patonay, T.; Villinger, A.; Langer, P. *Tetrahedron Lett.* **2012**, *53*, 3206; (c) Eleya, N.; Khaddour, Z.; Patonay, T.; 21. Langer, P. Synlett 2012, 223.
- 22. 4-Methyl-2-oxo-2H-chromene-6,7-diyl bis(trifluoromethane-sulfonate) (2): To a solution of 4-methyl-6,7-dihydroxycoumarin (1) (0.5 g, 2.60 mmol) in CH₂Cl₂ (30 mL) was added triethylamine (0.36 mL, 10.4 mmol) at room temperature under an argon atmosphere. After 10 min, Tf₂O (1.0 mL, 6.2 mmol) was added at -78 °C. The mixture was allowed to warm to 20 °C and stirred for 6 h. The reaction mixture was filtered and the filtrate was concentrated in vacuo. The residue was purified by chromatography (flash silica gel, heptane/EtOAc = 8:2) without aqueous work up to give (1) as a white solid (0.9 g, 75%); mp 125– 127 °C. ¹H NMR (300 MHz, CDCl₃): δ = 2.41 (d, *J* = 1.5 Hz, CH₃), 6.37 (d, *J* = 1.2 Hz, 1H), 7.41 (br s , 1H, ArH), 7.59 (br s, 1H, ArH). ¹³C NMR (75.46 MHz, CDCl₃): δ = 18.6 (CH₃), 110.9, 112.7, 113.1 (CH), 116.0 (q, *J*_{FC} = 317.0 Hz, CF₃), 117.3 (q, *J*_{FC} = 317.0 Hz, CF₃), 118.1, 136.4, 141.7, 150.5, 152.6 (C), 158.2 (CO). ¹⁹F NMR (282.4, MHz): δ = -72.8, -72.7. IR (KBr, cm⁻¹): v = 3124, 3053, 2964, 2926 (w), 1740 (s), 1673, 1625, 1613, 1570 (w), 1498 (m). GC-MS (EI, 70 eV): m/z (%) = 456 ([M]⁺, 100), 324 (10), 323 (84), 232 (10), 203

(33), 162 (13), 134 (26), 69 (55). HRMS (EI, 70 eV) calcd for $C_{12}H_6F_6O_8S_2\left([M]^*\right)$: 455.94028, found: 455.94130.

- 23. General procedure for Suzuki–Miyaura reactions: A solution of K₃PO₄, Pd(PPh₃)₄, and arylboronic acid in the solvent indicated was stirred at the indicated temperature and for the indicated time. After cooling to 20 °C, distilled H₂O was added. The organic and the aqueous layers were separated and the latter was extracted with CH₂Cl₂. The combined organic layers were dried (Na₂SO₄), filtered, and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (flash silica gel, heptanes–EtOAc).
- 24. 6,7-Bis(3,5-dimethlyphenyl)-4-methyl-2H-chromen-2-one (4a): Starting with 2 (70 mg, 0.153 mmol), 3,5-dimethlyphenylboronic acid (3a) (51 mg, 0.337 mmol), Pd(PPh₃)₄ (11 mg, 6 mol %, 0.009 mmol), K₃PO₄ (98 mg, 0.460 mmol), and 1,4-dioxane (3 mL), 4a was isolated as a white solid (42 mg, 75%); mp 121-122 °C. ¹H NMR (300 MHz, CDCl₃): δ = 2.13 (s, 6H, CH₃), 2.14 (s, 6H, CH₃), 2.39 (d, *J* = 1.3 Hz, 3H, CH₃), 6.24 (d, *J* = 1.2 Hz, 1H), 6.67–6.80 (m, 6H, ArH), 7.30 (br s, 1H, ArH), 7.49 (br s, 1H, ArH). ¹³C NMR (75.46 MHz, CDCl₃): δ = 17.6 (2CH₃), 20.1 (2CH₃), 26.1 (CH₃), 113.9, 117.2 (CH), 117.7, 120.1 (C), 125.1, 126.4, 126.6, 127.4, 127.9 (CH), 136.3, 136.3, 138.5, 139.1, 143.7, 151.2, 151.5, 154.4, 156.1 (C), 160.9 (CO). IR (KBr, cm⁻¹): ν = 3015, 3082, 3066, 2868, 2732, 2645 (w), 1722 (s), 1618, 1607 (m), 1573, 1537, 1516, 1485 (w), GC-MS (EI, 70 eV): m/z (%) = 368 [[M]⁺, 100), 353 (12), 338 (10). HRMS (EI, 70 eV) calcd for C₂₆H₂₄O₂ [M]⁺: 368.17708; found: 368.17685.
- 25. CCDC-934927 and 934928 contain all crystallographic details of this publication and is available free of charge at http://ccdc.cam.ac.uk/conts/ retrieving.html or can be ordered from the following address: Cambridge Crystallographic Data Centre, 12 Union Road, GB-Cambridge CB21EZ; fax: +44 1223 336 033; or deposit@ccdc.cam.ac.uk.
- 26. 7-[(3,5-Dimethylphenyl)-4-methyl-2-oxo-2H-chromen-6-yl]
- *trifluoromethanesulfonate* (**5a**): Starting with **2** (70 mg, 0.153 mmol), 3,5dimethlyphenylboronic acid (**3a**) (28 mg, 0.184 mmol), Pd(PPh₃)₄ (5 mg, 3 mol %, 0.005 mmol), K₃PO₄ (49 mg, 0.230 mmol), and dioxane (3 mL), **5a** was isolated as a white solid (47 mg, 75%); mp 165–167 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.45$ (s, 6H, 2CH₃), 2.31 (d, J = 1.4 Hz, 3H, CH₃), 6.31 (d, J = 1.4 Hz,

1H), 6.67 (br s, 1H, ArH), 7.17 (d, J = 8.8 Hz, 3H, ArH), 7.33 (d, J = 8.4 Hz, 1H, ArH), 7.48 (br s, 1H, ArH). ¹³C NMR (75.47 MHz, CDCl₃): $\delta = 17.6$ (2CH₃), 20.1 (CH₃), 113.9, 115.2, 118.7 (CH), 125.4 (q, $J_{FC} = 320.4$ Hz, CF₃), 126.4, 127.9 (CH), 129.8, 132.8, 136.3, 137.3, 138.4, 141.5, 149.8, 151.3 (C), 160.1 (CO). ¹⁹F NMR (282.4 MHz): $\delta = -73.8$. IR (KBr, cm⁻¹): v = 3057, 2950, 2910, 2838 (w), 1721 (s), 1611, 1606 (m),1538 (w), 1509, 1491 (m). GC-MS (EI, 70 eV): m/z (%) = 412 ([M]⁺, 100), 280 (20), 279 (30), 264 (12), 235 (11). HRMS (EI, 70 eV) calcd for Cl₁₉H₁₅F₃O₅S [M]⁺: 412.05868; found: 412.05840.

- 6-(4-Chlorophenyl)-7-(4-methoxyphenyl)-4-methyl-2H-chromen-2-one (**6a**): The reaction was carried out in a one-pot procedure with sequential addition of the boronic acids to the substrate **2**. Catalyst and base had to be added two times. Starting with **2** (70 mg, 0.153 mmol), 4-methoxyphenylboronic acid (**3b**) (28 mg, 0.153 mmol), Pd(PPh₃)₄ (5 mg, 3 mol %, 0.005 mmol), K₃PO₄ (49 mg, 0.230 mmol), 4-chlorophenylboronic acid (**3c**) (28 mg, 0.153 mmol), Pd(PPh₃)₄ (5 mg, 3 mol %, 0.005 mmol), K₃PO₄ (49 mg, 0.230 mmol), 4-chlorophenylboronic acid (**3c**) (28 mg, 0.153 mmol), Pd(PPh₃)₄ (5 mg, 3 mol %, 0.005 mmol), K₃PO₄ (49 mg, 0.230 mmol), and dioxane (3 mL), **6a** was isolated as a white solid (42 mg, 73%); mp 172-174 °C. ¹H NMR (300 MHz, CDCl₃): δ = 2.39 (d, *J* = 1.1 Hz, 3H, CH₃), 3.73 (s, 3H, OCH₃), 6.24 (d, *J* = 1.3 Hz, 1H), 6.72 (d, *J* = 8.1 Hz, 2H, ArH), 6.95-6.99 (m, 5H, ArH), 7.16 (d, *J* = 8.1 Hz, 2H, ArH), 7.46 (br s, 1H, ArH). ¹³C NMR (75.46 MHz, CDCl₃): δ = 17.6 (CH₃), 54.2 (OCH₃), 112.7, 114.1, 117.4 (CH), 117.8 (C), 125.3, 127.4, 129.8, 130.0 (CH), 130.5, 132.0, 134.7, 137.8, 143.1, 151.0, 151.9, 158.1 (C), 159.7 (CO). IR (KBr, cm⁻¹): v = 3115, 3092, 3076, 2966, 2932, 2845 (w), 1731 (s), 1620, 1600 (m), 1580, 1540, 1522, 1493 (w). GC-MS (EI, 70 eV): m/z (%) = 376 ([M]⁺, [³⁵CI], 100), 348 (13). HRMS (EI, 70 eV) calcd for C₂₃H₁₇³⁵ClO₃ ([M]⁺)^{*}) 376.08607; found 367.08589.
- For reviews of cross-coupling reactions of polyhalogenated heterocycles and triflates, see: (a) Schröter, S.; Stock, C.; Bach, T. *Tetrahedron* 2005, 61, 2245; (b) Schnürch, M.; Flasik, R.; Khan, A. F.; Spina, M.; Mihovilovic, M. D.; Stanetty, P. *Eur. J. Org. Chem.* 2006, 3283; (c) Rossi, R.; Bellina, F.; Lessi, M. Adv. Synth. Catal. 2012, 354, 1181.
- 29. For a simple guide to predict the regioselectivity of Pd catalyzed cross-coupling reactions, see: Handy, S. T.; Zhang, Y. *Chem. Commun.* **2006**, 299.