Inorganic Chemistry

pubs.acs.org/IC

Reactions of an Aluminum(I) Reagent with 1,2-, 1,3-, and 1,5-Dienes: Dearomatization, Reversibility, and a Pericyclic Mechanism

Clare Bakewell,[§] Martí Garçon,[§] Richard Y. Kong,[§] Louisa O'Hare, Andrew J. P. White, and Mark R. Crimmin^{*}

ABSTRACT: Addition of the aluminum(I) reagent [{(ArNCMe)₂CH}A] (Ar = 2,6-di-iso-propylphenyl) to a series of cyclic and acyclic 1,2-, 1,3-, and 1,5-dienes is reported. In the case of 1,3-dienes, the reaction occurs by a pericyclic reaction mechanism, specifically a cheletropic cycloaddition, to form aluminocyclopentenecontaining products. This mechanism has been examined by stereochemical experiments and DFT calculations. The stereochemical experiments show that the (4 + 1) cycloaddition follows a suprafacial topology, while calculations support a concerted albeit asynchronous pathway in which the transition state demonstrates aromatic character. Remarkably, the substrate scope of the (4 + 1) cycloaddition

includes styene, 1,1-diphenylethylene, and anthracene. In these cases, the diene motif is either in part, or entirely, contained within an aromatic ring and reactions occur with dearomatisation of the substrate and can be reversible. In the case of 1,2-cyclononadiene or 1,5-cyclooctadiene, complementary reactivity is observed; the orthogonal nature of the C=C π -bonds (1,2-diene) and the homoconjugated system (1,5-diene) both disfavor a (4 + 1) cycloaddition. Rather, reaction pathways are determined by an initial (2 + 1) cycloaddition to form an aluminocyclopropane intermediate which can in turn undergo insertion of a further C=C π -bond, leading to complex organometallic products that incorporate fused hydrocarbon rings.

INTRODUCTION

In the past few years there has been fierce interest in reactivity studies of aluminum(I) compounds.^{1–5} Aluminum is the most abundant metal in the Earth's crust. It is widely available, and its compounds typically display low toxicity. As such, it is an attractive target for the development of sustainable methods in synthesis and catalysis. The chemistry of aluminum compounds is still dominated by those in the +3-oxidation state. There is, however, a growing realization that both neutral and anionic aluminum compounds in the +1-oxidation state show some remarkable reactivity.^{6–9} In some cases, the scope extends beyond the capabilities of even the most reactive transition-metal complexes.

In this contribution, we focus on reactions of aluminum(I) compounds with unsaturated and aromatic hydrocarbons. Contemporary work in this area has been foreshadowed by vapor deposition studies involving the co-condensation of aluminum atoms with ethylene, propene, or 1,3-butadiene at low temperature.^{10–12} The deuterolysis products of these reactions support the formation of direct Al–C σ -bonds, while EPR spectroscopy of the organometallic products led the authors to speculate that these reactions may involve the formation of paramagnetic aluminocyclopropanes¹⁰ and aluminocyclopentenes,¹² with the latter compound being derived from a cheletropic reaction of Al atoms with 1,3-butadiene.¹² Schnöckel's synthesis of AlCl allowed the first direct translation of this reactivity to aluminum(I) compounds.

Addition of AlCl to but-2-yne forms a complex cluster,¹³ while the reaction of AlCl and 2,3-dimethylbutadiene at low temperature leads to the formation of a stable cyclic oligomer. Both reactions provide unambiguous structural evidence for Al–C σ -bond formation.¹⁴ A related cyclic dimer has been reported from the reaction of a terphenyl-stabilized gallium(I) compound with 2,3-dimethylbutadiene and has been proposed to derive from the dimerization of a metallocyclopentene intermediate.¹⁵

Based on the synthetic accessibility of a number of new aluminum(I) complexes, there have been some notable advances in this area in recent years. We have reported that 1, originally reported by Roesky and co-workers,¹⁶ reacts reversibly with alkenes to form aluminocyclopropanes by a (2 + 1) cycloaddition^{17,18} and in a single instance nonreversibly with 1,3-cyclohexadiene to form a $(4 + 1)^{19}$ cycloaddition product (Figure 1).²⁰ Related reactions of 1 with alkynes are known to form aluminocyclopropenes.^{21,22} Theoretical studies on 1 have led to the suggestion that this compound can undergo a (4 + 1) cycloaddition with benzene to form a high-

Received: December 22, 2019

Figure 1. Reaction of selected aluminum(I) compounds with unsaturated hydrocarbons.

energy [2.2.1]aluminobicycloheptadiene moiety.²³ Although this reaction is endergonic, there is experimental support to suggest it is a tangible pathway. Harder and co-workers have shown that 1, benzene, and a cationic calcium complex react to form a bimetallic product in which the dearomatized benzene unit is trapped between the two main group metals.²⁴ Coles and co-workers have reported an anionic aluminum(I) complex that reacts with 1,3,5,7-cyclooctatetrene (COT) to yield a reduced planar COT^{2–} complex which can isomerize to the nonplanar (4 + 1) cycloaddition product upon sequestration of the countercation.²⁵

Reactions of aluminum(I) compounds with conjugated and aromatic hydrocarbons are not limited to just those involving the π -system. In the presence of either a palladium or calcium catalyst, **1** affects the C–H activation of benzene, toluene, and xylenes.^{26–28} In the absence of catalyst **1** is also capable of allylic C–H activation.¹⁷ Anionic aluminum(I) compounds have also been reported to affect the C–H activation of benzene in the absence of a catalyst.^{29,30} Remarkably, for one of these systems sequestration of the potassium countercation generates an aluminum reagent capable of reversibly inserting into a C–C σ -bond of benzene, affecting its dearomatisation.³¹

This emerging reactivity of low-valent group 13 compounds parallels that of group 14 reactive intermediates, which have been the subject of some detailed mechanistic analysis. For example, photochemically or thermally generated silylenes (R₂Si) react with 1,3-dienes to give either 2-vinylsiliranes or silacyclopentenes depending on the conditions of the experiment. There was originally some contention as to whether 2vinylsiliranes are intermediates in the formation of silacyclopentenes. The weight of evidence now suggests that under thermal conditions the (2 + 1) addition of R₂Si to 1,3-dienes may be reversible, allowing equilibration to the more stable (4 + 1) product over time.³²⁻³⁶ Expansion of the reactivity to germylenes (R_2Ge) and stannylenes (R_2Sn) generally results in higher selectivity for the (4 + 1) cycloaddition.³⁷ Stereochemical probe experiments involving stereopure 1,3-diene or bis(allene) substrates are consistent with these reactions being defined as cheletropic additions involving a pericyclic mechanism.³⁸⁻⁴⁰ Calculations based on semiempirical pubs.acs.org/IC

 $(MNDO)^{41}$ and DFT methods⁴² support this concerted mechanism and the notion that the (2 + 1) cycloaddition may be reversible and lead to a kinetic product.

In this paper we expand the reactivity of 1 to 1,2-1,3-, and 1,5-dienes along with π -extended aromatic systems. Through a combination of DFT studies and stereochemical probe experiments, we show that 1,3-dienes react with 1 by a cheletropic and pericyclic mechanism.

RESULTS AND DISCUSSION

1,2-Dienes. The reaction of 1 with 1,2-cyclononadiene in toluene or benzene solution proceeds rapidly to form metallocyclopropane 2a at 25 °C as evidenced by an instant color change from orange to red on mixing the reagents (Scheme 1a, Figure 2). 2a is the product of a formal (2 + 1)

Scheme 1. Reaction of 1 with (a) 1,2-Cyclononadiene and (b) 1,3-Dienes, Styrene, 1,1-Diphenylethylene, and Anthracene

cycloaddition. It contains an aluminocyclopropane unit bearing an exocyclic alkene moiety as characterized by a diagnostic resonance for the vinylic proton at $\delta = 6.25$ (ddd, ${}^{3}J_{\rm HH} = 10.1$, 5.7, ${}^{4}J_{\rm HH} = 3.1$ Hz) ppm. Coupling is observed not only in the diastereotopic protons of the adjacent methylene group but also in the methine proton of the aluminocyclopropane itself. The exocyclic alkene group renders the aluminocyclopropane unit asymmetric, and this is clear in the single-crystal X-ray diffraction data. **2a** crystallizes with six independent molecules within the unit cell; the metrics of each are similar, and discussion is limited to a single molecule. The Al–C(sp³) and Al–C(sp²) bond lengths take values of 1.952(3) and 1.913(3) Å, respectively. The C(sp²)–C(sp³) bond length is 1.564(5) Å, while the C(sp²)–Al–C(sp³) angle is very acute at 47.7(1)°.

Article

Figure 2. Structures from single-crystal X-ray diffraction data for 2a, 2b, 2f-h, 3, and 4a-b.

Table 1. Selected Bond Lengths (A) and Angles (deg)	from Single-Crystal X-ray Diffractio	n Data for 2a–c, 2f–h, 3, and 4a–b
----------------------------------	---------------------	--------------------------------------	------------------------------------

	1 ¹⁶	$2a^{a}$	2b	2c ^b	2f
Al—N	1.957(2)	1.889(2)	1.9051(14)	1.9089(15)	1.9029(17)
		1.887(2)	1.9236(15)	1.9344(15)	1.9120(17)
N-Al-N	89.86(8)	97.1(1)	96.09(6)	95.94(6)	96.96(7)
$Al-C(sp^3)$		1.952(3)	1.9634(19)	1.985(2)	1.981(2)
			1.9737(17)	1.990(2)	2.013(2)
$Al-C(sp^2)$		1.913(3)	_		_
C-Al-C		47.7(1)	94.10(8)	92.28(9)	89.03(9)
C=C		1.309(5)	1.336(3)	1.318(3)	1.357(3)
	$2g^{c}$	2h	3^d	4a	4b
Al—N	1.9053(18)	1.9108(12)	1.9260(17)	1.9111(18)	1.9381(16)
	1.9089(18)	1.9134(12)	1.9252(16)	1.9081(17)	1.9212(17)
N-Al-N	96.28(8)	97.02(5)	96.15(7)	95.16(8)	95.93(7)
$Al-C(sp^3)$	2.047(2)	2.0495(15)	1.994(6)	-	_
	2.056(2)	2.0499(15)	2.018(5)		
$Al-C(sp^2)$	_	_	_	1.964(2)	1.980(2)
					1.983(2)
C-Al-C	78.35(9)	78.15(6)	82.8(2)	_	91.37(8)
C=C	1.342(3)	_	n.r.	1.326(3)	1.331(3)
				1.323(5)	1.331(3)

^{*a*}Molecule A, 1 of 6 in the asymmetric unit. ^{*b*}Cocrystallized 9:1 mixture of *syn*-2C/*anti*-2c. ^{*c*}Cocrystallized 96:4 mixture of 2g/2h with positional disorder of the anthracene unit. ^{*d*}Disordered across two sites.

Figure 3. (a) Calculated mechanism for the concerted pericyclic reaction of 1 with 2,3-dimethylbutadiene to form 2b. (b) Stereochemical probe experiments with a mixture of (E,E) and (E,Z)-2,4-hexadiene.

Despite the introduction of the exocyclic alkene moiety, these data fall within the range established for related compounds derived from alkenes.¹⁷ The oxidative addition of **1** to this 1,2-diene parallels established reactivity between **1** and alkenes. The result is unsurprising; the orthogonal p-orbitals in the allene fragment mean it behaves like two isolated C==C π -systems.

1,3-Dienes and Dearomatisation. In contrast, 1 reacts with a number of 1,3-dienes by a (4 + 1) cycloaddition pathway. The reaction scope includes 2,3-dimethyl-1,3-butadiene (**2b**), 2,4-hexadiene (1.7:1 mixture of *E,E:E,Z* isomers, **2c**), 1,3-cyclohexadiene (**2d**),²⁰ styrene (**2e**), 1,1-diphenylethylene (**2f**), and anthracene (**2g**/**2h**). In the latter three cases, either part, or all, of the 1,3-diene fragment is contained within an aromatic ring system and the (4 + 1) cycloaddition occurs with a concurrent dearomatisation. Nevertheless, the scope includes both these aromatic systems in which the 1,3-diene motif is locked into a *s-cis* geometry and simpler open chain 1,3-dienes which are known to favor the *s-trans* conformation in solution (Scheme 1b, Figure 2).

The (4 + 1) cycloaddition generates an aluminocyclopentene in which the aluminum atom forms part of a fivemembered ring system. The reaction occurs with migration of C=C unsaturation within the hydrocarbon fragment, consistent with a concerted cheletropic process. In all cases, analysis of the solid-state data are consistent with the assignment of **2a**-**h** as aluminum(III) compounds. The Al-N bond lengths in this series range from 1.887(2) to 1.9236(15) Å and the N-Al-N bite angle varies from 96.09(6) to 97.1(1)° (Table 1). From the perspective of **1**, the reaction is an oxidative addition. Direct parallels can be drawn with the known cheletropic reaction of SO₂ with butadienes.⁴³

In the case of 2e-2h, 1 is a high enough energy species to effect the dearomatisation of a benzene ring. For example, the formation of 2e-f occurs with dearomatisation due to the reactive 1,3-diene fragment forming part of a phenyl substituent. 2f demonstrates a series of resonances in the ¹H NMR spectrum in benzene-d₆ at $\delta = 5.81$ (m, 1H), 5.97 (m, 1H), 6.56 (dd, 1H, ³J_{HH} = 9.6 Hz, ³J_{HH} = 3.5 Hz), 6.61 (d, 1H, ³J_{HH} = 9.6 Hz) ppm characteristic of the four proton spin system of the newly created 1,3-cyclohexadiene motif. There is a further characteristic high-field proton at $\delta = 2.65$ (d, 1H, ⁵J_{HH} = 8.4 Hz) ppm which can be assigned to the sp³ methine

heavily shielded and broadened due to the adjacent quadrupolar I = 5/2 aluminum atom. A related reaction of 1 with benzophenone was recently reported by Nikonov and coworkers.⁴⁴ The reaction of 1 with anthracene yields a 1:0.4 mixture of (4 + 1) cycloaddition products 2g and 2h formed from reaction at both the 1,4- and 9,10-positions of the hydrocarbon. Diagnostic resonances for the newly formed sp³ centers could be observed in benzene-d₆ for 2g and 2h at δ = 3.81 (dd, ${}^{3}J_{H-H}$ = 4.7 Hz, 3.5 Hz) and 4.07 ppm, respectively. Prolonged heating results in the conversion of 2g into the more thermodynamically stable product 2h.

Compounds 2b-c and 2f-h were subject to single-crystal X-ray diffraction experiments (Figure 3). 2b contains, at its core, an aluminocyclopentene. The five-membered ring allows expansion of the C-Al-C bond angle to $94.10(8)^{\circ}$, a value consistent with a tetrahedral geometry at aluminum. The Al- $C(sp^3)$ bond lengths of 1.9634(19) and 1.9737(17) Å reveal a slight asymmetry to the ring system. The data are similar to a related 1,4-bis(trimethylsilyl)but-2-ene-1,4-diyl complex prepared through a salt-metathesis route.⁴⁵ The structure of 2c as determined by single-crystal X-ray diffraction is very similar. 2c forms as a 1.7:1 mixture of syn/anti isomers from the reaction of 1 with a 1.7:1 mixture of E.E and E.Z-2.4-hexadiene (see below for discussion of stereoselectivity). During the crystallization of 2c the mixture is enriched in the major isomer and the single-crystal X-ray diffraction data were modeled as a 1:9 mixture of anti/syn isomers. The structures of 2f-h reveal the dearomatisation of benzene rings. For example, in 2f the aluminocyclopentene moiety incorporates a dearomatised phenyl group as evidenced by the formation of a sp³-center and localized C-C and C=C bond lengths within the hydrocarbon ring. The $Al-C(sp^3)$ bond lengths are asymmetric with the larger of 2.013(2) Å being that to the dearomatized system. Although this bond is long, it is still within the range established for a covalent Al–C σ -bond. The $Al-C(sp^3)$ bond lengths of 2g and 2h are similarly elongated and range from 2.047(2) to 2.056(2) Å. In addition, the C-Al-C bond angles of 2f-h are more acute than those in 2b. Both trends are indicators of stretched Al-C bonds in the dearomatised compounds. The structure of 2g was determined by a single-crystal X-ray diffraction experiment on a sample purified by fractional crystallization of a 1:0.4 mixture of 2g/ 2h. Although 2g crystallized preferentially, the sample is only enriched in 2g and is not completely pure. The data were

modeled as a 96:4 mixture of 2g/2h, and the minor component 2h could be observed in the ¹H NMR spectrum of the recrystallized material.

Formal (2 + 2 + 1) Cycloaddition of a 1,5-Diene. Attempts to expand the scope of reactivity to the nonconjugated diene, 1,5-cyclooctadiene, gave a remarkable ringcontraction product derived from reaction of both C==C π bonds. Heating a mixture of two equivalents of 1,5-cyclooctadiene to a solution of 1 in benzene-d₆ at 100 °C for 6 h results in a characteristic color change from red-orange to bright yellow due to formation of 3 (Scheme 2). Recrystalliza-

Scheme 2. Reaction of 1 with 1.5-Cvclood	tadiene to	Form 3
--	------------	--------

tion of the crude product by vapor diffusion of *n*-pentane into a concentrated toluene solution afforded 3 as bright yellow blocks. The fused ring-system is disordered over two sites in a ca. 80:20 ratio, and as such, the data should be treated with caution. The structure is reminiscent of 2d previously reported by our group.²⁰ The average C-C bond length of the cyclobutane ring is 1.55 Å, while the average C-C-C angle approaches 90°. The protons of the cyclobutane resonate at δ = 1.21 - 1.27 (m, 2H), 2.19 - 2.25 (m, 2H), and 2.40 (m, 2H) ppm. The latter set of peaks are assigned to the bridgehead position. This ring contraction reaction of 1,5-cyclooctadiene presents similarities to known homo Diels-Alder cycloadditions.⁴⁶ While homo Diels-Alder [2 + 2 + 2] cycloadditions of homoconjugated dienes can occur under transition-metal catalysis or in the case of very reactive dienophiles without a catalyst,^{47–49} cheletropic reactions with homoconjugated dienes are extremely rare.

Reversibility. We have previously reported that (2 + 1) cycloadditions of 1 with alkenes can, in certain instances, be reversible.¹⁷ The equilibria between 1 + alkene $\leftarrow \rightarrow$ aluminocyclopropane has been probed through variable temperature NMR spectroscopy and crossover experiments. The equilibria are of note as they represent reversible redox processes of a main group reagent, in this case involving interconversion between the +1 and +3 oxidation state of aluminum.

A series of reactions were conducted to investigate reversibility in the reaction of 1 with dienes. Heating samples of 2a for 18 h at 100 °C in benzene- d_6 resulted in the formation of 4a, the product of allylic sp³ C–H activation (Scheme 3). We have previously concluded that the interconversion of related aluminocyclopropane and allylic C-H activation products occurs through a dissociative pathway involving reformation of 1. Compound 4a contains a 1,3-diene system metalated at the 2-position. In the solidstate, the Al–C(sp²) bond length of 1.964(2) Å is similar to that found in 2a. Although metalated dienes related to 4a have proven remarkably adept in synthesis,^{50,51} in part due to their ease of access from the hydroalumination of 1,3-diynes, there are limited examples of crystallographically characterized aluminum complexes of this type. Repeating this reaction in the presence of an excess (10 equiv) of 1,2-cyclononadiene results in the formation of 4b in 1 h at 100 °C (Scheme 3). 4b

Scheme 3. Reversibility in the Reactions of 1 with 1,2-Cyclononadiene and Anthracene

is derived from the insertion of 1,2-cyclononadiene into the $Al-C(sp^3)$ bond of 2a. 4b contains a 2,5-dimetalated hexa-1,5diene motif. The two hydrocarbon fragments are joined through a trans-fused ring junction. In the solid-state the Al- $C(sp^2)$ bond lengths are 1.980(2) and 1.983(2) Å and are again reminiscent of those found in 2a and 3. Monitoring the reaction by ¹H NMR spectroscopy reveals that **4b** is formed in remarkably high selectivity. Despite the possible loss of selectivity across multiple selectivity determining events (see Scheme S4) 4b is formed in 75% yield by NMR spectroscopy and in 65% isolated yield. 1,2-Cyclononadiene is known to undergo a symmetry allowed thermal $\begin{bmatrix} 2 + 2 \end{bmatrix}$ cycloaddition. Although this dimerization was observed to occur in parallel to the formation of 4b, a control reaction between the dimerized hydrocarbon fragment and 1 did not result in the formation of 4b (see Scheme S2). In combination, the experiments suggest that the formation of 2a is reversible in the absence of additional substrate but undergoes insertion chemistry in the presence of exogeneous substrate.

Although heating samples of 2b-d in benzene-d₆ gave no evidence for reversibility in the (4 + 1) cycloaddition step, the ratio of 2g and 2h proved to be dependent on the reaction conditions. The data are consistent with an equilibrium between the two isomers being in operation at high temperatures. Hence, heating of 1:0.4 mixtures of 2g/2h in benzene-d₆ to 100 °C for 3 days results in slow, but practically quantitative, equilibration to 2h, ultimately to form a 2:98 mixture (Scheme 3). 2h is the thermodynamic product of the reaction, and the implication is that at higher temperatures the (4 + 1) cycloaddition to form 2g is reversible while that to form 2h may be nonreversible. This hypothesis was confirmed by a crossover experiment between a 1:0.4 mixture of 2g/2hand H₂ after 2 days between 80-100 °C; this reaction led to exclusive consumption of 2g to form the aluminum(III) dihydride 1-H2. 2h remained unreacted. A further crossover reaction with 2g/2h and C_6F_6 led to the reformation of anthracene and a known C-F alumination compound; again 2h remained unconsumed at the end of the reaction (compound S1, see Supporting Information for details). Similarly, heating samples of 2f in the presence of an excess (10 equiv) of C_6F_6 at 100 °C showed complete conversion of 2f to the same C-F aluminated product (Supporting

Figure 4. Calculated mechanism for stepwise reaction of 1 with 1,5-cyclooctadiene to form 3.

Information). These experiments demonstrate the reversibility of the reaction between 1 and 1,1-diphenylethylene and anthracene.

A Pericyclic Mechanism. A series of DFT calculations and stereochemical probe experiments were conducted to gain insight into the reaction of 1 with 1,3- and 1,5-dienes. The potential energy surfaces for the reactions of 1 with 2,3dimethylbutadiene, (E,E)-2,4-hexadiene, and anthracene were explored using DFT calculations (M06L, see SI for details). Dispersion effects were included via single point energy corrections and were modeled using Grimme's D3 correction. In all cases, concerted pathways were found in which a single transition state connects starting materials to products. In the case of anthracene two competitive pathways could be located for reaction at both the 1,4- and 9,10-positions of the aromatic hydrocarbon.

The (4 + 1) cycloadditions present high similarity to wellestablished cheletropic reactions. Cheletropic reactions are a subclass of pericyclic reactions. Pericyclic reactions themselves involve a cyclic array of overlapping orbitals. These concerted reactions are characterized by the cyclic nature and aromaticity of the transition state and follow strict stereochemical course as defined by the Woodward-Hoffmann rules. The reaction of 1 and 2,3-dimethylbutadiene was calculated to occur by isomerization of the diene from the s-trans to s-cis isomer prior to the cycloaddition ($\Delta G^{\circ}_{298 \text{ K}} = +2.7 \text{ kcal mol}^{-1}$). Subsequent formation of Int-1b, an encounter complex of 1 and the diene, is endergonic ($\Delta G^{\circ}_{298 \text{ K}} = +7.4 \text{ kcal mol}^{-1}$) and leads directly to **TS-1b** ($\Delta G^{\ddagger}_{298 \text{ K}}$ = +15.3 kcal mol⁻¹). **TS-1b** is cyclic and concerted, albeit asynchronous. In TS-1b, the formation of the two Al–C σ -bonds, is accompanied by the disappearance of the two conjugated π -bonds and formation of the new π -bond, as would be expected for a pericyclic $[\pi 4_s +$ ${}_{n}2_{s}$] cheletropic cycloaddition (Figure 3a). The formation of the product **2b** is exergonic ($\Delta G^{\circ}_{298 \text{ K}} = -30.6 \text{ kcal mol}^{-1}$), and the activation barrier for the reverse process is unlikely to be surmountable with any appreciable rate constant under the conditions of the reaction.

A similar reaction pathway was calculated for the reaction of 1 with (E,E)-2,4-hexadiene. Based on the orbital symmetry, the thermally allowed $[_{\pi}4_s + _n2_s]$ reaction pathway should involve suprafacial attack. The corresponding transition state, **TS-1c** $(\Delta G^{\ddagger}_{298 \text{ K}} = +20.3 \text{ kcal mol}^{-1})$, reflects this and predicts exclusive formation of the *syn*-isomer of the product (Figure 3b). Related transition states could be located for the cheletropic reaction of 1 with both anthracene and benzene itself **TS-1g/h** and **TS-1i**, respectively (Supporting Information). To further substantiate the classification of the reaction as pericyclic, NICS(0) calculations were performed on these

transition states.⁵² These showed the transition states for the cheletropic reaction to be highly aromatic (NICS(0) = -10.6 to -14.3), while the corresponding aluminocyclopentene products **2b**, **2c** were essentially nonaromatic (NICS(0) = -1.0 to -1.2).

Experimental support for a pericyclic mechanism was acquired from following the stereochemical course of the reaction of 1 with 2,4-hexadiene to form 2c. A commercial sample (from Fluorochem) of 2,4-hexadiene was analyzed by ¹H NMR spectroscopy and confirmed as a 1:1.7 mixture of (E,Z)/(E,E) isomers. The least stable (Z,Z)-isomer could not be detected as part of the mixture. Reaction of the mixture of dienes with excess (1.8 equiv) 1 led to a 1:1.7 mixture of anti/ syn 2c. The experiment strongly suggests that reaction is stereospecific with the (E,E) isomer leading to syn-2c and the (E,Z) isomer leading to *anti*-2c (Figure 3c). Notably this ratio was not preserved when running the reaction with an excess of 2,4-hexadiene as 1 reacts with the (E,Z)-isomer at a faster rate than the (E,E)-isomer, and *anti*-2c was obtained preferentially. Subsequent heating of the product mixture at 100 °C for 3 days lead to no changes in the product ratio.

Curious as to whether a concerted process could also be in operation for the formation of the (2 + 2 + 1) cycloaddition product 3 from 1,5-COD, the reaction mechanism was studied by DFT calculations. In this instance the concerted pathway would have to involve a $[\pi 2_s + \pi 2_s + \pi 2_s]$ cycloaddition due to the spatial separation of C=C π -systems. In some cases, related homo-Diels-Alder reactions have been shown to be concerted pericyclic cycloadditions.^{53,54} In the current case, both concerted and stepwise pathways could be identified by DFT calculations (see Supporting Information). The stepwise pathway has the lowest energy barriers and is a more likely proposition than the concerted mechanism (Figure 4). Hence, reaction of 1 with a single alkene unit of 1,5-COD results in formation of aluminocyclopropane Int-2 ($\Delta G^{\circ}_{298 \text{ K}}$ = +8.3 kcal mol⁻¹). Approach of the second alkene unit to aluminum results in the formation of Int-3 ($\Delta G^{\circ}_{298 \text{ K}}$ = +19.7 kcal mol⁻¹). Int-3 can form the tricyclic scaffold by insertion of the second alkene into the aluminocyclopropane moiety via **TS-2** $(\Delta G^{\ddagger}_{298 \text{ K}} = +21.2 \text{ kcal mol}^{-1})$ forming **3** $(\Delta G^{\circ}_{298 \text{ K}} = -15.6 \text{ kcal mol}^{-1})$ in an exergonic process with control of the stereochemistry of the cis-fused ring junction. The aluminocyclopropane intermediate is calculated to be unstable with respect to the starting materials and products. Experimentally no intermediates were observed during the formation of 3. We were unable to locate a transition state for the (2 + 1)cycloaddition step in this reaction sequence and as such cannot unambiguously rule out the concerted $[\pi 2_s + \pi 2_s + \pi 2_s]$ cycloaddition pathway.

CONCLUSIONS

In summary, we report the reactions of a monomeric aluminum(I) complex with a series of 1,2-, 1,3-, and 1,5dienes. In the case of the nonconjugated dienes investigated to date, reactivity is defined by an initial (2 + 1) cycloaddition to form an aluminocyclopropane. Subsequent insertion of C=C unsaturation into the strained three-membered ring can lead to the formation of more complex organometallic products. In the case of 1,3-dienes a concerted (4 + 1) reaction occurs. This can proceed with the dearomatisation of the substrate due to the high-energy nature of the aluminum(I) reagent. Stereochemical probe experiments and DFT calculations are consistent with the (4 + 1) reaction being defined as a concerted pericyclic reaction, specifically a cheletropic reaction. The definition parallels that known for the addition of group 14 reactive intermediates to 1,3-dienes (e.g., silylenes, germylenes, and stannylenes). The experimental and theoretical realization of this reactivity in simple, well-defined molecular systems may be a useful step toward the design of catalytic cycles, especially given the potential for reversibility in the (4 + 1) cycloaddition step. Moreover, the new aluminocycles we report may be useful reactive organometallic building blocks in chemical synthesis, allowing easy access to complex ring systems from simple starting materials.55

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.inorgchem.9b03701.

Full details of the experiments and calculations (PDF)

Accession Codes

CCDC 1973313–1973321 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Mark R. Crimmin – Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K.; orcid.org/0000-0002-9339-9182; Email: m.crimmin@imperial.ac.uk

Authors

Clare Bakewell – Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 OBZ, U.K.; Department of Chemistry, University College London, WC1H 0AJ London, U.K.; orcid.org/0000-0003-4053-8844

Martí Garçon – Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K.

Richard Y. Kong – Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K.; orcid.org/0000-0001-7891-9621

Louisa O'Hare – Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K.

Andrew J. P. White – Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K.

Complete contact information is available at:

https://pubs.acs.org/10.1021/acs.inorgchem.9b03701

Author Contributions

[§]These authors contributed equally and are listed in alphabetical order.

Notes

pubs.acs.org/IC

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful to the European Research Council (FluoroFix:677367) and the Royal Society (UF090149) for their support. Pete Haycock is gratefully acknowledged for his assistance with NMR spectroscopy. M.G. thanks the *la Caixa* Foundation (ID 100010434) for a postgraduate scholarship (LCF/BQ/EU19/11710077). R.K. thanks the President's Scholarship scheme of the Imperial College London for support.

REFERENCES

(1) Roesky, H. W.; Kumar, S. S. Chemistry of Aluminium(I). *Chem. Commun.* **2005**, *99* (32), 4027–4038.

(2) Liu, Y.; Li, J.; Ma, X.; Yang, Z.; Roesky, H. W. The Chemistry of Aluminum(I) with β -Diketiminate Ligands and Pentamethylcyclopentadienyl-Substituents: Synthesis, Reactivity and Applications. *Coord. Chem. Rev.* **2018**, 374, 387–415.

(3) Weetman, C.; Inoue, S. The Road Travelled: After Main-Group Elements as Transition Metals. *ChemCatChem* **2018**, *10* (19), 4213–4228.

(4) Chu, T.; Nikonov, G. I. Oxidative Addition and Reductive Elimination at Main-Group Element Centers. *Chem. Rev.* 2018, 118 (7), 3608–3680.

(5) Dohmeier, C.; Loos, D.; Schnöckel, H. Aluminum(I) and Gallium(I) Compounds: Syntheses, Structures and Reactions. *Angew. Chem., Int. Ed. Engl.* **1996**, 35, 129–149.

(6) Liu, L. L.; Zhou, J.; Cao, L. L.; Stephan, D. W. Phosphaaluminirenes: Synthons for Main Group Heterocycles. J. Am. Chem. Soc. 2019, 141 (42), 16971–16982.

(7) Weetman, C.; Bag, P.; Szilvási, T.; Jandl, C.; Inoue, S. CO_2 Fixation and Catalytic Reduction by a Neutral Aluminum Double Bond. *Angew. Chem., Int. Ed.* **2019**, 58 (32), 10961–10965.

(8) Hofmann, A.; Pranckevicius, C.; Tröster, T.; Braunschweig, H. Aluminum(I)/Boron(III) Redox Reactions. *Angew. Chem., Int. Ed.* **2019**, 58 (11), 3625–3629.

(9) Chu, T.; Korobkov, I.; Nikonov, G. I. Oxidative Addition of N-Bonds to an Al(I) Center. J. Am. Chem. Soc. 2014, 136 (25), 9195–9202.

(10) Kasai, P. H.; McLeod, D. Aluminum Atom-Ethylene Molecular Complex. Matrix Isolation Electron Spin Resonance Study. J. Am. Chem. Soc. **1975**, 97 (19), 5609–5611.

(11) Skell, P. S.; Wolf, L. R. Reactions of Free Aluminum Atoms. Direct Syntheses of Organoaluminum Compounds. J. Am. Chem. Soc. **1972**, 94 (22), 7919–7920.

(12) Chenier, J. H. B.; Howard, J. A.; Tse, J. S.; Mile, B. An ESR Study of the Reaction of Aluminum Atoms with 1,3-Butadiene: Cheleotropic Cycloaddition and Substituted Allyl Formation. *J. Am. Chem. Soc.* **1985**, 107 (25), 7290–7294.

(13) Schnöckel, H.; Leimkühler, M.; Lotz, R.; Mattes, R. DImeric 1,4-Dichloro-2,3,5,6-Tetramethyl-1,4-Dialumina-2,5-Cyclohexadiene, a Compound with Aluminium-Olefin P-Bonds. *Angew. Chem., Int. Ed. Engl.* **1986**, 25 (10), 921–922.

(14) Dohmeier, C.; Mattes, R.; Schnöckel, H. Synthesis and Molecular Structure of the Cyclic Hexamer of 2,3-Dimethylbutene Aluminium Monochloride. *J. Chem. Soc., Chem. Commun.* **1990**, *14* (5), 358–359.

(15) Hardman, N. J.; Wright, R. J.; Phillips, A. D.; Power, P. P. Structures, Bonding, and Reaction Chemistry of the Neutral Organogallium(I) Compounds $(GaAr)_n$ (n = 1 or 2) (Ar = Terphenyl

or Related Ligand): an Experimental Investigation of Ga-Ga Multiple Bonding. J. Am. Chem. Soc. 2003, 125 (9), 2667–2679.

(16) Cui, C.; Roesky, H. W.; Schmidt, H.-G.; Noltemeyer, M.; Hao, H.; Cimpoesu, F. Synthesis and Structure of a Monomeric Aluminum(I) Compound $[{HC(CMeNAr)_2}Al]$ (Ar = 2,6-iPr₂C₆H₃): a Stable Aluminum Analogue of a Carbene. *Angew. Chem., Int. Ed.* **2000**, 39 (23), 4274–4276.

(17) Bakewell, C.; White, A. J. P.; Crimmin, M. R. Reversible Alkene Binding and Allylic C-H Activation with an Aluminium(I) Complex. *Chem. Sci.* **2019**, *10* (8), 2452–2458.

(18) Bakewell, C.; White, A. J. P.; Crimmin, M. R. Reactions of Fluoroalkenes with an Aluminium(I) Complex. *Angew. Chem., Int. Ed.* **2018**, 57 (22), 6638–6642.

(19) We use the (4 + 1) nomenclature to refer to the number of atoms involved in the cycloaddition reaction. The definition of the number of electrons is captured in the more precise description, e.g., $[\pi^4 s + n^2 s]$.

(20) Kong, R. Y.; Crimmin, M. R. Reversible Insertion of CO Into an Aluminium-Carbon Bond. *Chem. Commun.* **2019**, 55 (44), 6181– 6184.

(21) Li, X.; Ni, C.; Song, H.; Cui, C. Formation of Aluminacyclobutenes via Carbon Monoxide and Isocyanide Insertion. *Chem. Commun.* **2006**, *130* (16), *1763–1765*.

(22) Cui, C.; Köpke, S.; Herbst-Irmer, R.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H.-G.; Wrackmeyer, B. Facile Synthesis of Cyclopropene Analogues of Aluminum and an Aluminum Pinacolate, and the Reactivity of $LAl[\eta^2-C_2(SiMe_3)_2]$ Toward Unsaturated Molecules (L = $HC[(CMe)(NAr)]_2$, Ar = 2,6-i- $Pr_2C_6H_3$). J. Am. Chem. Soc. **2001**, 123 (37), 9091–9098.

(23) Jain, S.; Vanka, K. The Unusual Role of the Aromatic Solvent in Single Site Al(I) Chemistry: Insights From Theory. *Chem. - Eur. J.* **2017**, 23 (56), 13957–13963.

(24) Harder, S.; Brand, S.; Elsen, H.; Langer, J.; Donaubauer, W. A.; Hampel, F. Facile Benzene Reduction by a $Ca^{2+}/Al(I)$ Lewis Acid/Base Combination. *Angew. Chem., Int. Ed.* **2018**, *57* (43), 14169–14173.

(25) Schwamm, R. J.; Anker, M. D.; Lein, M.; Coles, M. P. Reduction vs. Addition: the Reaction of an Aluminyl Anion with 1,3,5,7-Cyclooctatetraene. *Angew. Chem., Int. Ed.* **2019**, *58* (5), 1489–1493.

(26) Hooper, T. N.; Garçon, M.; White, A. J. P.; Crimmin, M. R. Room Temperature Catalytic Carbon-Hydrogen Bond Alumination of Unactivated Arenes: Mechanism and Selectivity. *Chem. Sci.* **2018**, *9* (24), 5435–5440.

(27) Chen, W.; Hooper, T. N.; Ng, J.; White, A. J. P.; Crimmin, M. R. Palladium-Catalyzed Carbon-Fluorine and Carbon-Hydrogen Bond Alumination of Fluoroarenes and Heteroarenes. *Angew. Chem., Int. Ed.* **2017**, *56* (41), 12687–12691.

(28) Brand, S.; Elsen, H.; Langer, J.; Grams, S.; Harder, S. Calcium-Catalyzed Arene C-H Bond Activation by Low-Valent Al(I). *Angew. Chem., Int. Ed.* **2019**, 58 (43), 15496–15503.

(29) Kurumada, S.; Takamori, S.; Yamashita, M. An Alkyl-Substituted Aluminium Anion with Strong Basicity and Nucleophilicity. *Nat. Chem.* **2020**, *12*, 36–39.

(30) Hicks, J.; Vasko, P.; Goicoechea, J. M.; Aldridge, S. Synthesis, Structure and Reaction Chemistry of a Nucleophilic Aluminyl Anion. *Nature* **2018**, 557 (7703), 92–95.

(31) Hicks, J.; Vasko, P.; Goicoechea, J. M.; Aldridge, S. Reversible, Room-Temperature C-C Bond Activation of Benzene by an Isolable Metal Complex. J. Am. Chem. Soc. **2019**, *141* (28), 11000–11003.

(32) Takeda, N.; Tokitoh, N.; Okazaki, R. A Novel Reaction Mode in the Cycloaddition of Thermally Generated Silylenes with Conjugated Dienes. *Chem. Lett.* **2000**, *29*, 622–623.

(33) Bobbitt, K. L.; Gaspar, P. P. 1–2-Adducts From Silylenes and 1,3-Butadiene. J. Organomet. Chem. **1995**, 499, 17–26.

(34) Zhang, S.; Conlin, R. T. Stable 2-Vinylsiliranes. J. Am. Chem. Soc. 1991, 113 (11), 4272-4278.

(35) Ishikawa, M.; Nakagawa, K. I.; Kumada, M. Photolysis of Organopolysilanes. the Reaction of Trimethylsilylphenylsilene with

Olefins and Conjugated Dienes. J. Organomet. Chem. 1979, 178, 105–118.

(36) Atwell, W. H.; Weyenberg, D. R. Silylene Chemistry. I. the Thermolysis of Methoxypolysilanes. J. Am. Chem. Soc. 1968, 90 (13), 3438–3443.

(37) Cotton, J. D.; Davidson, P. J.; Lappert, M. F. Subvalent Group 4B Metal Alkyls and Amides. Part II. the Chemistry and Properties of Bis[Bis(Trimethylsilyl)Methyl]Tin(II) and Its Lead Analogue. *J. Chem. Soc., Dalton Trans.* **1976**, No. 21, 2275–2286.

(38) Ching-Lin Ma, E.; Kobayashi, K.; Barzilai, M. W.; Gaspar, P. P. Stereochemistry of Dimethylgermylene Addition to *E,E-* and *E,Z-* Hexadienes in the Gas Phase. *J. Organomet. Chem.* **1982**, 224, C13–C16.

(39) Schriewer, M.; Neumann, W. P. Chemistry of Heavy Carbene Analogs R_2M (M = Si, Ge, Sn). 8. Germylenes: Singlets or Triplets? [2 + 4]Cheletropic Cycloadditions of Dimethylgermylene and Diiodogermylene to Conjugated Dienes. J. Am. Chem. Soc. 1983, 105 (4), 897–901.

(40) Marx, R.; Neumann, W. P.; Hillner, K. [2 + 4] Cheltropic Cycloadditions of Stannylenes R₂Sn (R = Alkyl, Amino, Halogen). *Tetrahedron Lett.* **1984**, 25 (6), 625–628.

(41) Dewar, M. J. S.; Friedheim, J. E.; Grady, G. L. Studies of Chemical Problems Using Quantum Mechanical Molecular Models. Part 72. Stannylenes: an MNDO Investigation. *Organometallics* **1985**, *4* (10), 1784–1787.

(42) Nag, M.; Gaspar, P. P. A Computational Study of the Mechanism of Addition of Singlet Carbene Analogues to 1,3-Butadiene to Form 1,1-Dimethylmetallacyclopent-3-Enes [MMe₂C₄H₆, M = Si, Ge, Sn] and Their Reverse Retro-Addition Reactions. *Organometallics* **2009**, 28 (19), 5612–5622.

(43) Mock, W. L. The Stereoelectronic Course of the Diene-Sulfur Dioxide Reaction. J. Am. Chem. Soc. **1966**, 88 (12), 2857–2858.

(44) Dmitrienko, A.; Britten, J. F.; Spasyuk, D.; Nikonov, G. I. Adduct of NacNacAl with Benzophenone and Its Coupling Chemistry. *Chem. - Eur. J.* **2020**, *26*, 206.

(45) Gardiner, M. G.; Raston, C. L.; Cloke, F. G. N.; Hitchcock, P. B. 1,4-Bis(Trimethylsilyl)but-2-Ene-1,4-Diyl Complexes of Lithium, Magnesium, Aluminum, and Gallium. *Organometallics* **1995**, *14* (3), 1339–1353.

(46) Petko, D.; Stratton, M.; Tam, W. Ruthenium-Catalyzed Bis-Homo-Diels-Alder Reaction: Searching for Commercially Available Catalysts and Expanding the Scope of Reaction. *Can. J. Chem.* **2018**, *96* (12), 1115–1121.

(47) Lautens, M.; Edwards, L. G. Stereoselectivity in the Homo Diels-Alder Reaction. *Tetrahedron Lett.* **1989**, 30 (49), 6813–6816.

(48) Fickes, G. N.; Metz, T. E. Scope of the Homo-Diels-Alder Reaction. J. Org. Chem. **1978**, 43 (21), 4057–4061.

(49) Blomquist, A. T.; Meinwald, Y. C. Synthesis of Some Conjugated Cyclobutane Polyolefins and Their 1,2-Cycloaddition to Tetracyanoethylene. J. Am. Chem. Soc. **1959**, 81 (3), 667–672.

(50) Müller, D.; Alexakis, A. Formation of Quaternary Stereogenic Centers by Copper-Catalyzed Asymmetric Conjugate Addition Reactions of Alkenylaluminums to Trisubstituted Enones. *Chem. - Eur. J.* **2013**, *19* (45), 15226–15239.

(51) Miller, J. A.; Zweifel, G. Hydroalumination of 1-(Trimethylsilyl-1,3-Diynes). Syntheses of Stereodefined Enynes and Dienes. *J. Am. Chem. Soc.* **1983**, *105* (5), 1383–1384.

(52) Schleyer, P. V. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; Van Eikema Hommes, N. J. R. Nucleus-Independent Chemical Shifts: a Simple and Efficient Aromaticity Probe. *J. Am. Chem. Soc.* **1996**, *118* (26), 6317–6318.

(53) Berson, J. A.; Olin, S. S. Geometry of the Transition State of the Retrograde Homo Diels-Alder Reaction. Stereospecific Conversion of 1,3-to 1,4-Dienes. J. Am. Chem. Soc. **1969**, *91* (3), 777–778.

(54) Khuong, K. S.; Houk, K. N. One-Bond, Two-Bond, and Three-Bond Mechanisms in Thermal Deazetizations of 2,3-Diazabicyclo[2.2.2]Oct-2-Enes, Trans-Azomethane, and 2,3-Diazabicyclo[2.2.1]Hept-2-Ene. J. Am. Chem. Soc. 2003, 125 (48), 14867-14883.

Inorganic Chemistry

pubs.acs.org/IC

(55) While this paper was under peer-review a related study from the group of Yamashita and co-workers was published. Sugita, K.; Nakano, R.; Yamashita, M. Cycloaddition of Dialkylalumanyl Anion Toward Unsaturated Hydrocarbons in (1 + 2) and (1 + 4) Modes. *Chem. - Eur. J.* **2020**, *26*, 2174–2177.